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THE FIRST MEASURABLE CARDINAL CAN BE THE FIRST

UNCOUNTABLE REGULAR CARDINAL AT ANY SUCCESSOR

HEIGHT

ARTHUR W. APTER, IOANNA M. DIMITRÍOU, AND PETER KOEPKE

Abstract. We use techniques due to Moti Gitik to construct models in which

for an arbitrary ordinal ρ, ℵρ+1 is both the least measurable and least regular

uncountable cardinal.

1. Introduction

In this paper, we study cardinal patterns where the least uncountable regular
cardinal is the least measurable cardinal. Jech [Jec68] and Takeuti [Tak70] inde-
pendently showed that if we assume the consistency of ZFC+ “there is a measurable
cardinal”, then the theory ZF+DC+“ω1 is the least measurable cardinal” is consis-
tent, and this is an equiconsistency. We can also ask whether it is consistent for
the least uncountable regular cardinal κ to be the least measurable cardinal and
also be such that κ > ω1. The first author has proved that this is indeed the case.
In particular, it follows from the work of [Apt96] that relative to the consistency
of AD, it is consistent for ℵ2 to be both the least measurable and least regular
uncountable cardinal.

The methods used in the proof of this result may be extended to show that
relative to the consistency of AD, it is possible to obtain models in which, e.g.,
ℵω+1 is both the least regular uncountable and least measurable cardinal, or ℵω+2

is both the least regular uncountable and least measurable cardinal, or there is an
uncountable limit cardinal which is both the least regular and least measurable
cardinal. However, these methods do not easily extend to cardinals such as ℵ3 or
ℵω+3.

In this paper we will prove the following theorem, which allows us to handle
cardinals different from those provided by AD.

Theorem 1.1. Let V |= ZFC + “ρ > 0 is an ordinal” + “There is a sequence
〈κξ ; ξ < ρ〉 of strongly compact cardinals such that each limit point of the sequence
〈κξ ; ξ < ρ〉 is singular, and with a measurable cardinal κρ above the supremum
of the sequence”. There is then a partial ordering in the ground model V and a
symmetric model V (G) of the theory ZF +“for each 1 ≤ β ≤ ρ, ℵβ is singular” +
“ℵρ+1 is a measurable cardinal carrying a normal measure”.

Theorem 1.1 generalises earlier work of the first author (different from that found
in [Apt96]). Specifically, the first author, in [Apt85] and with Henle in [AH91] and
Magidor in [AM95], showed how to symmetrically collapse a measurable cardinal
κ to be the successor of a singular cardinal of cofinality ω while preserving the
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measurability of κ. The large cardinal hypotheses used (instances of supercom-
pactness in [Apt85] and [AM95] and instances of strong compactness in [AH91])
are considerably stronger than the existence of one measurable cardinal.

Note that the standard proof for the existence of a normal measure for a mea-
surable cardinal requires the use of DC. Since ℵ1 has cofinality ω in V (G), both
DC and ACω are false in this model. It is therefore especially relevant that ℵρ+1

carries a normal measure in V (G).
The forcing mentioned in the theorem above is a modification of Gitik’s forcing

in [Git80]. In addition to what Gitik proved about this forcing, we prove that
in our version, none of the strongly compact cardinals collapses in the symmetric
model V (G), but all other regular uncountable cardinals below κρ do. We modify
Gitik’s construction in several ways. This is because Gitik’s (class sized) forcing
does not focus on exactly which cardinals are preserved in his symmetric model
NG, but rather on preserving the power set axiom. In particular, the remarks
found in [Git80, page 62, paragraph immediately following Theorem II] mention
that the (well-ordered) cardinals of NG are ω, the ground model strongly compact
cardinals, and the (singular) limits of the ground model strongly compact cardinals.
However, other than [Git80, Lemma 3.4], which indicates that every limit ordinal
has cofinality ω in NG, there is neither an explicit proof nor hint at any point in
[Git80] as to how to determine the cardinal structure of NG. By carefully reworking
the definition of Gitik’s forcing conditions in the context of set forcing, and by
providing a detailed analysis of the nature of our partial ordering, we are able
to determine precisely (see Corollary 2.10) the relevant cardinal structure of our
symmetric inner model V (G).

To collapse the intervals between the strongly compacts, we will choose fine
ultrafilters over the Pκξ(α) for each α ∈ (κξ, κξ+1) in order to make parts of the
forcing be isomorphic with strongly compact Prikry forcings. The isomorphisms
will ensure the relevant collapses. To ensure that an α ∈ (ω, κ0) has collapsed we
will use a fine ultrafilter over Pω(α) and the same proof. If there are any limit
ordinals λ in ρ (e.g., if ρ = ω + 1) then similar arguments using fine ultrafilters
will collapse the cardinals in the open interval (

⋃
ξ<λ κξ, κλ). Forcing at each κξ

will be done with a κξ-complete measure over κξ. Finally, a small forcing argument
guarantees that κρ remains measurable in the symmetric forcing extension and
carries a normal measure.

2. The Gitik construction

For our construction, we assume knowledge of forcing as presented in [Kun80,
Ch. VII], [Jec03, Ch. 14], and of symmetric submodels as presented in [Jec03,
Ch.15].

Let ρ ∈ Ord. We start with an increasing sequence of cardinals,

〈κξ ; ξ < ρ〉,

such that for every ξ < ρ, κξ is strongly compact, and such that the sequence has
no regular limits. Let κρ >

⋃
ξ<ρ κξ be a measurable cardinal.

We will construct a model with a sequence of ρ + 1-many successive singular
cardinals in which κρ is the first regular uncountable cardinal, and it is still mea-
surable. We will do this by modifying and adapting Gitik’s construction of [Git80],
whose notation and terminology we freely use.

Our construction is a finite support product of Prikry-like forcings which are
interweaved in order to prove a Prikry-like lemma for that part of the forcing.
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Call Regκρ the set of regular cardinals α ∈ [ω, κρ) in V . For convenience call
ω =: κ−1. For an α ∈ Regκρ we define a cf ′α to distinguish between the following
categories.

(type 1) This occurs if there is a largest κξ ≤ α (i.e., α ∈ [κξ, κξ+1)). We then define
cf ′α := α.

If α = κξ and ξ 6= −1, then let Φκξ be a measure for κξ. If α = ω then
let Φω be any uniform ultrafilter on ω.

If α > κξ is inaccessible, then let Hα be a fine ultrafilter over Pκξ(α)
and let hα : Pκξ(α)→ α be a bijection. Define

Φα := {X ⊆ α ; h−1
α “X ∈ Hα}.

This is a uniform κξ-complete ultrafilter over α.
If α > κξ is not inaccessible, then let Φα be any κξ-complete uniform

ultrafilter over α.
(type 2) This occurs if there is no largest strongly compact ≤ α. We then let β be

the largest (singular) limit of strongly compacts ≤ α. Define cf ′α := cfβ.
Let

〈καν ; ν < cf ′α〉
be a fixed ascending sequence of strongly compacts ≥ cf ′α such that β =⋃
{καν ; ν < cf ′α}.
If α is inaccessible, then for each ν < cf ′α, let Hα,ν be a fine ultrafilter

over Pκαν (α) and hα,ν : Pκν (α)→ α a bijection. Define

Φα,ν := {X ⊆ α ; h−1
α “X ∈ Hα,ν}.

Again, Φα,ν is a καν -complete uniform ultrafilter over α.
If α is not inaccessible, then for each ν < cf ′α, let Φα,ν be any καν -

complete uniform ultrafilter over α.

This cf ′α will be used when we want to organise the choice of ultrafilters for the
type 2 cardinals.

We use the fine ultrafilters Hα and Hα,ν to make sure that in the end only the
strongly compacts and their singular limits remain cardinals below κρ. For type
1 ordinals we will do some tree-Prikry like forcings to singularise in cofinality ω.
Type 1 cardinals in the open intervals (κξ, κξ+1) will be collapsed to κξ because
enough of these forcings will be isomorphic to strongly compact Prikry forcings (or
“fake” strongly compact Prikry forcings in the case of ξ = −1). This is why we use
fine ultrafilters for these cardinals.

To singularise type 2 ordinals Gitik used a technique he credits in [Git80] to
Magidor, a Prikry-type forcing that relies on the countable cofinal sequence ~c that
we build for cf ′α to pick a countable sequence of ultrafilters 〈Φ~c(n) ; n ∈ ω〉. To
show that the type 2 cardinals are collapsed, we use again the fine ultrafilters.

As usual with Prikry-type forcings, one has to prove a Prikry-like lemma (see
[Git80, Lemma 5.1]). For the arguments one requires the forcing conditions to grow
nicely.

These conditions can be viewed as trees. These trees will grow from “left to right”
in order to ensure that a type 2 cardinal α will have the necessary information from
the Prikry sequence1 at stage cf ′α. Let us take a look at the definition of the stems
of the Prikry sequences to be added.

1For the rest of this paper, we will abuse terminology by using phrases like “Prikry sequence”
and “Prikry forcing” when referring to our Prikry-like forcing notions.
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Definition 2.1. For t ⊆ Regκρ × ω × κρ we define the sets

dom(t) :={α ∈ Regκρ ; ∃m ∈ ω∃γ ∈ Ord((α,m, γ) ∈ t)}, and

dom2(t) :={(α,m) ∈ Regκρ × ω ; ∃γ ∈ Ord((α,m, γ) ∈ t)}.

Let P1 be the set of all finite subsets t of Regκρ × ω × κρ, such that for every
α ∈ dom(t), t(α) := {(m, γ) ; (α,m, γ) ∈ t} is an injective function from some
finite subset of ω into α.

To add a Prikry sequence to a type 2 cardinal α, we want to have some infor-
mation on the Prikry sequence of the cardinal cf ′α. We also want to make sure
that these stems are appropriately ordered for the induction in the proof of the
aforementioned Prikry-like lemma. So we define the following.

Definition 2.2. Let P2 be the set of all t ∈ P1 such that

(1) for every α ∈ dom(t), cf ′α ∈ dom(t) and dom(t(cf ′α)) ⊇ dom(t(α)), and
(2) if {α0, . . . , αn−1} is an increasing enumeration of dom(t) \ κ0, then there

are m, j ∈ ω, such that m ≥ 1, j ≤ n− 1 with the properties that
• for every k < j we have that dom(t(αk)) = m+ 1, and
• for every k ∈ {j, . . . , n− 1} we have that dom(t(αk)) = m.

These m and αj are unique for t and are denoted by m(t) := m and α(t) := αj .
We may think of the point (α(t),m(t)) as the point we have to fill in next, in order
to extend t.

Let us call elements of P2 stems. In the following image we can see roughly what
a stem t with a domain {α0, α1, α2} above κ0 looks like.

In order to add Prikry sequences, we will use the ultrafilters and define the partial
ordering with which we will force.

Definition 2.3. Let P3 be the set of pairs (t, T ) such that

(1) t ∈ P2,
(2) T ⊆ P2,
(3) t ∈ T ,
(4) for every t′ ∈ T we have t′ ⊇ t or t′ ⊆ t, and dom(t′) = dom(t),
(5) for every t′ ∈ T , if t′ = r ∪ {(α(r),m(r), β)} then t′− := r ∈ T , i.e., T is

tree-like,
(6) for every t′ ∈ T with t′ ⊇ t, if α(t′) is of type 1 (i.e., cf ′(α(t′)) = α(t′)) then

SucT (t′) := {β ; t′ ∪ {(α(t′),m(t′), β)} ∈ T} ∈ Φα(t′), and

(7) for every t′ ∈ T with t′ ⊇ t, if α(t′) is of type 2 (i.e., cf ′α(t′) < α(t′)) and
m(t′) ∈ dom(t′(cf ′(α(t′)))) then

SucT (t′) := {β ; t′ ∪ {(α(t′),m(t′), β)} ∈ T} ∈ Φα(t′),t′(cf′α(t′))(m(t′)).

For a (t, T ) in P3 and a subset x ⊆ Regκρ we write T � x for {t′ � x ; t′ ∈ T}.
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We call t the trunk of (t, T ).

This P3 is the forcing we are going to use. It is partially ordered by

(t, T ) ≤ (s, S) :⇐⇒ T ⊆ S.

A full generic extension via this P3 adds too many subsets of ordinals and makes
every ordinal in the interval (ω, κρ) countable. By restricting to sets of ordinals
which can be approximated with finite domains we ensure that the former strongly
compacts are still cardinals in the symmetric model to be constructed, and the
power sets stay small.

To build a symmetric model we need an automorphism group of the complete
Boolean algebra B = B(P3) that is induced by P3, as in [Jec03, Corollary 14.12].
We start by considering G to be the group of permutations of Regκρ ×ω×κρ whose
elements a satisfy the following properties.

• For every α ∈ Regκρ there is a permutation aα of α that moves only finitely
many elements of α, and is such that for each n ∈ ω and each β ∈ α,

a(α, n, β) = (α, n, aα(β)).

The finite subset of α that aα moves, we denote by supp(aα), which stands
for “support of aα”.

• For only finitely many α ∈ Regκρ is aα not the identity. This finite subset
of Regκρ we denote by dom(a).

We extend G to P3 as follows. For a ∈ G and (t, T ) ∈ P3, define

a(t, T ) := (a“t, {a“t′ ; t′ ∈ T}),

where a“t := {(α, n, aα(β)) ; (α, n, β) ∈ t}.
Unfortunately, in general a(t, T ) is not a member of P3 because of the branching

condition at type 2 cardinals. In particular, it is possible that for some α ∈ dom(t)
of type 2, and some t′ ∈ T with α = α(t′), we have that acf′α(t′(cf ′α)(m(t′))) =
γ 6= t′(cf ′α)(m(t′)), and even though we had before SucT (t′) ∈ Φα,t′(cf′α)(m(t′)), it
is not true that SucT (t′) ∈ Φα,γ .

To overcome this problem, for an a ∈ G, define P a ⊆ P3 as follows.

(t, T ) is in P a iff the following hold:

(1) dom(t) ⊇ dom(a),
(2) for every α ∈ dom(t) we have that dom(t(α)) = dom(t(cf ′α)), and
(3) for every α ∈ dom(t), we have that

rng(t(α)) ⊇ {β ∈ supp(aα) ; ∃q ∈ T (β ∈ rng(q(α)))}.

The equality in (2) ensures that there will be no severe mixup in the requirements
for membership in ultrafilters of the form Φα,γ . In (3) we require that the stem
of each condition already contains all the ordinals that the aα could move. This
will prevent any trouble with membership in the ultrafilters. One may think that
this requirement should be supp(aα) ⊆ rng(t(α)) but this is not the case; note that
there might be some γ in aα which doesn’t appear in the range of any q ∈ T .

Now, we have that a : P a → P a is an automorphism. Also, as mentioned in
[Git80, page 68], for every a ∈ G the set P a is a dense subset of P3. Therefore, a can
be extended to a unique automorphism of the complete Boolean algebra B. We de-
note the automorphism of B with the same letter, and also by G the automorphism
group of B that consists of these extended automorphisms. By [Jec03, (14.36)],
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every automorphism a of B induces an automorphism of the Boolean valued model
V B .

Proceeding to the definition of our symmetric model, for every e ⊆ Regκρ define

Ee := {(t, T ) ∈ P3 ; dom(t) ⊆ e},

I := {Ee ; e ⊂ Regκρ is finite and closed under cf ′},
fixEe := {a ∈ G ; ∀α ∈ e(aα is the identity on α)},

and let F be the normal filter (see [Jec03, (15.34)]) over G that is generated by

{fixEe ; Ee ∈ I}.
For each ẋ in the Boolean valued model V B , define its symmetry group

sym(ẋ) := {a ∈ G ; a(ẋ) = ẋ}.
A name ẋ is called symmetric iff its symmetry group is in the filter F . The class of
hereditarily symmetric names HS is defined by recursion on the rank of the name,
i.e.,

HS := {ẋ ∈ V G ; ∀ẏ ∈ tcdom(ẋ)(sym(ẏ) ∈ F)},
where tcdom(ẋ) is defined as the union of all xn, which are defined recursively by
x0 := {ẋ} and xn+1 :=

⋃
{dom(ẏ) ; ẏ ∈ xn}.

We will say that an Ee ∈ I supports a name ẋ ∈ HS if fixEe ⊆ sym(ẋ).
For some V -generic ultrafilter G on B we define the symmetric model

V (G) := {ẋG ; ẋ ∈ HS}.
By [Jec03, Lemma 15.51], this is a model of ZF, and V ⊆ V (G) ⊆ V [G].

For each (t, T ) ∈ P3 and each Ee ∈ I, define

(t, T ) �∗ Ee = (t � e, {t′ � e ; t′ ∈ T}).

According to [Git80, Lemma 3.3.], if φ is a formula with n free variables, ẋ1, . . . , ẋn ∈
HS, and Ee ∈ I is such that sym(ẋ1), . . . , sym(ẋn) ⊇ fixEe then we have that for
every (t, T ) ∈ P3

(t, T ) 
 φ(ẋ1, . . . , ẋn) ⇐⇒ (t, T ) �∗ Ee 
 φ(ẋ1, . . . , ẋn).

This implies the following lemma, which we will refer to as the approximation
lemma.

Lemma 2.4. If X ∈ V (G) is a set of ordinals, then there is an Ee ∈ I such that
X ∈ V [G �∗ Ee], where G �∗ Ee := {(t, T ) �∗ Ee ; (t, T ) ∈ G}.

Proof. Because of [Git80, Lemma 3.3.] mentioned above, because of the symmetry
lemma [Jec03, (15.41)], and because canonical names α̌ are not moved by automor-

phisms of B, we have that if Ẋ ∈ HS is a P3-name for X and Ee ∈ I supports Ẋ
then the set

Ẍ := {(α̌, (t, T ) �∗ Ee) ; (t, T ) 
 α̌ ∈ Ẋ}
is an Ee-name for X. qed
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We will use the approximation lemma in all our subsequent proofs.

Theorem 2.5. For every 0 ≤ ξ ≤ ρ, κξ is a cardinal in V (G). Consequently, their
(singular) limits are also preserved.

Proof. Assume towards a contradiction that there is some δ < κξ and a bijection

f : δ → κξ in V (G). Let ḟ be a name for f with support Ee ∈ I. Note that e
is a finite subset of Regκρ that is closed under cf ′. By the approximation lemma
(Lemma 2.4), since f may be coded by a set of ordinals, there is an Ee-name for f ,
i.e., for this e,

f ∈ V [G �∗ Ee].

We will show that this is impossible, by taking a dense subset of Ee and showing
that it is forcing equivalent to an iterated forcing construction, the first part of
which has cardinality less than κξ, and the second part of which does not collapse
κξ (by not adding bounded subsets to κξ, similarly to Prikry forcing).

It’s not hard to check that

J := {(t, T ) ∈ Ee ; ∀q ∈ T∀α ≥ κξ∀n < ω( if (α, n) ∈ dom2(q) \ dom2(t) and

cf ′α < α then the ultrafilter Φα,q(cf′α)(n) is κξ-complete)}

is dense in Ee (see also the beginning of the proof of [Git80, Theorem 5.4]). Without
loss of generality assume that e ∩ κξ 6= ∅. Define the sets

E :={(t, T ) �∗ Ee∩κξ ; (t, T ) ∈ J}, and

P ∗2 :={t � (e \ κξ) ; t ∈ P2}.

For s ∈ P ∗2 we can define α(s) andm(s) as we did for the s ∈ P2, in Definition 2.2(2).
Let G∗ be an arbitrary E-generic filter and note that for every α ∈ e \ κξ such

that cf ′α < κξ, the set 〈
⋃
G∗(cf ′α)(m) ; m ∈ ω〉 is the Prikry sequence that is

added to cf ′α by E.

In V [G∗] we define a partial ordering Q by (s, S) ∈ Q :⇐⇒
(1) s ∈ P ∗2 ,
(2) S ⊆ P ∗2 ,
(3) s ∈ S,
(4) for all s′ ∈ S, dom(s′) = dom(s) = e \ κξ, and either s′ ⊇ s or s′ ⊆ s,
(5) for every s′ ∈ S and every s′′ ∈ P ∗2 , if s′′ ⊆ s then s′′ ∈ S, i.e., S is tree-like,
(6) for every s′ ∈ S with s′ ⊇ s, if α(s′) is of type 1 then

{β ; s′ ∪ {(α(s′),m(s′), β)} ∈ S} ∈ Φα(s′),

(7) for every s′ ∈ S with s′ ⊇ s, if α(s′) is of type 2 and cf ′α(s′) ≥ κξ then

{β ; s′ ∪ {(α(s′),m(s′), β)} ∈ S} ∈ Φα(s′),s′(cf′α(s′))(m(s′)), and

(8) for every s′ ∈ S with s′ ⊇ s, if α(s′) is of type 2 and cf ′α(s′) < κξ then

{β ; s′ ∪ {(α(s′),m(s′), β)} ∈ S} ∈ Φα(s′),
⋃
G∗(cf′α(s′))(m(s′)).

Q is partially ordered by (s, S) ≤Q (r,R) iff S ⊆ R.

This definition means that Q is like P3 but restricted to ordinals and ultrafilters
at and above κξ. Because of this we can get a canonical name Q̇ for Q as follows.

For (t, T ) ∈ E, (σ, (t, T )) ∈ Q̇ iff
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(a) there is an s ∈ P ∗2 and an E-name Ṡ such that σ = op(š, Ṡ), i.e., the

canonical name for the ordered pair (š, Ṡ) as defined in [Kun80, Ch.VII,

Definition 2.16(b)]. Also, for all π ∈ dom(Ṡ) there is an s′ ∈ P ∗2 such that
š′ = π, and

(b) (t, T ) forces σ to have the properties that (s, S) has in (4)-(8) listed above.

The name for the ordering on Q̇ is defined as follows. For (t, T ) ∈ E and σ = (š, Ṡ),

ρ = (ř, Ṙ) in dom(Q̇),

(op(σ, τ), (t, T )) ∈ ≤Q̇ :⇐⇒ (t, T ) 
 Ṡ ⊆ Ṙ.

From the forcing theorem we have that Q̇G∗ = Q and ≤Q̇
G∗ = ≤Q. For every

(t, T ) ∈ E and t′ ∈ T such that t′ ⊇ t define

(t, T ) ↑ (t′) := (t′, {t′′ ∈ T ; t′′ ⊆ t′ or t ⊆ t′′}),

the extension of (t, T ) with trunk t′.

We define now a map i : J → E ∗ Q̇. For (r,R) ∈ J , we take i((r,R)) =
((r1, R1), ρ) :⇐⇒

(i) (r1, R1) := (r,R) �∗ Ee∩κξ ,
(ii) ρ = op(ř2, Ṙ2), where r2 := r � (e \κξ) and for all π ∈ dom(Ṙ2), there is an

r′ ∈ R such that π = (r′ � (e \ κξ))∨,

(iii) for all r′ ∈ R with r′ ( r we have that ((r′ � (e \ κξ))∨, (r1, R1)) ∈ Ṙ2,
(iv) for all r′ ∈ R with r′ ⊇ r we have that

((r′ � (e \ κξ))∨, (r1, R1) ↑ (r′ � (e ∩ κξ))) ∈ Ṙ2, and

(v) no other elements are in Ṙ2.

It is technical yet straightforward2 to show that for all (r,R) ∈ J , i((r,R)) =

((r1, R1), ρ) ∈ E ∗ Q̇, and that the map i is a dense embedding. So Q can indeed
be seen as the top part of the forcing Ee, cut at κξ. For the rest of the proof we
will work with Q inside V [G∗].

At this point we have that the presumed collapsing function f : δ → κξ is in
some generic extension V [G �∗ Ee], that Ee is forcing equivalent to J , which in

turn is forcing equivalent to E ∗ Q̇. We know that E is too small to add a function
like f , so f must be added by Q. To derive the desired contradiction, it remains
to show that Q cannot add a function like f . To show this, as is standard with
Prikry-like forcing notions, we have:

Lemma 2.6 (The Prikry lemma for Q.). In V [G∗], let τ1, . . . , τk be Q-names, and φ
be a formula with k free variables. Then for every forcing condition (s, S) ∈ Q there
is a stronger condition (s,W ) ∈ Q with the same trunk which decides φ(τ1, . . . , τk).

The proof of this lemma is just like the proof of Gitik’s Prikry-like lemma in
[Git80, Lemma 5.1], but with an application of the Lévy-Solovay theorem [LS67]
in the usual way. That is, using the fact that E is small forcing with respect to
κξ, we get that all ultrafilters involved in the definition of Q can be extended to
κξ-complete ultrafilters in V [G∗]. Then every time we have to intersect conditions
in Q, we get a pseudo-condition with splitting sets in the extended ultrafilters. But
by the definition of these extended ultrafilters we can always find subsets in the
original ultrafilters of the ground model, and thus get a stronger condition that is

2A detailed proof of this theorem will appear in the second author’s PhD thesis.
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in Q.

So now that we have the Prikry lemma for Q, we get, using the standard Prikry-
style arguments, the κξ-completeness of the ultrafilters in the definition of Q, and
the usual application of the Lévy-Solovay theorem, that Q does not add bounded
subsets to κξ. Therefore Ee cannot collapse κξ, and so the collapsing function f :
δ → κξ cannot exist in V [G �∗ Ee]. This completes the proof of Theorem 2.5. qed

Next we will see that we singularised the targeted ordinals. This is similar to
[Git80, Lemma 3.4].

Lemma 2.7. Every cardinal in (Regκρ)V has cofinality ω in V (G). Thus every
cardinal in the interval (ω, κρ) is singular.

Proof. Let α ∈ Regκρ . For every β < α, the set

Dβ := {(t, T ) ∈ P3 ; ∃n < ω(t(α)(n) ≥ β)}

is dense in (P3,≤). Hence fα :=
⋃
{t(α) ; (t, T ) ∈ G} is a function from ω onto an

unbounded subset of α. This function has a symmetric name, which is supported
by E{α}. Therefore fα ∈ V (G). qed

Usually in symmetric models built from ZFC-models with large cardinals, there
is some combinatorial residue from the large cardinal. Such is the case also here.
First we will show that in the interval (ω, κρ), only the former strongly compact
cardinals and their (singular) limits remain cardinals, i.e., that all cardinals of V
that are between the κξ and their (singular) limits have collapsed.

Lemma 2.8. For every ordinal ξ ∈ [−1, ρ) and every α ∈ (κξ, κξ+1), (|α| =

κξ)
V (G).

Proof. Fix an ordinal ξ ∈ [−1, ρ). Since strongly compact cardinals are limits of
strongly inaccessible cardinals, it suffices to show that for every strongly inaccessi-
ble α ∈ (κξ, κξ+1), we have that (|α| = |κξ|)V (G).

Fix α ∈ (κξ, κξ+1) strongly inaccessible. We have a bijection hα : Pκξ(α) → α
(see the definition of type 1 ordinals). We will use this bijection to show that E{α}
is isomorphic to the following partial ordering.

Let P sα be the forcing that consists of all injective Hα-trees, i.e., of sets T such
that

• T consists of finite sequences of elements of Pκξ(α),
• (T,E) is a tree, where E denotes end extension,
• T has a trunk trT , i.e., an element such that for every t ∈ T , either tE trT

or trT E t, and
• for every t ∈ T such that tD trT , the set {x ∈ Pκξ(α) ; t_〈x〉 ∈ T} of the
E-successors of t in T , is in the ultrafilter Hα.

The forcing P sα is partially ordered by

S ≤ T ⇐⇒ S ⊆ T.

Towards the isomorphism, define a function f from the injective finite sequences of
elements of Pκξ(α) to P2 by

f(t) := {(α,m, β) ; m ∈ dom(t) ∧ β = hα(t(m))}.

Define another function i : P sα → E{α} by

i(T ) := (f(trT ), {f(t) ; t ∈ T ∧ tD trT }).
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This i is indeed a function from T to E{α} because hα is a bijection. In fact, this
i is a bijection itself. It is easy to see that it also preserves the ≤ relation of the
forcings, so P sα and E{α} are isomorphic.

Now let Ĝ be P sα-generic. Because Hα is fine we have that for every β < α the
set

Dβ := {T ∈ P sα ; ∃m ∈ ω(β ∈ trT (m))}
is dense in P3. So

α =
⋃
n<ω

(
⋃
Ĝ)(n).

But each (
⋃
Ĝ)(n) is in Pκξ(α), hence it has cardinality less than κξ < α. Therefore

in any forcing extension of V via P sα, α has become a countable union of sets of
cardinality less than κξ and therefore is collapsed to κξ. So there is an E{α}-name
for a collapsing function from κξ to α, which can be seen as a P3-name in HS for
such a function, supported by E{α}. qed

Next we show that the regular cardinals of type 2 have collapsed to the singular
limit of strongly compacts below them.

Lemma 2.9. For every α of type 2, if β is the largest limit of strongly compacts
below α, then (|α| = β)V (G).

Proof. Similarly to the proof of the previous lemma, we assume that α is inaccessible
and we look at each of the bijections hα,ν : Pκαν (α) → α. Let e be the smallest

finite subset of Regκρ that contains α and is closed under cf ′. Look at V [G �∗ Ee].
Let 〈γi ; i ∈ ω〉 be the Prikry sequence added to cf ′α, and let 〈αi ; i ∈ ω〉 be the
Prikry sequence added to α. For each i ∈ ω, let

Ai := h−1
α,γi(αi).

We want to show that for each δ ∈ α, there is some i ∈ ω such that δ ∈ Ai. Fix
δ ∈ α. For all i ∈ ω, the V -ultrafilter Hα,γi is fine, so

{A ∈ Pκαγi (α) ; δ ∈ A} ∈ Hα,γi .

So for every i ∈ ω, the set

Zi := {ζ ∈ α ; δ ∈ h−1
α,γi(ζ)} ∈ Φα,γi .

Define the set

Dδ := {(t, T ) ∈ Ee ; ∃i ∈ dom(t)(δ ∈ h−1
α,γi(t(α)(i)))}.

This is dense in Ee and δ was arbitrary. Therefore in V [G �∗ Ee], we have that
α =

⋃
i∈ω Ai is a countable union of ≤ β-sized sets, and thus there is a symmetric

name for a collapse of α to β, supported by Ee. qed

We summarise our results on the cardinal structure of the interval (ω, κρ).

Corollary 2.10. An uncountable cardinal of V (G) that is less than or equal to κρ
is a successor cardinal in V (G) iff it is in {κξ ; ξ ≤ ρ}. Thus in V (G), for every
ξ ≤ ρ we have that κξ = ℵξ+1.

Also, an uncountable cardinal of V (G) that is less than or equal to κρ is a limit
cardinal in V (G) iff it is a limit in the sequence 〈κα ; α < ρ〉 in V .

Proof. This follows inductively, using Theorem 2.5, Lemma 2.8, and Lemma 2.9.
qed

Before we go into the combinatorial properties in V (G), let us mention that the
Axiom of Choice fails really badly in this model. The following is [Git80, Theorem
6.3].
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Lemma 2.11. In V (G), countable unions of countable sets are not necessarily
countable. In particular, every set in Hκρ is a countable union of sets of smaller
cardinality. Here “x has a smaller cardinality than y” means that x is a subset of
y and there is no bijection between them.

3. Results

We will now prove our main result, Theorem 1.1. We will use the approximation
lemma for V (G) and the Lévy-Solovay theorem [LS67], which says that measura-
bility is preserved under small forcing. In particular, it says that if U is a normal
measure over κρ, then the set generated from U by taking supersets is still a normal
measure after small forcing.

Proof. By Corollary 2.10, we only need to show that the measurability of κρ and
the existence of a normal measure over κρ is preserved to V (G). We will prove that
if U is a normal measure for κρ in the ground model, then the following set defined
in V (G),

U ′ := {Y ⊆ κρ ; ∃X ∈ U(X ⊆ Y )},

is a normal measure over κρ in V (G). This U ′ is clearly a filter in V (G), so it
remains to show that it is also a κρ-complete normal ultrafilter. For this, we need
to use the approximation lemma for V (G).

To show that U ′ is an ultrafilter, let X ∈ U ′, X ∈ V (G), and let Ẋ ∈ HS be
a name for X, supported by Ee ∈ I. By the approximation lemma, we have that
X ∈ V [G �∗ Ee], so we can use the Lévy-Solovay theorem [LS67] to see that either
X ∈ U ′ or κρ \X ∈ U ′.

To show that U ′ is κ-complete, let γ < κρ and 〈Xδ ; δ < γ〉 be a sequence of sets
in U ′. Let σ ∈ HS be a name for this sequence and let Ee′ ∈ I be a support for this
sequence. Since a sequence of sets of ordinals can be coded into a set of ordinals,
we can use the approximation lemma to get that the sequence is in V [G �∗ Ee′ ].
Again by the Lévy-Solovay theorem we get that its intersection is in U ′. Therefore
U ′ is a measure for κρ in V (G).

To show that U ′ is normal, let f : κρ → κρ, f ∈ V (G) be regressive. Since f
can be coded by a set of ordinals, by the approximation lemma, f ∈ V [G �∗ Ee′′ ]
for some Ee′′ ∈ I. Again, by the Lévy-Solovay theorem, we will get a set in U ′ on
which f is constant. qed

The construction in this paper is a generalised construction. For particular
results, e.g., ℵω+3 becoming both the first uncountable regular cardinal and a mea-
surable cardinal, we just put ρ = ω + 2. Thus we can immediately get a theorem
such as the following.

Theorem 3.1. If V is a model of “There is an ω+ 2-sequence of strongly compact
cardinals with a measurable cardinal above this sequence”, then there is a symmetric
model in which ℵω+3 is both a measurable cardinal and the first regular cardinal.

We can replace “measurable” by some large cardinal properties that are preserved
under small forcing, and which are of the form “for every set of ordinals X, there
is a set Y such that φ(X,Y ) holds” for certain formulas φ with two free variables.
This is because for such properties we can capture the arbitrary set of ordinals in
an intermediate ZFC model that is included in the symmetric model and use small
forcing arguments to prove that such a large cardinal property is preserved. This
allows us to construct models in which the first ρ uncountable cardinals are singular
and ℵρ+1 is, e.g., weakly compact, Erdős, Ramsey, etc.
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