
The Bulletin of Symbolic Logic

Volume 11, Number 3, Sept. 2005

TURING COMPUTATIONS ON ORDINALS

PETER KOEPKE

Abstract. We define the notion of ordinal computability by generalizing standard Turing

computability on tapes of length ù to computations on tapes of arbitrary ordinal length. We

show that a set of ordinals is ordinal computable from a finite set of ordinal parameters if and

only if it is an element of Gödel’s constructible universeL. This characterization can be used

to prove the generalized continuum hypothesis in L.

§1. Introduction. A standard Turing computation may be visualized as
a time-like sequence of elementary read-write-move operations carried out
by one or more “heads” on “tapes”. The sequence of actions is determined
by the initial tape contents and by a finite Turing program. The specific
choice of alphabet, operations and tapes may influence the time or space
complexity of calculations; by the Church-Turing thesis, however, the
associated notion of Turing computability is not affected. So we may
assume that Turing machines act on tapes whose cells are indexed by the
set ù (= N) of natural numbers 0, 1, . . . and contain 0’s or 1’s.

SPACE
0 1 2 3 4 5 6 7 . . . . . .

0 1 0 0 1 1 1 0 0 0 0
1 0 0 0 1 1 1 0 0
2 0 0 0 1 1 1 0 0
3 0 0 1 1 1 1 0 0

T
IM
E

4 0 1 1 1 1 1 0 0
...
n 1 1 1 1 0 1 1 1
n + 1 1 1 1 1 1 1 1 1
...

A standard Turing computation. Head positions are indicated by boldface.

An obvious generalization from the perspective of transfinite ordinal the-
ory is to extend Turing calculations to tapes whose cells are indexed by
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the class Ord of all ordinal numbers. Calculations will become (infinite)
sequences of elementary tape operations indexed by ordinals which may be
viewed as instances of time. For successor ordinals (or times) calculations
will basically be defined as for standard Turing machines. At limit or-
dinals we define the tape contents, program states and head positions by
appropriate limit operations which may be viewed as inferior limits.

Ordinal Space . . .
0 1 2 3 4 5 6 7 . . . . . . ù . . . α . . .

0 1 1 0 1 0 0 1 1 . . . . . . 1 . . . 1 0
1 0 1 0 1 0 0 1 1 1
2 0 0 0 1 0 0 1 1 1
3 0 0 0 1 0 0 1 1 1
4 0 0 0 0 0 0 1 1 1
:
n 1 1 1 1 0 1 0 1 1

O
rd
in
al
T
im
e
..
.

n+1 1 1 1 1 1 1 0 1 1
...

...
...
...
...
...

ù 0 0 1 0 0 0 1 1 . . . . . . 1

ù + 1 0 0 1 0 0 0 1 1 0
...
è 1 0 0 1 1 1 1 0 . . . . . . . . . . . . 0 . . .
...

...
...

...
...

...

An ordinal computation.

The corresponding notion of ordinal computability obviously extendsTur-
ing computability. By the Church-Turing thesis many operations on nat-
ural numbers are ordinal computable. The ordinal arithmetical operations
(addition, multiplication, exponentiation) and other basic operations on
ordinals are also ordinal computable.
Indeed, the recursive properties of the family of ordinal computable func-
tions are so strong that the bounded truth predicate

{ (α,ϕ, ~x) | α ∈ Ord, ϕ an ∈-formula, ~x ∈ Lα , Lα � ϕ(~x) }

for Gödel’s constructible hierarchy L =
⋃

α∈Ord Lα is ordinal computable
given some appropriate coding. As a corollary we obtain the main result
characterizing ordinal computability:

Theorem 1.1. A set x ⊆ Ord is ordinal computable from finitely many
ordinal parameters if and only if x ∈ L.
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The implication from left to rightwill be immediate from the set-theoretical
absoluteness of ordinal computations. The converse requires a careful anal-
ysis of the iterative definition of the constructible hierarchy to show that the
iteration can be carried out by an ordinal Turingmachine.
This theoremmay be viewed as an analogue of theChurch-Turing thesis:
ordinal computability defines a natural and absolute class of sets, and it is
stable with respect to technical variations in its definition.
Theories of transfinite computations which extend Turing computability
have been proposed and studied for some time. Higher recursion theory as
described in the monograph [7] of Gerald Sacks culminates in E-recursion
which defines a computational result {e}(x) for programs e built from basic
set functions applied to arbitrary sets x. The relation of E-computability
to constructibility is analogous to the statement of Theorem 1.1. In com-
puter science various infinitary machines like Büchi automata [1] have been
defined yielding important applications. The novelty here is in keeping
with the original Turing idea of reading and writing on an unrestricted
tape while interpreting unrestrictedness in the widest sense as set-theoretical
unboundedness.
Our work was inspired by the infinite timeTuringmachines introduced by
Joel D. Hamkins, Jeff Kidder and Andy Lewis [4]. Infinite time Turing
machines use standard tapes indexed by natural numbers but allow infinite
computation sequences. At limit times, tape contents are defined as inferior
limits of previous contents. Inputs and outputs are characteristic functions
on the set ù of all natural numbers and may thus be viewed as real numbers.
The theory of infinite time Turing machines is naturally related to defin-
ability theory over the structure (R, . . . ), i.e., to descriptive set theory. In the
case of tapes of arbitrary ordinal length one is lead to consider a theory of
arbitrarily iterated definitions, i.e., constructibility theory.
There is also a link between ordinal computability and Silver machines
which were defined by Jack H. Silver to — in his words — “eliminate the
fine structure from the work of Jensen” [6], [8]. A Silver machine is not a
machine in the sense that it corresponds to some idealized physical device
but rather a family of Skolem functions and other basic functions which
can be used to form Skolem hulls similar to the Σ1-hulls in the fine structure
theory of Ronald B. Jensen [5]. An issue relating the present work to the
theory of Silvermachines is Silver’s recursive definition of a bounded truth
predicate for L.

§2. Ordinal Turing Machines. We give an intuitive description of ordinal
computations which will subsequently be formalized. Consider a tape of
ordertype Ord, i.e., a sequence indexed by the class Ord of all ordinals. The
cells of the tape can be identified with the ordinals, every cell can contain a
0 or a 1 where 0 is the default state. A read-write head moves on the tape,
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starting at cell 0. The computation is steered by a program which consists of
a finite sequence of commands indexed by natural numbers. The indices of
the commands can be seen as states of the machine.
A computation of the machine is a sequence of machine configurations
which are indexed by ordinal “times” 0, 1, 2, . . . , ù,ù+1, . . . . At time t the
read-write head reads the content of the cell at its position. According to
the content and the present machine state the head writes a “0” or a “1” and
then moves to the right or to the left. Also the machine changes into a new
program state.
So far we have described the computation rules of finitary Turing ma-
chines. Ordinal computations require the specification of the behaviour at
limit ordinals; we shall base the limit rules on simple limit operations.
Assume that at time t the head position is H (t). After a move-right
command we put H (t + 1) = H (t) + 1. After a move-left command we
move one cell to the left if possible and otherwise, if H (t) is a limit ordinal
or 0, jump to the default position 0:

H (t + 1) =

{

H (t) − 1, if H (t) is a successor ordinal;

0, else.

The definition of H (t) for t a limit ordinal will be given later.
At time t the tape will be identified with a tape content

T (t) =
(

T (t)0, T (t)1, . . . , T (t)ù, T (t)ù+1, . . .
)

which is a sequence of cell contents T (t)α ∈ {0, 1}. It is determined by
previous write operations. For limit times t the content T (t)α of the αth cell
is determined as follows: if the cell content T (s)α stabilizes at a constant
value as s approaches t we let T (t)α be that value; otherwise we take the
default value T (t)α = 0. Formally this is an inferior limit:

T (t)α = lim inf
s→t

T (s)α .

A lim inf rule will also be used for the program state and the head location
at limit times. Let S(t) be the program state at time t. For limit times t set

S(t) = lim inf
s→t

S(s).

Finally the head position H (t) for limit times t is

H (t) = lim inf
s→t,S(s)=S(t)

H (s).

The definitions of S(t) and H (t) can be motivated as follows. Since a
Turing program is finite its execution will lead to some (complex) looping
structure involving loops, subloops and so forth. This can be presented by
pseudo-code like:
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...

17:begin loop

...

21: begin subloop

...

29: end subloop

...

32:end loop

...

Assume that for times s → t the loop (17–32) with its subloop (21–29) is
traversed cofinally often. Then at limit time t it is natural to put the machine
at the start of the “main loop”. Assuming that the lines of the program are
enumerated in increasing order this corresponds to the lim inf rule

S(t) = lim inf
s→t

S(s).

The canonical head location H (t) is then determined as the inferior limit
of all head locations when the program is at the start of the “main loop”.
If the head is for example moving linearly towards a limit location, say
H (s0+ i) = h0+ i for i < ë, we will haveH (s0+ ë) = h0+ ë. Note that the
limit behaviour of the head position is defined differently for infinite time
Turingmachines which do not possess limit positions on the tape; there the
head simply falls back to 0 at limit times.
The above intuitions are formalized as follows.

Definition 2.1. (a) A command is a 5-tuple C = (s, c, c ′, m, s ′) where
s, s ′ ∈ ù and c, c ′, m ∈ {0, 1}; the natural number s is the state of the
command C . The intention of the command C is that if the machine
is in state s and reads the symbol c under its read-write head, then it
writes the symbol c ′, moves the head left if m = 0 or right if m = 1,
and goes into state s ′. States correspond to the “line numbers” of some
programming languages.

(b) A program is a finite set P of commands satisfying the following struc-
tural conditions:
(i) If (s, c, c ′, m, s ′) ∈ P then there is (s, d, d ′, n, t′) ∈ P with c 6= d ;
thus in state s the machine can react to reading a “0” as well as to
reading a “1”.

(ii) If (s, c, c ′, m, s ′) ∈ P and (s, c, c ′′, m′, s ′′) ∈ P then c ′ = c ′′, m =
m′, s ′ = s ′′; this means that the course of the computation is
completely determined by the sequence of program states and the
initial cell contents.

(c) For a program P let

states(P) = { s | (s, c, c ′, m, s ′) ∈ P }

be the set of program states.
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Definition 2.2. Let P be a program. A triple

S : è → ù, H : è → Ord, T : è → (Ord2)

is an ordinal computation by P if the following hold:

(a) è is a successor ordinal or è = Ord; è is the length of the computation.
(b) S(0) = H (0) = 0; the machine starts in state 0 with head position 0.
(c) If t < è and S(t) /∈ state(P) then è = t + 1; the machine stops if the
machine state is not a program state of P.

(d) If t < è and S(t) ∈ state(P) then t + 1 < è; choose the unique
command (s, c, c ′, m, s ′) ∈ P with S(t) = s and T (t)H (t) = c; this
command is executed as follows:

T (t + 1)î =

{

c ′, if î = H (t);

T (t)î , else;

S(t + 1) = s ′;

H (t + 1) =











H (t) + 1, if m = 1;

H (t)− 1, if m = 0 and H (t) is a successor ordinal;

0, else.

(e) If t < è is a limit ordinal, the machine constellation at t is determined
by taking inferior limits:

∀î ∈ Ord T (t)î = lim inf
r→t

T (r)î ;

S(t) = lim inf
r→t

S(r);

H (t) = lim inf
s→t,S(s)=S(t)

H (s).

The computation is obviously recursively determined by the initial tape
contents T (0) and the program P. We call it the ordinal computation by P
with input T (0). If the computation stops, è = â + 1 is a successor ordinal
and T (â) is the final tape content. In this case we say that P computes T (â)
from T (0) and write P : T (0) 7→ T (â).

This interpretation of programs yields associated notions of computability.

Definition 2.3. A partial function F : Ord2 ⇀Ord 2 is ordinal computable
if there is a program P such that P : T 7→ F (T ) for every T ∈ dom(F ).

By coding, the notion of ordinal computability can be extended to other
domains. We can, e.g., code an ordinal ä ∈ Ord by the characteristic function
÷{ä} : Ord→ 2, ÷{ä}(î) = 1 if and only if î = ä, and define:

Definition 2.4. A partial function F : Ord ⇀ Ord is ordinal computable
if the function ÷{ä} 7→ ÷{F (ä)} is ordinal computable.

We also consider computations involving finitelymany ordinal parameters.
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Definition 2.5. A subset x ⊆ Ord is ordinal computable from finitelymany
ordinal parameters if there a finite subset z ⊆ Ord and a program P such
that P : ÷z 7→ ÷x .

In view of our intended applications of ordinal computations to models
of set theory we note some absoluteness properties:

Lemma 2.6. Let (M,∈) be a transitive model of ZF−, i.e., of Zermelo-
Fraenkel set theory without the powerset axiom. Let P be a program and
let T (0) : Ord → 2 be an initial tape content so that T (0)�(Ord∩M ) is
definable inM . Let S : è → ù, H : è → Ord, T : è → (Ord2) be the ordinal
computation by P with input T (0). Then:

(a) The ordinal computation by P with input T (0) is absolute for (M,∈)
below (Ord∩M ), i.e.,

S : è ∩M → ù, H : è ∩M → Ord, T̄ : è ∩M → (Ord∩M2)

with T̄ (t) = T (t)�(Ord∩M ) is the ordinal computation by P with input
T (0)�(Ord∩M ) as computed in the model (M,∈).

(b) If Ord ⊆M then the ordinal computations by P inM and in the universe
V are equal.

(c) Let Ord ⊆M and x, y ⊆ Ord, x, y ∈M . Then P : ÷x 7→ ÷y if and only
if (M,∈) � “P : ÷x 7→ ÷y”.

(d) Let x, y ⊆ Ord, x, y ∈M . Assume that (M,∈) � “P : ÷x 7→ ÷y”. Then
P : ÷x 7→ ÷y .

The properties follow from the observation that the recursion inDefinition
2.2 is clearly absolute betweenM and V . Note that the converse of d) is in
general false. With the subsequent results on constructibility we could let
M = Lä be the minimal level of the constructible hierarchy which is a model
of ZF−. If P is a program which searches for the minimal ordinal ä such
that Lä is a ZF

−-model then P will stop in V but not inM .

§3. Ordinal algorithms. We present a number of fundamental algorithms
which can be implemented as ordinal computations. Our emphasis is not
on writing concrete programs as in Definition 2.1 but on showing that pro-
grams exist. It thus suffices to present basic ideas and algorithms together
with methods to combine these into complex algorithms. We shall freely use
informal “higher programming languages” to describe algorithms. Algo-
rithms are based on data formats for the representation of input and output
values. Again we shall not give detailed definitions but only indicate crucial
features of the formats.
The intended computations will deal with ordinals and sequences of or-
dinals. The simplest way of representing the ordinal α ∈ Ord in an ordinal
machine is by a tape whose content is the characteristic function of {α}:

÷{α} : Ord→ 2, ÷{α}(î) = 1 if and only if î = α.
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A basic task is to find or identify this ordinal α: initially the head is in
position 0, it then moves to the right until it stops exactly at position α. This
is achieved by the following program:

P = {(0, 0, 0, 1, 0), (0, 1, 1, 1, 1), (1, 0, 0, 0, 2), (1, 1, 1, 0, 2)}.

The program is in state 0 until it reads a 1, then it goes one cell to the right,
one cell to the left, and stops because 2 is not a program state. Informally
the algorithm may be written as

Find_Ordinal:

if head = 1 then STOP otherwise moveright

Similarly one can let the head find (the beginning) of any finite 0-1-bitstring
b0 . . . bk−1:

Find_Bitstring :

A: if head = ‘b_0’ then moveright otherwise goto C0

if head = ‘b_1’ then moveright otherwise goto C1

...

if head = ‘b_{k-1}’ then goto B otherwise goto C(k-1)

B: moveleft

...

moveleft

moveleft

stop

C(k-1):moveleft

...

C1: moveleft

C0: moveright

goto A

In view of this algorithm we may assume that the tape contains arbitrary
symbols coded by finite bitstrings instead of single bits. Note that the above
programs obviously perform the intended tasks on standard Turing ma-
chines. The limit rules are designed to lift this behaviour continuously to
transfinite ordinals.
Often one has to reset the head to its initial position 0. There are several
methods to achieve this. A universal one assumes that there is a unique
initial inscription start on the tape which indicates the 0-position:

Reset_head:

A: moveleft

if head reads ‘start’ then STOP otherwise goto A

It will be convenient to work with several tapes side-by-side instead of just
one. This corresponds to the idea of program variables whose values are
checked and manipulated. One can simulate an n-tape machine on a 1-tape
machine. The contents (T iî | î ∈ Ord ) of the ith tape are successively
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written into the cells of tape T indexed by ordinals 2nî + 2i :

T2nî+2i = T
i
î .

The head position H i on the i-th tape is simulated by writing 1’s into an
initial segment of length H i of cells with indices of the form 2nî + 2i + 1:

T2nî+2i+1 =

{

1, if î < H i ;

0, else.

So two tapes with contents a0a1a2a3a4 . . . and b0b1b2b3b4 . . . and head
positions 3 and 1 respectively are coded as

T = a01b01a11b10a21b20a30b30a40b40 . . . . . . .

We describe operations of machines with several tapes by commands like
move-right2 or print3 = ‘ ’, where the number of the active tape is
adjoined to the right. There are canonical but tedious translations from
programs for n-tape machines into corresponding programs for 1-tape ma-
chines. A manipulation of the i-th tape amounts to first finding the head
marker at ordinals of form 2nî +2i +1; moving left by one cell one obtains
the corresponding cell content for possible modification; the subsequent
head movement is simulated by moving right again, writing a 0, moving 2n
cells to the right or left, and printing a 1; if a left-movement goes across a
limit ordinal, then a “1” has to be printed into cell 2i + 1.
The subsequent algorithms will be presented as multiple tape algorithms.
One can assume that one ormore of the tapes serve as standardTuring tapes
onwhich ordinaryTuring recursive functions are computed. Since the usual
syntactical operations for a language of set theory are intuitively computable
we can assume by the Church-Turing thesis that these operations are
ordinal computed on some of the ordinal tapes. This will be used in the
ordinal computation of the constructible model L.
Basic operations on ordinals are ordinal computable. Let the ordinals α
and â be given on tapes 0 and 1 as their characteristic functions ÷{α} and
÷{â}. The following algorithm compares the ordinals and indicates the result
of the comparison by its “stopping state”:

Ordinal_Comparison:

Reset_Head0

Reset_Head1

A: if head0=‘1’ and head1=‘0’ then STOP (‘alpha>beta’)

if head0=‘1’ and head1=‘1’ then STOP (‘alpha=beta’)

if head0=‘0’ and head1=‘1’ then STOP (‘alpha<beta’)

moveright0

moveright1

goto A
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Obviously there are ordinal algorithms to reset a register containing an
ordinal to 0, or to copy one ordinal register to another one. The ordinal sum
α + â and product α · â are computable as follows:

Ordinal_Addition:

Reset_Head0

Reset_Head1

Reset_Head2

A: if head0 = ‘1’ then goto B

moveright0

moveright2

goto A

B: if head1 = ‘1’ then goto C

moveright1

moveright2

goto B

C: print2 = ‘1’

STOP

Ordinal_Multiplication:

Reset_Head0

Reset_Head1

Reset_Head2

A: if head1 = ‘1’ then goto C

if head0 = ‘1’ then goto B

moveright0

moveright2

goto A

B: Reset_Head0

moveright1

goto A

C: print2 = ‘1’

STOP

The class Ord<ù = { s | ∃k < ù s : k → Ord } of finite sequences
of ordinals will be of particular interest for relating ordinal computability
to the iterated definability of Gödel’s constructible universe. We code a
sequence (α0, . . . , αk−1) : k → Ord by a tape which starts with an initial
symbol “(”, followed by k intervals of 0’s of lengths α0, . . . αk−1 respectively,
which are separated by a separation symbol “,” and then a closing “)”. So
(1, ù,ù + 2) is coded as

(0, 00 . . . , 00 . . . 00)

If the sequence is given on tape 0 and a natural number n on tape 1 then
the nth element of the sequence can be output on tape 2 by the following
algorithm:
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Extract:

Reset_Head0

Reset_Head1

Reset_Head2

A: if head1 = ‘1’ then goto C

moveright1

B: if head0 = ‘,’ then goto A

if head0 = ‘)’ then STOP (no output)

moveright0

goto B

C: moveright0

D: if head0 = ‘,’ then goto E

if head0 = ‘)’ then goto E

moveright0

moveright2

goto D

E: print2 = ‘1’

STOP

Another important operation on sequences is the replacement of the nth
element of a sequence s of ordinals by a given ordinalα; if the given sequence
is shorter than n + 1, it is padded by 0’s up to length n + 1. Formally this
operation on sequences is defined as s 7→ s αn where dom(s

α
n ) = dom(s) ∪

(n + 1) and

s
α

n
(i) =











s(i), if i ∈ dom(s) \ {n};

α, if i = n;

0, else.

Let the original sequence be given on tape 0, the natural number n on tape
1, and the ordinal α on tape 2. The modified sequence s αn can be output on
tape 3 by the following algorithm:

Replace:

print3 = ‘(’

A: moveright0

if read1 = ‘1’ then goto C

if read0 = ‘,’ then goto B

if read0 = ‘)’ then goto H

moveright3

goto A

B: print3 = ‘,’

moveright1

goto A

C: if read2 = ‘1’ then goto D

moveright2
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moveright3

goto C

D: moveright0

if read0 = ‘0’ then goto D

E: if read0 = ‘,’ then goto F

if read0 = ‘)’ then goto G

moveright3

moveright0

goto E

F: print3 = ‘,’

moveright3

moveright0

goto E

G: print3 = ‘)’

STOP

H: print3 = ‘,’

moveright1

if read1 = ‘0’ then goto H

I: if read2 =‘1’ then goto J

moveright2

moveright3

goto I

J: print3 = ‘)’

STOP

With the subroutine mechanism known from ordinary programming the
basic algorithms can be combined into complex algorithms for comparing
and manipulating ordinal sequences. We can, e.g., carry out a syntactic ma-
nipulation on a standard Turing tape which outputs requests for checking
or manipulating elements of ordinal sequences. According to the requests
the appropriate elements can be extracted and subjected to some algorithms
whose results can be substituted into the original sequences.

§4. Enumerating finite sequences of ordinals. For X a class let [X ]<ù =
{ z ⊆ X | z is finite } and X<ù = { s | ∃k < ù s : k → X } be the class of
all finite subsets of X and of all finite sequences from X respectively.
Finite sequences of ordinals are finite sets of ordered pairs:

Ord<ù ⊆ [ù ×Ord]<ù.

Well-order ù ×Ord by

(m,α) ≺ (n, â) if and only if α < â or (α = â ∧m < n).

Define a canonical well-order ([ù ×Ord]<ù,≺∗) by largest difference:

s ≺∗ s ′ if and only if ∃x ∈ s ′ \ s { y ∈ s | y � x } = { y ∈ s ′ | y � x }.
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One can show inductively that ([Y ]<ù,≺∗) is a well-order on initial segments
Y of (ù × Ord,≺). So ≺∗ well-orders [ù × Ord]<ù and hence Ord<ù. We
note an important substitution property of the well-order:

Lemma 4.1. If s, t ∈ Ord<ù,m ∈ dom(s), dom(s) ⊆ dom(t), s�(dom(s)\
{m}) = t�(dom(s)\{m}), t(m) < s(m), ∀i ∈ dom(t)\dom(s) t(i) < s(m)
then

t ≺∗ s.

So replacing an arbitrary ordinal s(m) of s by possibly many smaller
ordinals leads to a descent in≺∗. The substitution property will correspond
to the substitution of a bounded variable below some bound by terms with
parameters smaller than that bound. This will lead to a recursive definition
of bounded truth in L along the ≺∗-relation.
We define an enumeration S : Ord→ Ord<ù (with repetitions) of Ord<ù

which is compatible with ≺∗ and which can be computed by an ordinal
machine. The idea of the construction is to recursively apply the replacement
operation s αn to sequences s which have been enumerated before.
For (m,α) ∈ ù ×Ord define functions Smα : èmα → Ord<ù such that for
(m,α) ≺ (n, â), Smα is an initial segment of Snâ . Set S00 : 1 → Ord<ù,
S00(0) = ∅. For â > 0 set

S0â =
⋃

(m,α)≺(0,â)

Smα .

Assume that Smα : èmα → Ord<ù is defined. Then define Sm+1,α : èmα · 2→
Ord<ù by: Sm+1,α�èmα = Smα ; for î < èmα let

Sm+1,α(èmα + î) = Smα(î)
α

m
.

Finally set

S =
⋃

(m,α)∈ù×Ord

Smα .

Lemma 4.2. (a) S : Ord→ Ord<ù is a surjection.
(b) If î < æ then S(î) = S(æ) or S(î) ≺∗ S(æ).

Proof. (a) We show by induction on α that S0α : è0α → α<ù is a surjec-
tion. The initial case α = 0 and the limit step are easy. Consider α = â + 1
and some s ∈ α<ù, s : k → α. Let s̄ : k → α be the following restriction of
s to â :

s̄(i) =

{

s(i), if s(i) < â ;

0, if s(i) = â.
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By the inductive assumption there is î < è0â such that S0â(î) = s̄ . Then

S0α

(

è0â ·

(

∑

i<k,s(i)=â

2i
)

+ î

)

= s.

(b) follows from the substitution property. a

The enumeration S of Ord<ù is ordinal computable using coding methods
from the previous paragraph. We indicate a program which writes the values
of S consecutively on a tape:

S(0)S(1)S(2) . . . S(ù)S(ù + 1) . . . S(ù + ù) . . . S(α) . . . . . .

where each S(α) is of the form

(0 . . . 0, 0 . . . 0, . . . . . . , 0 . . . 0)

The algorithm is based on the Replace-algorithm from the previous section:

counter0 = 0

counter1 = 0

position_of_writing_head = 0

write the empty sequence ‘()’

while true

while counter1 < ù
mark = position_of_writing_head

position_of_reading_head = 0

while position_of_reading_head < mark

read sequence

Replace element at position counter1 by counter0

write modified sequence at mark

endwhile

counter1 = counter1 + 1

endwhile

counter1 = 0

counter0 = counter0 + 1

endwhile

The procedure will eventually be extended as to write a bounded truth
function for the constructible hierarchy.

§5. The constructible hierarchy. Kurt Gödel [3] defined the inner model
L of constructible sets as the union of a hierarchy of levels Lα:

L =
⋃

α∈Ord

Lα

where the hierarchy is defined by: L0 = ∅,Lä =
⋃

α<ä Lα for limit ordinals ä,
and Lα+1 =the set of all sets which are first-order definable in the structure
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(Lα ,∈). The standard reference to the theory of the model L is the book [2]
by Keith Devlin.
An element of L is definable over some Lα from parameters which are
themselves definable over some Lâ , â < α in some other parameters and so
forth. We therefore introduce a language with definable terms, which in turn
may involve definable terms, etc.
Consider a language with symbols (, ), {, }, |,∈,=,∧,¬,∀,∃ and variables
v0, v1, . . . . We define (bounded) formulas and (bounded) terms by a common
recursion on the lenghts of words formed from these symbols:

– the variables v0, v1, . . . are terms;
– if s and t are terms then s = t and s ∈ t are formulas;
– if ϕ and ø are formulas then ¬ϕ, (ϕ ∧ ø), ∀vi ∈ vj ϕ and ∃vi ∈ vj ϕ
are formulas;
– if ϕ is a formula then { vi ∈ vj | ϕ } is a term.

For terms and formulas of this language define free and bound variables:

– free(vi) = {vi}, bound(vi) = ∅;
– free(s = t) = free(s ∈ t) = free(s) ∪ free(t);
– bound(s = t) = bound(s ∈ t) = bound(s) ∪ bound(t);
– free(¬ϕ) = free(ϕ), bound(¬ϕ) = bound(ϕ);
– free((ϕ ∧ ø)) = free(ϕ) ∪ free(ø), bound((ϕ ∧ ø)) = bound(ϕ) ∪
bound(ø);
– free(∀vi ∈ vj ϕ) = free(∃vi ∈ vj ϕ) = free({ vi ∈ vj | ϕ }) =
(free(ϕ) ∪ {vj}) \ {vi};
– bound(∀vi ∈ vj ϕ) = bound(∃vi ∈ vj ϕ) = bound({ vi ∈ vj | ϕ }) =
bound(ϕ) ∪ {vi}.

For technical reasons we will be interested in terms and formulas in which

– no bound variable occurs free,
– every free variable occurs exactly once.

Such terms and formulas are called tidy; with tidy formulas one avoids having
to dealwith the interpretationof one free variable at different positionswithin
a formula.
In recursive truth definitions one reduces the truth of formulas to the
truth of simpler formulas. The term complexity tc(t) and tc(ϕ) of terms and
formulas is defined recursively:

– tc(vi) = 0;
– tc(s = t) = tc(s ∈ t) = max(tc(s), tc(t));
– tc(¬ϕ) = tc(∀vi ∈ vj ϕ) = tc(∃vi ∈ vj ϕ) = tc(ϕ);
– tc(ϕ ∧ ø) = max(tc(ϕ), tc(ø));
– tc({ vi ∈ vj | ϕ }) = tc(ϕ) + 1.
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We can define a pre-wellordering<Form of the set of all bounded formulas
by

ϕ <Form ø if and only if

tc(ϕ) < tc(ø) or (tc(ϕ) = tc(ø) ∧ length(ϕ) < length(ø)).

Obviously the syntactical notions andoperations of this language areTuring
computable and therefore ordinal computable. Also there is an ordinal
computable enumeration of all formulas which is compatible with <Form.
An assignment for a term t or formula ϕ is a finite sequence a : k → V
so that for every free variable vi of t or ϕ we have i < k; a(i) will be the
interpretation of vi . The value of t or the truth value of ϕ is determined by
the assignment a. We write t[a] and ϕ[a] for the values of t und ϕ under
the assignment a.
Concerning the constructible hierarchyL, it is shown by an easy induction
on α that every element of Lα is the interpretation t[(Lα0 , . . . , Lαk−1)] of
some tidy term t with an assignment (Lα0 , . . . , Lαk−1) whose values are
constructible levels Lαi with α0, . . . , αk−1 < α. This will allow to reduce
bounded quantifications ∀v ∈ Lα or ∃v ∈ Lα to the substitution of terms
of lesser complexity. Moreover, the truth of (bounded) formulas in L is
captured by tidy bounded formulas of the form ϕ[(Lα0 , . . . , Lαk−1)].
We shall code an assignment of the form (Lα0 , Lα1 , . . . , Lαk−1) by its se-
quence of ordinal indices, i.e., we write

t[(α0, α1, . . . , αk−1)] or ϕ[(α0, α1, . . . , αk−1)]

instead of

t[(Lα0 , Lα1 , . . . , Lαk−1)] or ϕ[(Lα0 , Lα1 , . . . , Lαk−1)].

The relevant assignments are thus elements of Ord<ù and can be handled
by the programs of the previous section. Since the bounded language is
recursive we can modify the enumeration program so that all assigned tidy
formulas ϕ[(α0, α1, . . . , αk−1)] occur in the enumeration: for a fixed assig-
ment a = (α0, α1, . . . , αk−1) list the pairs (a, ϕ) where ϕ is a tidy formula
with free(ϕ) ⊆ k in an order compatible with <Form. The following is
a straightforward extension of the enumeration program of the previous
section:

counter0 = 0

counter1 = 0

position_of_writing_head = 0

write the empty sequence ‘()’

while true

while counter1 < ù
mark = position_of_writing_head

position_of_reading_head = 0



TURING COMPUTATIONS ON ORDINALS 393

while position_of_reading_head < mark

read sequence

Replace element at position counter1 by counter0

form an enumeration of the appropriate tidy formulas

which is compatible with the pre-wellorder <Form

for all enumerated formulas

write the modified sequence and the formula

endfor

endwhile

counter1 = counter1 + 1

endwhile

counter1 = 0

counter0 = counter0 + 1

endwhile

§6. A bounded truth function for L. We define a bounded truth function
W for the constructible hierarchy on the class

A = { (a, ϕ) | a ∈ Ord<ù, ϕ is a tidy bounded formula,

free(ϕ) ⊆ dom(a) }

of all “tidy pairs” of assignments and formulas. Define the bounded con-
structible truth functionW : A→ 2 by

W (a, ϕ) = 1 if and only if ϕ[a].

The functionW has a recursive definition along the enumeration of A given
by the enumeration algorithm from the preceding section. We explain the
principal idea of the recursion with a bounded quantification like ∃vi ∈
vj ϕ[a]. If a(j) = α then the assigned formula is satisfied if and only if
there is a witness for ϕ in Lα . By the recursive definition of Lα such a
witness must be the interpretation t[b] of a term where b(l) < α for every
free variable vl of t. If one chooses t such that it has no variable in common
with ϕ the assignment b can be taken to further satisfy b(j) < a(j) = α.
The substitution property of Lemma 4.1 leads to the evaluation of ϕ tvi [b]
for some b ≺∗ a which is the basis for the subsequent recursion.
As we want to work with tidy formulas a technical problem has to be
solved. The variable vi might occur in ϕ in several places which renders the
straightforward substitution ϕ tvi “untidy”. We “tidy up” ϕ

t
vi
by renaming

variables. The assignment of the variables of t has to bemodified accordingly.
So consider a formula ϕ, a variable vi , a term t, and an assignment a with

{ i | vi ∈ free(ϕ) } ∪ {vj} ⊆ dom(a), where vj is a further variable thought
to be a bound for t as in ∃vi ∈ vj ϕ[a]. Also assume that ϕ and t have no

common variable and do not contain vj . Define the tidy substitution (ϕ
t
vi
)tidy

of vi by t into ϕ as follows. If vi /∈ free(ϕ) then let (ϕ
t
vi
)tidy = ϕ. Otherwise
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ensure that vi is not a bound variable of ϕ by possibly renaming bound
variables. Let ϕ ′ be the renamed formula. Then rename all occurances
of vi in ϕ

′ by pairwise different new variables w0, . . . , wk−1, say. Obtain
terms t0, . . . , tk−1 from the given term t by renaming all variables with new
variables so that for i 6= j the terms ti and tj do not have common variables;
call t0, . . . , tk−1 copies of t. Now set

(

ϕ
t

vi

)tidy
= ϕ′

t0 . . . tk−1
w0 . . . wk−1

.

The assignment a has to be extended to an assignment b ≺∗ a in line with
the various renaming operations.
We define that the assignment b adequately extends a for the tidy substitu-

tion
(

ϕ tvi

)tidy
bounded by vj if

(a) ∀l ∈ dom(a) \ {j} b(l) = a(l) and b(j) < a(j);
(b) ∀l ∈ dom(b) \ dom(a) b(l) < a(j);
(c) if vl is a variable of t and vl ′ and vl ′′ are the renamings of vl in the
copies ti and tj , resp., then b(l

′) = b(l ′′).

Note that b satisfies b ≺∗ a by the substitution property Lemma 4.1.
With these preparations we can now carry out a recursive definition of the
bounded constructible truth function:

– W (a,¬ϕ) = 1 if and only ifW (a, ϕ) = 0;
– W (a, (ϕ ∧ ø)) = 1 if and only ifW (a, ϕ) = 1 and W (a,ø) = 1;
– W (a,∀vi ∈ vj ϕ) = 1 if and only if for all terms t and all assignments

b which are adequate for the tidy substitution (ϕ tvi )
tidy bounded by vj

holdsW (b, (ϕ tvi )
tidy) = 1;

– W (a,∃vi ∈ vj ϕ) = 1 if and only if there is a term t and an assignment

b which is adequate for the tidy substitution (ϕ tvi )
tidy bounded by vj so

thatW (b, (ϕ tvi )
tidy) = 1;

– W (a, vi ∈ vj) = 1 if and only if a(i) < a(j);
– W (a, vi ∈ { vj ∈ vk | ϕ }) = 1 if and only if W (a,∃vj ∈ vk (vi =
vj ∧ ϕ)) = 1;
– W (a, { vi ∈ vj | ϕ } ∈ vk) = 1 iff there is a term t and an assignment b

which is adequate for the tidy substitution
(

({ vi ∈ vj | ϕ } = vl )
t
vl

)tidy

bounded by vk so thatW
(

b,
(

({ vi ∈ vj | ϕ } = vl )
t
vl

)tidy)
= 1;

– W (a, { vi ∈ vj | ϕ } ∈ { vm ∈ vn | ø }) = 1 if and only if there is a
term t and an assignment b which is adequate for the tidy substitution
(

({ vi ∈ vj | ϕ } = vm ∧ø)
t
vm

)tidy
bounded by vn so thatW

(

b,
(

({ vi ∈

vj | ϕ } = vm ∧ ø) tvm
)tidy)

= 1;

– W (a, vi = vj) = 1 if and only if a(i) = a(j);
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– W (a, vi = { vj ∈ vk | ϕ }) = 1 if and only if W (a,∀vl ∈ vi ∃vj ∈
vk (ϕ∧vl = vj)) = 1 andW (a,∀vj ∈ vk (ϕ → ∃vl ∈ vi vl = vj)) = 1;
– W (a, { vi ∈ vj | ϕ } = { vm ∈ vn | ø }) = 1 if and only ifW (a, (∀vi ∈
vj (ϕ → ∃vm ∈ vn (vi = vm ∧ ø))) = 1 and W (a,∀vm ∈ vn (ø →
∃vi ∈ vj (vm = vi ∧ ϕ)))) = 1.

In all clauses the determination of W (a, ϕ) is reduced to values W (b, ø).
where the relevant arguments (b, ø) are of lesser complexity than (a, ϕ):
either the assignments satisfy b ≺∗ a or we have that a = b and ø <Form ϕ.
ThereforeW has a recursive definition along the enumeration given by the
algorithm of the preceding section.
The programming techniques introduced above allow to incorporate the
recursive definition ofW into the enumeration algorithm for the class A of
admissible pairs. This leads to our main results:

Lemma 6.1. The bounded truth functionW for the constructible universe is
ordinal computable.

Theorem 6.2. A set x of ordinals is ordinal computable from a finite set of
ordinal parameters if and only if it is an element of the constructible universeL.

Proof. Let x ⊆ Ord be ordinal computable by the program P from the
finite set {α0, . . . , αk−1} of ordinal parameters: P : ÷{α0,...,αk−1} 7→ ÷x . By

Lemma 2.6 c) the same computation can be carried out inside the inner
model L:

(L,∈) � P : ÷{α0,...,αk−1} 7→ ÷x .

Hence ÷x ∈ L and x ∈ L.
Conversely consider x ∈ L. Choose a tidy term t and an assignment
(α0, . . . , αk−1) ∈ Ord

<ù such that x = t[(α0, . . . , αk−1)]. An ordinal â can
be represented as

â = {α ∈ Lâ | α is an ordinal }

= { vk+1 ∈ vk | vk+1 is an ordinal }[(α0, . . . , αk−1, â)].

Thus

÷x(â) = 1

↔ â ∈ t[(α0, . . . , αk−1)]

↔ ({ vk+1 ∈ vk | vk+1 is an ordinal } ∈ t)[(α0, . . . , αk−1, â)]

↔W ((α0, . . . , αk−1, â), { vk+1 ∈ vk | vk+1 is an ordinal } ∈ t) = 1.

Using the enumeration algorithm for the truth functionW one can turn this
equivalence into an ordinal algorithm which sends ÷{α0,...,αk−1} to ÷x . Hence
x is ordinal computable from the parameters α0, . . . , αk−1 ∈ Ord. a
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§7. The generalized continuum hypothesis in L. Ordinal computability al-
lows to reprove some basic facts about the constructible universe L. The
analogue of the axiom of constructibility, V = L, is the statement that every
set of of ordinals is ordinal computable from a finite set of ordinals.

Theorem 7.1. The constructible model (L,∈) satisfies that every set of or-
dinals is ordinal computable from a finite set of ordinals.

Proof. Let x ∈ L, x ⊆ Ord. By Theorem 6.2, take a program P and a
finite set {α0, . . . , αk−1} of ordinal parameters such that P : ÷{α0,...,αk−1} 7→

÷x . By Lemma 2.6 c) the same computation can be carried out inside the
inner model L:

(L,∈) � P : ÷{α0,...,αk−1} 7→ ÷x .

So in L, x is ordinal computable from the set {α0, . . . , αk−1}. a

The following theorem is proved by a condensation argument for ordinal
computations which is a simple analogue of the usual condensation argu-
ments for the constructible hierarchy.

Theorem 7.2. Assume that every set of ordinals is ordinal computable from

a finite set of ordinals. Then:

(a) Let κ > ù be an infinite ordinal and x ⊆ κ. Then there are ordi-
nals α0, . . . , αk−1 < κ

+ such that x is ordinal computable from the set
{α0, . . . , αk−1}.

(b) Let κ > ù be infinite. Then card(P(κ)) = κ+.
(c) The generalized continuum hypothesis GCH holds.

Proof. (a) Take a program P and a finite set {α ′
0, . . . , α

′
k−1} of ordi-

nal parameters such that P : ÷{α′0,...,α′k−1} 7→ ÷x ; let è be the length of

this ordinal computation. Take a transitive ZF−-model (M,∈) such that
α′0, . . . , α

′
k−1, è, κ, x ∈ M . By Lemma 2.6 a), (M,∈) also satisfies that

P : ÷{α′0,...,α
′

k−1}
7→ ÷x . The downward Löwenheim-Skolem theorem and the

Mostowski isomorphism theorem yield an elementary embedding

ð : (M̄ ,∈)→ (M,∈)

such that M̄ is transitive, card(M̄ ) = κ and {α ′0, . . . , α
′
k−1, è, κ, x} ∪ κ ⊆

ð′′M̄ . Let ð(α0) = α
′
0, . . . , ð(αk−1) = α

′
k−1. Then α0, . . . , αk−1 < κ

+ since

card(M̄ ) < κ+. Observe that ð(x) = x. Since ð is elementary (M̄ ,∈)
satisfies that P : ÷{α0,...,αk−1} 7→ ÷x . By Lemma 2.6 d), P : ÷{α0,...,αk−1} 7→ ÷x
in V . Thus x is ordinal computable from the set {α0, . . . , αk−1} as required.
(b) follows from (a) since there are countably many programs and κ+

many finite sets of ordinals < κ+.
(c) is immediate from (b). a

These two theorems immediately implyGödel’s result:

Theorem 7.3. (L,∈) � GCH.
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Other condensation arguments like the proof of the combinatorial princi-
ple♦ in L can also be translated into the setting of ordinal computability in
a straightforward way. It remains to be seen whether arguments involving
Jensen’s fine structure theory of the constructible hierarchy [5] can be carried
out with ordinal computability. One would hope that the simple concept of
ordinal computation allows clear proofs of principles like 2 and morasses
without definability complications.
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