a-Recursion Theory and Ordinal Com-
putability

BY PETER KOEPKE

University of Bonn

13.2.2007

Abstract

Motivated by a talk of S.D.FRIEDMAN at BIWOC we show that the a-recur-
sive and a-recursively enumerable sets of G. SACKS’s a-recursion theory are
exactly those sets that are recursive and recursively enumerable by an
ordinal TURING machines with tapes of length o and time bound «.

1 Introduction.

a-Recursion theory is a branch of higher recursion theory that was developed by
G. SACKS and his school between 1965 and 1980. SACKS gave the following char-
acterization [4]:

a-recursion theory lifts classical recursion theory from w to an arbi-
trary ¥; admissible ordinal . Many of the classical results lift to
every « by means of recursive approximations and fine structure
techniques.

The lifting is based on the observation that a set A C w is recursively enumer-
able iff it is ¥; definable over (H,, €), the set of all hereditarily finite sets. By
analogy, a set A C « is called a-recursively enumerable iff it is 31(L,), i.e., defin-
able in parameters over (L,, €) where L, is the a-th level of GODEL’s con-
structible hierarchy. Consequently a set A C « is said to be a-recursive iff it is
Aq(L,). SACKs discusses the “computational character” of 3;(L,)-definitions [4]:

The definition of f can be thought of as a process. At stage § it is
assumed that all activity at previous stages is encapsulated in an a-
finite object, s [0. In general it will be necessary to search through
L,, for some existential witness ... [emphases by P.K.].

In this note we address the question whether it is possible to base a-recursion
theory on some idealized computational model.

Let us fix an admissible ordinal o , w < o < oo for the rest of this paper. A
standard TURING computation may be visualized as a time-like sequence of ele-
mentary read-write-move operations carried out by “heads” on “tapes’”. The
sequence of actions is determined by the initial tape contents and by a finite
TURING program. We may assume that the TURING machine acts on a tape
whose cells are indexed by the set w (=N) of natural numbers 0,1, ... and contain
0’s or 1’s. A computation takes place in w X w “spacetime”

2 SECTION 1

S PACE
0[1]2][3]|4|5]|6]|7]...]-..
O g1(0(0f1)1(1({0|0{0O| O
1 J0{0j0{1|1(1{0|0
T 2 J0{0j0{1|1(1]0]|0
Iy 3 JOoj0|1{1|11(1{0}|0
M| 4 JOof1j1{1|1(1]{0]|0
E :
n J1(1|1]1}0]1|1|1
n+141(111|11|1f1|1]|1

A standard TURING computation. Head positions are indicated by shading.

Let us now generalize TURING computations from w X w to an a X « space-
time: consider TURING tapes whose cells are indexed by a (= the set of all ordi-
nals < «) and calculations which are sequences of elementary tape operations
indexed by ordinals < « . For successor times, calculations will basically be
defined as for standard TURING machines. At limit times tape contents, program
states and head positions are defined by inferior limits.

S pace Q@
0|1(2[3[4]|5]|6]|7]. w 0106 |...

O J1{1{0[1][0[Of1]|1]. 1 1101010
1 Joj1(o|1{0|0|1]|1 1

T 2 0(0f0f1{0]|0]1]|1 1

i 3 1010|021 |0|0|1]1 1

m| 4 JO(0[{0[0O[O|0|1]1 1

o :
n 111]1]1]10|1(0|1 1

aln+l J1|1|1(1({1]1]0]|1 1
w 0[0[1{0[0jO2f2|...]...[1
w+1§0(0[1]0|0]|0|1]|1 0
O<all (0|01 {1 [1{1|{0feccc| ece |eee]en|O]...

A computation of an a-TURING machine.

This leads to an a-computability theory with natural notions of a-computable
and a-computably enumerable subsets of . We show that a-computability largely
agrees with a-recursion theory:

o -TURING MACHINES 3

Theorem 1. Consider a set AT« . Then
a) A is a-recursive iff A is a-computable.

b) A is a-recursively enumerable iff A is a-computably enumerable.

One can also define what it means for A C a to be a-computable in an oracle B C
a and develop a theory of a-degrees. The reduction by a-computation is coarser
than the standard reducibility used in a-recursion theory:

Theorem 2. Consider sets A, B C « such that A is weakly a-recursive in B.
Then A is a-computable in B.

The relationship between ordinal TURING machines and the constructible
model L was studied before [2]. We shall make use of those results by restricting
them to «. It should be noted that we could have worked with ordinal register
machines instead of TURING machines to get the same results [3]. The present
work was inspired by S.D.FRIEDMAN’s talk on a-recursion theory at the BIWOC
workshop.

2 o -TURING Machines

The intuition of an a-TURING machine can be formalized by restricting the defi-
nitions of [2] to a.

Definition 3.

a) A command is a 5-tuple C=(s,c,c’,m ,s’) where s,s" €w and ¢, ', m € {0,
1}; the natural number s is the state of the command C. The intention of
the command C' is that if the machine is in state s and reads the symbol c
under its read-write head, then it writes the symbol ¢’, moves the head left
if m =0 or right if m = 1, and goes into state s'. States correspond to
the “line numbers” of some programming languages.

b) A program is a finite set P of commands satisfying the following structural
conditions:
i. If (s,c,c';m,s’) € P then there is (s,d,d',n ,t') € P with ¢+ d; thus
i state s the machine can react to reading a “07 as well as to
reading a “1”.
it. If (s,c,c/,m,s")yePand (s,c,c’,m’',s")€ Pthen ' =c",m=m/,
s" = s"; this means that the course of the computation is completely

determined by the sequence of program states and the initial cell
contents.

c) For a program P let
states(P) ={s|(s,c,c/,m,s") e P}

be the set of program states.

4 SECTION 2

Definition 4. Let P be a program. A triple
S:0—w, H0—a, T:0—(*2)
s an a-computation by P iff the following hold:
a) 0 is a successor ordinal <o or @ =«; 0 is the length of the computation.
b) S(0)=H(0)=0; the machine starts in state 0 with head position 0.

c) If t < 0 and S(t) ¢ state(P) then 6§ = t + 1; the machine stops if the
machine state is not a program state of P.

d) Ift <6 and S(t) € state(P) then t + 1 < 6; choose the unique command (s,
c,c',m,s’) € Pwith S(t) =s and T(t)aw) = c; this command is executed as
follows:

_ i E=H();
T(t+1De = { T(t)e , else;

S(t+1) = s
H(t)+1, if m=1,

H(t+1) = ¢ H(t)—1, if m=0 and H(t) is a successor ordinal;
0, else.

e) If t < 6 is a limit ordinal, the machine constellation at t is determined by
taking inferior limits:

VE€Ord T'(t)e = liminf T'(r)e;

r—t

S(t) = liminf S(r);
r—t
H(t) = liminf H(s).

s—1t,5(s)=5(t)

The a-computation is obviously recursively determined by the initial tape contents
T(0) and the program P. We call it the a-computation by P with input 7°(0). If
the a-computation stops, 0 = 3 + 1 is a successor ordinal and T(() is the final
tape content. In this case we say that P computes T'(3) from T(0) and write P:
T0)—T(5).

Sets A C o may be coded by their characteristic functions xa:a— 2, x.(§) =1
iff €€ A.

Definition 5. A partial function F: a— « is a-computable iff there is a program
P and a finite set p C a of parameters such that for all 6 <o :

— if § € dom(F) then the a-computation with initial tape contents T(0) =
Xpu{2-6) stops and P: xpu2.61 X{F(5)} ; note that we use “even” ordinals to
code the input §, the parameter set p would typically consist of “odd” ordi-
nals;

— if 6 ¢ dom(F) then the a-computation with initial tape contents T(0) =
Xpu{2-5} does not stop.

THE BOUNDED TRUTH PREDICATE FOR L, b)

A set A C a is a-computable iff its characteristic function xa: o — 2 is a-com-
putable. A set A C « is a-computably enumerable iff A = dom(F') for some a-
computable partial function F:o— 2.

3 oa-computations inside L,

In general, recursion theory subdivides recursions and definitions into minute ele-
mentary computation steps. Thus computations are highly absolute between
models of (weak) set theories and we get:

Lemma 6. Let P be a program and let T'(0): o« — 2 be an initial tape content
which is X1-definable in (Lo, €) from parameters. Let S:0 —w, H:0—a, T:0 —
(“2) be the a-computation by P with input T'(0). Then:

a) S, H, T is the a-computation by P with input T'(0) as computed in the
model (L,, €).

b) S,H,T are ¥1-definable in (Ly, €) from parameters.
c) If AC« is a-recursively enumerable then it is ¥1(L,) in parameters.

d) If AC« is a-recursive then it is A1(Ly) in parameters.

So we have proved one half of the Equivalence Theorem 1.

4 The bounded truth predicate for L,

For the converse we have to analyse KURT GODEL’s constructible hierarchy using
ordinal computability. The inner model L of constructible sets is defined as the
union of a hierarchy of levels Ls:

L=J L

6€0rd

where the hierarchy is defined by: Ly =0, Ls = Uﬁ{ s L for limit ordinals 4, and

L.+1 = the set of all sets which are first-order definable with parameters in the
structure (L., €). The standard reference to the theory of the model L is the
book [1] by K. DEVLIN. We consider in particular the model

Lo=|]J Ly
<o

To make L, accessible to an a-TURING machine we introduce a language with
symbols (,),{, },|,€,=,A,,V, 3 and variables vy, vy, Define (bounded) for-
mulas and (bounded) terms by a common recursion on the lenghts of words
formed from these symbols:

— the variables vy, vy, ... are terms;

— if s and ¢ are terms then s=t and s €t are formulas;

6 SECTION 4

— if ¢ and ¢ are formulas then —¢, (¢ A), Yv; €v; ¢ and Jv; € v, ¢ are for-
mulas;

— if ¢ is a formula then {v; €v; |¢} is a term.
For terms and formulas of this language define free and bound variables:
— free(v;) = {v;}, bound(v;) = 0;
— free(s=t) =free(s €t) =free(s) Ufree(t);
— bound(s=1t)=bound(s € t) = bound(s) Ubound(t);
— free(—p) =free(y), bound(—¢) =bound(p);
— free((¢ A 9)) =free(y) Ufree()), bound((¢ A ¢)) =bound(¢) Ubound(1));
— free(¥oi € vyp) = free(Tu; € uy0) = free({u; € v; | 0}) = (Free(ip) U o, 1)\ fui

— bound(Vv; € vj¢) =bound(Jv; € v;) =bound({v; € v; | }) =
= bound(¢) U{v; }.

For technical reasons we will be interested in terms and formulas in which
— no bound variable occurs free,
— every free variable occurs exactly once.

Such terms and formulas are called tidy; with tidy formulas one avoids having to
deal with the interpretation of one free variable at different positions within a for-
mula.

An assignment for a term t or formula ¢ is a finite sequence a: k — V' so that
for every free variable v; of ¢t or ¢ we have i < k; a(i) will be the interpretation of
v; . The value of t or the truth value of ¢ is determined by the assignment a. We
write t[a] and pla] for the values of ¢t und ¢ under the assignment a.

Concerning the constructible hierarchy L , it is shown by an easy induction on
7 that every element of L. is the interpretation ¢[(L.,, L, ..., L,)] of some tidy

? Ve—1
term t with an assignment (L., L., ..., L,, ,) whose values are constructible
levels L., with 7o, ..., 74—1 < 7. This will allow to reduce bounded quantifications

Vv € L, or Jv € L., to the substitution of terms of lesser complexity. Moreover, the
truth of (bounded) formulas in L is captured by tidy bounded formulas of the
form QO[(L%, L’Yl’ s L’Yk—l)]'

We shall code an assignment of the form (L., L.,, ..., L, _,) by its sequence of
ordinal indices, i.e., we write t[(70, 71, s Ve—1)] oF ©[(70, Y1, --+» Y—1)] instead of
t{(Lrgy Loy ooey Ly)] O @[(Lgy Ly, -vvs Loy ,)]. The relevant assignments are thus
elements of Ord<.

We define a bounded truth function W for the constructible hierarchy on the

class
A={(a,¢)|acOrd<¥, ¢ is a tidy bounded formula, free(y) C dom(a)}
of all “tidy pairs” of assignments and formulas. Define the bounded constructible
truth function W: A— 2 by
Wia,p)=11ff ¢la].

REDUCIBILITIES 7

In [2| we showed:

Lemma 7. The bounded truth function W for the constructible universe is ordinal
computable.

Restricting all considerations to « yields
Lemma 8. The bounded truth function W | L, for L, is a-computable.
This yields the Equivalence Theorem 1:

Lemma 9. If ACa« is ¥1(La) in parameters then A is a-computably enumerable.
If ACa is Ay(Ly) in parameters then A is a-computable.

Proof. Consider a 3(L,)-definition of A C «:
f€A—TyeLaLoaFpl¢, y,d]
where ¢ is a bounded formulas. This is equivalent to

(€ A=Tp<algFIypll,y,d]

and
feA—TB<aW((E,B,d),¢")

where * is an appropriate tidy formula.
Now A is a-computably enumerable, due to the following “search procedure”™
for ¢ < a search for the smallest 3 < a such that

W((E, 8,a@), ¢");

if the search succeeds, stop, otherwise continue.
For the second part, let A C«a be Aj(L,) in parameters. Then A and « \ A are
a-computably enumerable. By standard arguments, A is a-computable. U

5 Reducibilities

The above considerations can all be relativized to a given oracle set B C a. One
could, e.g., provide B on an extra input tape. This leads to a natural reducibility

A< B iff Ais a-computable in B.

Note that so far we have not really used the admissibility of « but only that « is
closed under ordinal multiplication. We obtain:

Proposition 10. A < B iff A is Ai(Ln(B)) in parameters, where (Ls(B))scora S
the constructible hierarchy relativized to B.

The a-recursion theory of [4] uses the following two reducibilities for subsets
of a:

8 SECTION

Definition 11.

a) A is weakly a-recursive in B, A <. B, iff there exists an a-recursively
enumerable set R C L, such that for all v < «
vyeAf dHCB3IJCa\B (H,J,v,1)eR
and
vy¢Auff IHCB3JCa\B(H,J,v,0)€R.
b) A is a-recursive in B, A <, B, iff there exist a-recursively enumerable sets
Ry, R1 C L, such that for all K € L,,
KCAWf dHCB3JCa\B(H,J,K) € R,y
and
KCa\Aiff 3HCB3JCa\B (H,J,K)€ER;.

It is easy to see that A <, B implies A <,, B. If A <, B then an inspection of
the conditions an part a) of the definition shows immediately that A is
Ay(Ly(B)), i.e., A< B, which proves Theorem 2.

We conjecture that POST’s problem holds for <: there are a-computably enu-
merable sets A, B C « such that

A#4ABand BAA.
This would immediately yield the SACKS-SIMPSON theorem [5]
A yo B and B L0 A

which is the positive solution to POST’s problem in a-recursion theory.

Bibliography

[1] Keith Devlin. Constructibility. Perspectives in Mathematical Logic. Springer-Verlag,
Berlin, 1984.

[2] Peter Koepke. Turing computations on ordinals. The Bulletin of Symbolic Logic,
11:377-397, 2005.

[3] Peter Koepke and Ryan Siders. Register computations on ordinals. submitted to:
Archive for Mathematical Logic, 14 pages, 2006.

[4] Gerald E. Sacks. Higher Recursion Theory. Perspectives in Mathematical Logic.
Springer-Verlag, Berlin Heidelberg, 1990.

[5] Gerald E. Sacks and Stephen G. Simpson. The a-finite injury method. Annals of Math-
ematical Logic, 4:343-367, 1972.

