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Abstract Infinite time register machines (ITRMs) are register machines which act
on natural numbers and which are allowed to run for arbitrarily many ordinal steps.
Successor steps are determined by standard register machine commands. At limit times
register contents are defined by appropriate limit operations. In this paper, we examine
the ITRMs introduced by the third and fourth author (Koepke and Miller in Logic and
Theory of Algorithms LNCS, pp. 306–315, 2008), where a register content at a limit
time is set to the lim inf of previous register contents if that limit is finite; otherwise
the register is reset to 0. The theory of these machines has several similarities to the
infinite time Turing machines (ITTMs) of Hamkins and Lewis. The machines can
decide all �1

1 sets, yet are strictly weaker than ITTMs. As in the ITTM situation, we
introduce a notion of ITRM-clockable ordinals corresponding to the running times of
computations. These form a transitive initial segment of the ordinals. Furthermore we
prove a Lost Melody theorem: there is a real r such that there is a program P that halts
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250 M. Carl et al.

on the empty input for all oracle contents and outputs 1 iff the oracle number is r , but
no program can decide for every natural number n whether or not n ∈ r with the empty
oracle. In an earlier paper, the third author considered another type of machines where
registers were not reset at infinite lim inf’s and he called them infinite time register
machines. Because the resetting machines correspond much better to ITTMs we hold
that in future the resetting register machines should be called ITRMs.

Keywords Ordinal computability · Hypercomputation · Infinitary computation ·
Register machine

Mathematics Subject Classification (2000) 03D60

1 Introduction

The infinite time register machines studied in the present paper were introduced
by the third and fourth author in [7]. The aim is to stretch standard register machines
into the infinite in a way similar to the ITTMs of Joel D. Hamkins and Andy Lewis [2]:
let the “standard hardware” of register machines run in transfinite ordinal time. Suc-
cessor steps are determined by standard register machine commands. At limit times
the register contents are defined using lim inf’s of the previous register contents.

A crucial issue is the limit behavior when the lim inf is infinite. In a previous ver-
sion (see [5]), machines halted or “crashed” on encountering such an overflow; com-
putability by those machines exactly corresponded to hyperarithmetic definitions.
We obtain a stronger notion of computability by continuing computations beyond
such crashes. So let register machines reset a register to 0 whenever it overflows.
This defines richer descriptive classes which are in closer analogy with the ITTM-
definable classes. Resetting a register to 0 has some similarities to resetting Turing
heads to position 0 at limit times. The added strength and the similarities to ITTMs
motivate us to propose the name infinite time register machine for the machines in this
paper. The machines defined in [5] by the third author could be called non-resetting
infinite time register machines.

Indeed, ITRMs are strictly weaker then ITTMs: the halting problem for ITRMs can
be decided by an ITTM (see Theorems 3 and 4 of [7] and also Theorem 4 of the present
paper). This illustrates the phenomenon that notions of computability that have the
same strength in the finite domain may differ markedly in the infinite. The classical
equivalence of register and Turing computability rests on the fact that a finite tape
inscription can be coded by a single integer, using standard arithmetical operations. In
contrast the tape contents of an ITTM cannot in general be coded by finitely many inte-
gers or register contents. This explains the power of ITTMs in comparison with ITRMs.

A decisive component for the behavior of infinitary machines are the limit rules
for updating the machine configuration at limit times. The ITRMs considered in the
present paper are strictly stronger than the register machines in [5] because the present
limit rule can be used to test for wellfoundedness (see Theorem 1). Infinitary register
and Turing machines may, however, converge if “space” and “time” are increased to
some admissible ordinal α or to the class Ord of all ordinal numbers (see [6,8,9]).
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The basic theory of infinite time register machines 251

The second section of the present paper contains basic definitions and a review
of the results of [7]. In analogy with the theory of ITTMs we introduce a notion of
ITRM-clockable ordinals corresponding to the running times of computations. A dif-
ference to the theory of ITTMs can be seen in the halting behavior of ITRMs: the
set of all ITRM-clockable ordinals is an initial segment of the ordinals, whereas the
ITTM-clockable ordinals have gaps. We also present a relation to computable ordinals.
In the final section we transfer the “lost melody” theorem for ITTMs to ITRMs: there
is a “lost melody” real r and a program P that halts on the empty input for all oracle
contents and outputs 1 iff the oracle number is r , while on the other hand no program
with the empty oracle can decide for every natural number n whether or not n ∈ r .

Ongoing work by the third author is aimed at determining exact strengths of ITRMs
for all numbers N of registers.

2 Infinite time register machines

Definition 1 Let N be a natural number. An N -register machine has registers
R0, R1, . . . , RN−1 which can hold natural numbers. An N -register program is a finite
list P = I0, I1, . . . , Is−1 of instructions, each of which may be of one of five kinds
where m, n range over the numbers 0, 1, . . . , N − 1:

a) the zero instruction Z(n) changes the contents of Rn to 0;
b) the successor instruction S(n) increases the natural number contained in Rn by 1;
c) the oracle instruction O(n) replaces the content of the register Rn by the number

1 if the content is an element of the oracle, and by 0 otherwise;
d) the transfer instruction T (m, n) replaces the contents of Rn by the natural number

contained in Rm ;
e) the jump instruction J (m, n, q) is carried out as follows: the contents rm and rn of

the registers Rm and Rn are compared; then, if rm = rn , the machine proceeds to
the qth instruction of P; if rm �= rn , the machine proceeds to the next instruction
in P .

The instructions of the program can be addressed by their indices which are called
program states. At ordinal time τ the machine will be in a configuration consisting of
a program state I (τ ) ∈ ω and the register contents which can be viewed as a function
R(τ ):N → ω. R(τ )(n) is the content of register Rn at time τ . We also write Rn(τ )

instead of R(τ )(n).

Definition 2 Let P be an N -register program. Let R0(0), . . . , RN−1(0) be natural
numbers and Z ⊆ ω be an oracle. These data determine the infinite time register
computation

I : θ → ω, R : θ → (Nω)

with program P , input R0(0), . . . , RN−1(0) and oracle Z by recursion:

a) θ is an ordinal or θ = Ord; θ is the length of the computation;
b) I (0) = 0; the machine starts in state 0;
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252 M. Carl et al.

c) If τ < θ and I (τ ) �∈ s = {0, 1, . . . , s − 1} then θ = τ + 1; the machine halts if
the machine state is not a program state of P;

d) If τ < θ and I (τ ) ∈ s then τ + 1 < θ ; the next configuration I (τ + 1), R(τ + 1)
is determined by the instruction II (τ ) according to the previous definition;

e) If τ < θ is a limit ordinal, then I (τ ) = lim infσ→τ I (σ ) and for all k < ω

Rk(τ ) =
{

lim infσ→τ Rk(σ ), if lim infσ→τ Rk(σ ) < ω

0, if lim infσ→τ Rk(σ ) = ω.

By the second clause in the definition of Rk(τ ) the register is reset in case
lim infσ→τ Rk(σ ) = ω. We also write Rk(τ ) ↑ to distinguish this situation from
the case where a register is assigned 0 by the first clause in the definition of Rk(τ ).

If the computation halts then θ = β + 1 is a successor ordinal and R(β) is the final
register content. In this case we say that P computes R(β)(0) from R(0) and the oracle
Z , and we write P:R(0), Z �→ R(β)(0).

Definition 3 A partial function F :ωn ⇀ ω is computable if there is some N -register
program P such that for every n-tuple (a0, . . . , an−1) ∈ dom(F),

P:(a0, . . . , an−1, 0, 0, . . . , 0),∅ �→ F(a0, . . . , an−1).

Obviously any standard recursive function is computable.

Definition 4 A subset x ⊆ ω, i.e., a (single) real number, is computable if its charac-
teristic function χx is computable.

A subset A ⊆ P(ω) is computable in the oracle Y if there is some N -register
program P such that for all Z ⊆ ω:

Z ∈ A iff P:(0, 0, . . . , 0),Y × Z �→ 1, and Z �∈ A iff P:(0, 0, . . . , 0),Y × Z �→ 0

where Y × Z is the cartesian product of Y and Z with respect to the pairing function

(y, z) �→ (y + z)(y + z + 1)

2
+ z.

In finite time, register computability and Turing computability coincide. In transfi-
nite time there are several parallels between ITRMs and ITTMs [7]:

Theorem 1 The set WO = {Z ⊆ ω | Z codes a wellorder} is computable by an ITRM
in the empty oracle ∅. The decision procedure described in [7] will run at least α steps
to accept a wellorder Z of ordertype α.

Theorem 2 Every �1
1 set A ⊆ P(ω) is ITRM-computable in the empty oracle ∅.

Further parallels are proved in the present paper.
On the other hand there are marked differences between registers and tapes. At

any point in time register contents are a finite tuple of natural numbers whereas tape
contents can be viewed as a function from ω to 2. This makes ITTMs considerably
stronger so that they are able to solve halting problems for ITRMs.
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The basic theory of infinite time register machines 253

Theorem 3 Let

I :θ → ω, R:θ → (Nω)

be the infinite time register computation by P with input (0, 0, . . . , 0) and ora-
cle Z. Then this computation does not halt iff there are τ0 < τ1 < θ such that
(I (τ0), R(τ0)) = (I (τ1), R(τ1)) and

∀τ ∈ [τ0, τ1] (I (τ0), R(τ0)) � (I (τ ), R(τ )).

Theorem 4 For every N < ω the restricted halting problem

HN : = {(P, Z) | P is an N-register program, Z ⊆ ω, and the computation

by P with input (0, 0, . . . , 0) and oracle Z halts}

is decidable by some ITRM with empty oracle.

This implies that the machines eventually get stronger by increasing the number of
registers. As a consequence there cannot be a universal ITRM.

3 Clockable ordinals

The study of ITRM-computation leads to the question how long a halting computation
exactly takes. In contrast to the standard setting, where obviously all natural numbers
are possible running times, we anticipate some difficulties. Since there are only count-
ably many ITRM-programs there can only be countably many possible running times.
The question of the structure of the class of possible running times will guide us
through this and the following chapter.

We call an ordinal α clockable, if we can find a program P which performs α many
steps and then halts. Measuring the lengths of computations we want to ignore the final
halt instruction. This way we obtain a precise notion of clockable limit ordinals even
though computation lengths always have to be successor ordinals (see the discussion
at the end of Definition 2). This leads to the following technical definition:

Definition 5 An ordinal α ∈ Ord is (ITRM-)clockable iff there exists an N -register
ITRM-program P and a halting computation on input (0, . . . , 0) with empty oracle ∅
of the form

I : α + 2 → ω, R : α + 2 → (Nω) .

CLOCK := {α | α clockable} denotes the set of all clockable ordinals.

Any natural number n ∈ ω is clockable because n +1 consecutive zero instructions
constitute a program that states the clockability of n.

A program witnessing that ω is clockable uses a flag which is initialized by 1 and
which is switched from 1 to 0 and back to 1 in each iteration. By the lim inf-rule of
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Definition 2e) the value of the flag becomes 0 after ω many steps. A program that
halts when the value of the flag becomes 0 clocks ω. By using n flags one is easily
convinced that ωn with n ∈ ω is clockable. This observation implies:

Proposition 1 All α < ωω are clockable.

ωω is equal to sup{ωn | n ∈ ω}. We want to use this characterization to prove the
following:

Lemma 1 ωω is clockable.

To prove this, we store a finite number of bits in one register such that they behave
in a reasonable way at limit times. For n ∈ ω define the function ρn : n2 → ω:

〈bi |i ∈ n〉 �−→
∑
i∈n

bi · 2i

All ρn are register computable functions and there are register computable pro-
jection functions πn with πn(ρn(〈bi |i ∈ n〉), �) = b�. Also the functions σn with
σn(〈b0, . . . , bn−1〉 , �, b) = ρn (〈b0, . . . , b�−1, b, b�+1, . . . , bn−1〉) are register com-
putable.

Proposition 2 Let λ ∈ Lim and n ∈ ω. Let
〈〈

bζi |i ∈ n
〉
|ζ ∈ λ

〉
be a sequence with

bζi ∈ 2. Let i ∈ n be maximal, such that there is a α < λ, such that for all i < j < n

and for all α ≤ ζ < λ, bζj is constant. Then for all i ≤ � < n:

πn

(
lim inf
ζ→λ

ρn

(〈
bζi |i ∈ n

〉)
, �

)
= lim inf

ζ→λ
bζ�

Proof Choose i as above. W.l.o.g. we may assume that i = n − 1.

Case 1: lim infζ→λ bζn−1 = 1. But then there is a ordinal α, such that for every

λ > ζ > α we have: bζn−1 = 1. So ρn

(〈
bζi |i ∈ n

〉)
≥ 2n−1. This implies that

lim inf
ζ→λ

ρn

(〈
bζi |i ∈ n

〉
, n − 1

)
≥ 2n−1

holds. But then

πn

(
lim inf
ζ→λ

ρn

(〈
bζi |i ∈ n

〉
, n − 1

)
, n − 1

)
= 1

holds as well.
Case 2: lim infζ→λ bζn−1 = 0. This case is handled in analogy to case 1. 
�
Proof (Lemma 1) In the following program, we use v as a vector of length n. All
vector operations are understood as macros, which have to be substituted by corre-
sponding register programs. The following pseudo code has to be transformed into a
valid program P .
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The basic theory of infinite time register machines 255

01 v = 1
02 n = 1
03 while not n = 0 do:
04 for i = n-1, ... , 0 do:
05 if v[i] = 0 do:
06 if i = n-1 do:
07 n = n + 1
08 end if
09 v[i+1] = 0
10 v[i+1] = 1
11 v[i] = 1
12 end if
13 end for
14 v[0] = 0
15 v[0] = 1
16 end while

Let

I : θ → ω, R : θ → (Nω)

denote the computation of the N -register program above on input (0, . . . , 0) and empty
oracle. First we note:

(1) For a limit ordinal λ ∈ θ we have: I (λ) = 03.

Proof This is the case because 03 is the instruction with the smallest number in the
outer loop. The inner loop is finite because every manipulation of v is computable by
an register machine. The program has to traverse the outer loop after finitely many
steps. So 03 is the smallest instruction that is executed unboundedly often. qed (1)

For α ∈ θ let v(α) denote the value of the register in which v is stored and n(α)
denote the value of the register in which n is stored. For a successor ordinal α ∈ θ

and 1 ≤ i < n(α) let v(α)(i) = πn(α)(v(α), i) and for limit ordinals λ ∈ θ let
v(λ)(i) = lim infα→λ πn(α)(v(α), i).

(2) If v(λ)(i) = 0 at a limit ordinal λ < ωω with i ≥ 1, then v(λ + ωi )(i) = 0 and
for all limit ordinals β with λ < β < λ+ ωi and j ≥ i we have v(β)( j) = 1.

Proof We show this result by induction over i ≥ 1.
Let i = 0. It is clear that v(α)(0) = 0 for every limit ordinal α, because in every tra-
versal of the main loop we flash the flag. In this case the second part of the proposition
is clear.
Let j = i +1. Let α be a limit ordinal with v(α)(i +1) = 0. By the induction hypoth-
esis, for every � ∈ ω, v(α+ωi ·�)(i) = 0. Because of the lines 05 to 13 the flag stored
in i + 1-th cell is flashed after every limit ordinal of the form α+ωi · � for � ∈ ω. By
the second part of the induction hypothesis, for all limit ordinals α < β < α + ωi+1

and j ≥ i , we must have v(β)( j) = 1, so Proposition 2 shows that we take the lim
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inf. Hence v(α + ωi · �)(i + 1) = 0. The second part of the proposition follows from
the fact that a flag can be 1 at limit times iff it is flagged unbounded often. But for
j ≥ i this is not the case. qed (2)

Now we make the following observation:

(3) For every m ∈ ω there is � ∈ ω such that m = n(ωm + �) and for all α <

ωmn(α) ≤ m.

and

(4) If for a limit ordinal λ ∈ θ and some 1 ≤ i < n(λ) we have v(λ)(i) = 0, then also
v(λ)( j) = 0 whenever 1 ≤ j < i .

At one limit stage n is reset to 0 and by (1) the current instruction at this time is 03.
But then the program stops.
According to (3) n is bounded below ωm . Because n is never decreased it can-
not reach zero before ωω. n grows unbounded below ωω and so the register is
reset. By (1) the instruction 03 is executed and so the program stops. Hence it
clocks ωω. 
�

4 The structure of CLOCK

To get a deeper insight into the structure of CLOCK we first prove a speed-up lemma,
that we will generalize later. The term “speed-up” is adopted from the analogous
infinite time Turing machine results. Here it seems more appropriate to speak of a
truncation lemma.

Lemma 2 (Speed-up) Let α+ n be a clockable ordinal for some n ∈ ω. Then α itself
is ITRM-clockable.

Proof Following the strategy of the corresponding proof for ITTMs (see [2]), we
design an algorithm which uses additional registers to anticipate the stage α configu-
ration. We thereby obtain a flag indicating that the registers are set up in a way which
will cause the machine to stop in n additional steps.

Since every computation can easily be made longer by a finite amount of steps,
we can assume that α is a limit ordinal. Since α + n is clockable, there is an ITRM
N -register program P with a computation

I :α + n + 2 → ω, R:α + n + 2 → (Nω)

by P on input (0, . . . , 0) with empty oracle. At stage α the machine is in a config-
uration ( Ī , R̄): = (I (α), R(α)) which will cause it to halt after n additional steps.
Therefore stage α has to be the first (and only) occurrence of configuration ( Ī , R̄)
in the computation. We modify P in a way which lets us decide in one step whether
configuration ( Ī , R̄) has been entered. This will result in a computation of lengthα+2.

The computation by P involves only finitely many registers. Let S ⊂ ω be the set
of indices of those registers. Let X ⊂ S contain the indices i of registers with Ri (α) ↑.
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The basic theory of infinite time register machines 257

Finally let N : = S \ X . The following program is designed to handle the case X �= ∅.
The case X = ∅ can be solved by a much simpler program as noted below.

We fix four registers, denoted by RA, Rmin, Rcmin, Rflag, which are not used by P .
RA is used as an array of bits to keep track of registers in N , which have attained the
correct value from R̄. We want Rmin to always contain the minimum of all registers
in X . Rcmin shall contain a cumulative minimum, i.e., the smallest value of Rmin since
Rcmin was reset for the last time. Rflag shall be 0 iff configuration ( Ī , R̄) is entered.

We modify P in three steps and obtain a program P ′.
1. Prepend an instruction to P which initializes Rflag to 1.
2. Before the Ī -th instruction of P insert the following block of instructions.

CHECK-FLAG:
01 if FLAG = 0
02 stop
03 end

3. Before each instruction of P insert the following block of instructions named
UPDATE.

Here the registers RA, Rmin, Rcmin, Rflag are denoted by A, MIN, CMIN, FLAG. For
i < ω the i-th register is referred to as R[i]. For n ∈ N the value of R̄n is written as
r_n. Let X = {n_0, . . . ,n_k}.
UPDATE:
A01 MIN = R[n_0]
[For i = 1, ... , k]
A02 if MIN > R[n_i]
A03 MIN = R[n_i]
A04 end
...
B01 if CMIN > MIN
B02 CMIN = MIN
B03 end
[For each n in N]
C01 if R[n] < r_n
C02 FLAG = 1
C03 elseif R[n] = r_n
C04 A[n] = 1
C05 end
...
D01 if all-components-one(A)
D02 A = 0
D03 FLAG = CMIN + 2
D04 CMIN = MIN
D05 end

Clearly the jump instructions in P have to be updated. The first lines of the inserted
blocks UPDATE and CHECK-FLAG respectively shall be used as new jump destina-
tions.
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258 M. Carl et al.

If X = ∅ most of this bookkeeping can be avoided: Simply initialize a flag to 2. Set
it to 1 and back to 2 whenever the situation D02-D04 is encountered. Set it to 0 and
back to 2 whenever a register falls below its designated value from R̄. An analogous
argument as below shows that at limit times the flag is 1 if and only if the register
values from R̄ are attained. We concentrate on the more complicated case X �= ∅ for
the rest of the proof.

Let (I ′, R′) be the computation by P ′ on input on input (0, . . . , 0) and empty oracle.
Note that the inserted instructions neither contain jump instructions nor modify the
register used by P . Therefore the computation by P ′ can be thought of as an extension
of P where single instructions have been replaced by blocks of instructions occurring
in the same order. Especially since all additions are finite the configurations of (I ′, R′)
at limit stages will be equal to those of (I, R) for registers from S.

(1) If λ is a limit ordinal then Rmin(λ) ↑ iff ∀n ∈ X Rn(λ) ↑.

Proof UPDATE is executed before every instruction of P . Therefore after each pos-
sible change (by an instruction or by the liminf rule) of a register in X at stage σ
lines A01-A04 ensure that Rmin is set to min{Rn(σ ) | n ∈ X} after a finite amount
of steps before the computation continues. In particular the registers from X remain
unchanged until Rmin has been updated. Hence (*): Every minimum of registers in X
at any stage is assumed by Rmin within finitely many subsequent steps.
Let λ be a limit ordinal. Assume for contradiction that Rmin(λ) ↑ but Rn(λ) �↑ for
some n ∈ X . Let x := Rn(λ). Then there are cofinally many τ below λ such that
Rn(τ ) = x and thus min{Rn(τ ) | n ∈ X} ≤ x . Because of (*) there are cofinally
many τ ′ below λ such that Rmin(τ

′) ≤ x which implies Rmin(λ) ≤ x . Contradiction.
Let Rn(λ) ↑ for all n ∈ X . Then lim infτ→λ min{Rn(τ ) | n ∈ X} =
min{lim infτ→λ Rn(τ ) | n ∈ X} = ω. And since Rmin is only updated with values
from registers Rn with n ∈ X, Rmin(λ) ↑ follows. qed (1)

(2) Let λ be a limit ordinal. Rflag(λ) = 0 iff Rn(τ ) = R̄n for all n ∈ N , Rn(τ ) �↑ for
all n ∈ N and Rn(τ ) ↑ for all n ∈ X.

Proof Observe Rflag = 0 iff Rflag ↑. Assume Rn(λ) < R̄n for some n ∈ N . Let
x : = Rn(λ). Then Rn(τ ) = x for cofinally many τ below λ. Then Rflag will be set to
1 cofinally often below λ (line C02). Hence Rflag(λ) �↑.
Assume Rn(λ) > R̄n or Rn(λ) ↑ for some n ∈ N . Then Rn will be assigned R̄n

only boundedly many times in λ. Hence the component of RA corresponding to n will
equal 0 at all sufficiently large stages below λ. So Rflag will no longer be updated with
values from Rcmin (line D03). In particular Rflag(λ) �↑.
Assume Rn(λ) �↑ for some n ∈ X . Then Rmin(λ) �↑ by (1). Hence there are cofinally
many τ below λ such that Rmin(τ ) = x : = Rmin(λ). The subsequent UPDATE block
will ensure Rcmin ≤ Rmin. Observe that Rcmin is decreasing as long as it is not reset in
line D04. We can assume that Rflag will be updated with values from Rcmin cofinally
often below λ (else Rflag �↑). So when Rflag is updated for the next time, Rcmin will not
have been reset. So Rflag(τ ) ≤ x + 2 for cofinally many τ below λ. Hence Rflag(λ) �↑.
For the other direction let Rflag(λ) ↑. In particular Rflag has been updated cofinally
often which implies Rn(λ) ≤ R̄n and Rn(λ) �↑ for all n ∈ N . Since Rflag has not been
reset to 1 cofinally often (line C02) we also know Rn(λ) ≥ R̄n .
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The basic theory of infinite time register machines 259

Note that all values> 1 of Rflag correspond to values of Rcmin. Since Rcmin decreases
between these assignments to Rflag, Rflag(λ) ↑ implies Rcmin(λ) ↑. For the same
reason it follows that Rmin(λ) ↑, which in turn by (1) implies Rn(λ) ↑ for all n ∈ X .

qed (2)

(3) dom(I ′) = α + 2.

Proof Assume α ∈ dom(I ′). Since the behaviour of P ′ on registers from S corre-
sponds to P and α is limit ordinal: R′

n(α) = R̄n for all n ∈ N and R′
n(α) ↑↔ R̄n ↑

for all n ∈ S. For the same reason I ′(α) is the first instruction of CHECK-FLAG.
Then by (2): Rflag(α) = 0 and the next instruction will be the halt instruction. On the
other hand the computation by P ′ can not stop before α, because α is the first occu-
rence of the configuration ( Ī , R̄). So by (2) Rflag will not be zero and the (enhanced)
computation will proceed like P . qed (3)

Hence α is clockable. 
�
We want to generalize the Speed-up Lemma. For this we state another halting

criterion.

Theorem 5 (Halting Criterion) Let

I : θ → ω, R : θ → (Nω)

be an ITRM-computation by P with input (0, . . . , 0) and empty oracle ∅. This com-
putation does not stop iff there is some configuration ( Ī , R̄) such that

otp({t < θ | (I (t), R(t)) = ( Ī , R̄)}) ≥ ωω .

Proof If the computation does not stop then at least one of the configurations has
to occur class-many times. For the converse assume that (ti |i ≤ ωω) is a strictly
increasing and continuous sequence of ordinals < θ such that

∀i < ωω(i �∈ Lim → (I (ti ), R(ti )) = ( Ī , R̄)) .

By the definition of (I (tωω), R(tωω)) using lim inf operations, there must be some
ordinal ωn < ωω such that:

(1) there is a time t ∈ [t1, tωn ) such that I (t) = I (tωω), and for every register index
k < ω there is a time t ∈ [t1, tωn ) such that Rk(t) = Rk(tωω);

(2) for every time t ∈ [tωn , tωω) the configuration (I (t), R(t)) will be pointwise ≥
than the configuration (I (tωω), R(tωω)).

We claim

(3) (I (tωn+1), R(tωn+1)) = (I (tωω), R(tωω)).
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Proof ≥ (pointwise) follows from (2).
For the converse observe that for every m < ω

(I (tωn ·m+1), R(tωn ·m+1)) = ( Ī , R̄) .

Then the computations on the time intervals [tωn ·m+1, tωn ·m+1 + (tωn − t1)) all begin
with the same configuration and are therefore isomorphic up to a shift in time. By (1),
every state and every register content of the configuration (I (tωω), R(tωω)) will be
reached during the interval [tωn ·m+1, tωn ·m+1 + (tωn − t1)). Since these intervals limit
up to tωn+1 and by the lim inf rule, the equality is established. qed (3)

(3) and (2) imply that the computation will cycle from tωn+1 onwards with a period
of length tωω − tωn+1 . Thus the computation does not stop. 
�

With the help of the halting criterion we are now able to prove the generalized
Speed-up lemma:

Lemma 3 (Generalized speed-up) Let α be a clockable ordinal and β < α. Then β
is ITRM-clockable.

As an implication of this lemma we get:

Theorem 6 (Initial segment) CLOCK := {α | α ITRM-clockable} is a transitive
initial segment of the countable ordinals.

This theorem states a fundamental difference between the theory of ITTM-
clockable ordinals (as it is developed in [2]) and ITRM-clockable ordinals. In con-
trast to the ITTM situation there are no gaps. This can be interpreted as some kind of
weakness of ITRMs. We now prove the lemma:

Proof (Generalized Speed-up) Let I :α+2 → ω, R:α+2 → (Nω) be a computation
by a program P = P0, . . . , Pk−1 on input (0, . . . , 0) and empty oracle. W.l.o.g. β is a
limit ordinal. At stageβ the machine is in some configuration ( Ī , R̄) : = (I (β), R(β)).
Let

M : = {γ | γ ≤ β ∧ (I (γ ), R(γ )) = ( Ī , R̄)}, η := otp(M).

We shall simulate the program P while counting the number of times that the config-
uration ( Ī , R̄) appears, halting at the ηth time.

By Theorem 5 η < ωω. η is clockable by Proposition 1. Since β is a maximal
element of the set on the right side η has to be a successor ordinal: η = η′ + 1. By
Lemma 2 η′ is clockable: Let Q = Q0, . . . , Ql−1 be a NQ-register program with a
computation IQ : η′ + 2 → ω, RQ : η′ + 2 → ((NQ)ω) by Q on input (0, . . . , 0) and
empty oracle.

We can assume that P and Q use disjoint sets of registers. W.l.o.g. the first m reg-
isters are used by P and the registers with indices in [m,m + n) are used by Q. We
fix another register Rline which is used by neither P nor Q and will be employed as a
pointer to the lines in the program Q.
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Consider the NP ′ -register program P ′ := P̃0, . . . , P̃I−1, B, P̃I , . . . , P̃k−1 where

1. B is the following block of instruction. Again the i-th register is denoted as R[i],
R̄i is referred to by r_i, and Rline is written as LINE:

if R[0]= r_0 and R[1] = r_1 and ... and
R[m] = r_m then
if LINE = 0
Q_TILDE_0

else if LINE = 1
Q_TILDE_1

...
else if LINE = l - 1
Q_TILDE_(l-1)

end

if LINE >= l
stop

end
end

Q_TILDE_i for i ∈ l is a placeholder for the following block of instructions:

Q̃i :=

⎧⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎩

Qi , LINE = i + 1, if Qi �= J (u, v, q)

if R[u] = R[v] then if Qi = J (u, v, q)
LINE = q

else
LINE = i + 1

Let q̃i , i ∈ l, and b̃ be the index of the first instruction of Q̃i and B in P ′ resp.

2. P̃i for i ∈ k is the same instruction as Pi with indices in jump instructions shifted
appropriately: For i ∈ k

P̃i =
⎧⎨
⎩

Pi , if Pi �= J (u, v, q),
J (u, v, q), if Pi = J (u, v, q) and q ≤ Ī ,
J (u, v, q + |B|) if Pi = J (u, v, q) and q > Ī .

Note that jump instructions with destination PĪ are altered to point to the first line
of B.

Let I ′ : α′ → ω, R′ : α′ → ((NP ′ )ω) be the computation by P ′ on input (0, . . . , 0) and
empty oracle and 〈tτ | τ < θ〉 be the strictly increasing sequence of stages γ < α′ such
that I ′(γ ) = q̃i for some i ∈ l (i.e. the stages of (I ′, R′) just before an instruction of
Q is executed). Define R′

Q : α′ → ((NP ′ )ω) to be the restriction of R′ to registers used
by Q: R′

Q(τ )(i): = R′(τ )(i) when τ < α′ and i ∈ [m,m + n), and R′
Q(τ )(i) = 0

otherwise.

(1) If τ < θ and R′
line(tτ ) = k < l, then I ′(tτ ) = q̃k . Moreover, if Qk is not a jump

instruction then P ′
I ′(tτ ) = Qk.
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Proof By the construction of P ′. qed (1)

(2) If τ < θ then R′
Q(tτ ) = RQ(τ ) and R′

line(tτ ) = IQ(τ ). In particular θ ≤ η.

Proof By induction on τ < θ .
Let τ = 0: R′

Q(t0) = (0, . . . , 0) = RQ(0) and R′
line(t0) = 0 = IQ(0) since neither a

register used by Q nor R′
line is altered before t0.

Let τ = ν+1 < θ and assume the statement is already proved for ν. By the induction
hypothesis R′

Q(tν) = RQ(ν) and R′
line(tν) = IQ(ν).

We can assume R′
line(tν) = IQ(ν) < k. Otherwise the computation would have

halted after tν making tν the last entry of the sequence. In particular this shows θ ≤
dom(IQ)− 1 = η.
If IQ(ν) is a jump instruction then RQ(ν) = RQ(ν+ 1). In this case also Q̃ IQ(ν) does
not contain write instructions. Hence R′

Q(tν+1) = R′
Q(tν) and so R′

Q(tτ ) = RQ(τ )

by induction. The second part of Q̃ IQ(ν) then sets Rline(tν+k) for some small k to
IQ(ν+ 1) by simulating the behavior of a jump instruction. This value is not changed
until tν+1 and so Rline(tτ ) = IQ(τ ).
If IQ(ν) is not a jump instruction then by (4) and the induction hypothesis P ′

I ′(tν ) =
QIQ(ν). So R′

Q(tν + 1) = RQ(ν + 1). After that R′
Q remains constant until tτ . So

R′
Q(tτ ) = RQ(τ ). Since IQ(ν) is not a jump instruction, IQ(ν + 1) = IQ(ν) + 1.

Analogously the second part of Q̃ IQ(ν) ensures R′
line(tν + 2) = Iq(ν) + 1. Finally

R′
line(tν+1) = R′

line(tν + 2) since Rline remains constant until tν+1.
Let τ < θ be a limit ordinal. By the induction hypothesis R′

Q(tν) = RQ(ν) and
R′

line(tν) = IQ(ν) for all ν < τ . Let λ = sup{tν | ν < τ }. Since the sequence is strictly
increasing, λ is a limit ordinal. Let i ∈ [m,m + n). Then

R′
i (λ) = lim inf

σ→λ
R′

i (σ )

= lim inf
ν→τ

R′
i (tν)

= lim inf
ν→τ

RQ,i (ν) = RQ,i (τ ).

Here the second equivalence holds because the values taken by R′
i (σ ) for σ < λ

appear in R′
i (tν) for ν < τ in same order and the sequence 〈tν | ν < τ 〉 is cofi-

nal in λ. Obviously λ ≤ tτ . Moreover, R′
i remains unchanged on [λ, tτ ], so we get

R′
i (tτ ) = R′

i (λ) = RQ,i (τ ).

For the same reason:

R′
line(tτ ) = R′

line(λ) = lim inf
σ→λ

R′
line(σ )

= lim inf
ν→τ

R′
line(tν)

= lim inf
ν→τ

IQ(ν) = IQ(τ )

qed (2)
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Let 〈sτ | τ < σ 〉 be the increasing sequence of stages γ < α′ with P ′
I ′(γ ) = P̃i for

some i �= Ī or I ′(γ ) = b̃.
Since B is traversed in a linear fashion, a similar argument as above shows, that P ′
behaves essentially like P on the registers used by P . Specifically, the register values
at limit stages coincide. Let R′

P again denote the restriction of R′ to P’s registers.

(3) If τ < σ then R′
P (sτ ) = R(τ ). For limit ordinals λ < σ : sλ = λ.

In particular (I ′, R′) only halts before β if the stop instruction from B is encoun-
tered. Since the block B is inserted before the instruction corresponding to Ī , the outer
if-condition in B is true exactly at stages sγ with (I (γ ), R(γ )) = ( Ī , R̄). At stage β
the configuration ( Ī , R̄) occurs for the ηth time. This implies θ = η and α′ = tη′ + m
for some m < |B|.

For each tτ , τ < η, there has to exist a unique γ ∈ M such that sγ < tτ < sγ +|B|.
Since β is the maximal element of M and η = otp(M), we get sη′ = sβ . Hence
α′ = tβ + m′ = β + m′ for some m′ < 2|B|. By the Speed-up Lemma 2, β is
clockable. 
�
Lemma 4 Every recursive ordinal is ITRM-clockable.

Proof Let α be a recursive ordinal. α then is Turing computable by a program P . Let
Z be the result of the computation of P used as an oracle. Instead of consulting an
oracle it is also possible to rerun P . We use the program which was introduced in [7]
to compute WO (see also Theorem 1). Using recalculated values of Z this program
will take at least α many steps to halt. Because the set of ITRM-clockable ordinals is
an initial segment of the countable ordinals, α is clockable. 
�

5 Computable ordinals

In Definition 4, we introduced a notion of computable real numbers. With this we can
define computable ordinals:

Definition 6 An ordinal number α is (ITRM-) computable if there is a computable
real number x ⊆ ω coding a wellorder with

α = otp({(a, b) ∈ ω × ω | p(a, b) ∈ x})

where p denotes an appropriate pairing function.

Theorem 7 The class of clockable ordinals CLOCK coincides with the class of com-
putable ordinals.

Proof (⊇) Let α be a computable ordinal. Let x ⊆ ω denote a code for a wellorder of
ordertype α and P a program that computes x .

We again make use of the program which computes WO as described in [7]. If all
oracle instructions are replaced by a rerun of P , then this program will run for at least
α many steps. By the Initial Segment Theorem α is clockable.
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(⊆) Let P be a program with a computation

I : α + 2 → ω, R : α + 2 → (Nω)

by P on input (0, . . . , 0) and empty oracle ∅.
Define for Ī ∈ ω and R̄ ∈ (Nω):

η( Ī , R̄) = otp({β ∈ α + 2 | (I (β), R(β)) = ( Ī , R̄)})

(1) (∀β ∈ α + 2) η(I (β), R(β)) < ωω

Proof P halts and Theorem 5 proves the claim. qed (1)

The idea is to order the triples of the form ( Ī , R̄, γ ) with γ < η(I, R) as follows:
( Ī , R̄, γ ) < ( Ī ′, R̄′, γ ′) iff the γ -th occurrence of ( Ī , R̄) is before the γ ′-th occurrence
of ( Ī ′, R̄′).

For this we define

S = {( Ī , R̄, γ ) | (∃β ∈ α + 2)( Ī , R̄) = (I (β), R(β)) ∧ γ < η(I, R)}

Further we define for ( Ī , R̄, γ ) ∈ S:

δ( Ī , R̄, γ ) = min({β ∈ α + 2 | γ = otp({σ < β | ( Ī , R̄) = (I (γ ), R(γ ))})})

With this the following definition is natural:

( Ī , R̄, γ ) ≺ ( Ī ′, R̄′, γ ′) iff δ( Ī , R̄, γ ) < δ( Ī ′, R̄′, γ ′)

The following claim holds:

(2) (S,≺) is a wellorder and α + 2 = otp((S,≺))
Proof To prove this claim we show that δ is an order preserving bijection between S
and α+2. It is clear that δ is a function from S to α+2. Let β < α+2. The preimage
of β is (I (β), R(β), otp({γ < β | (I (β), R(β)) = (I (γ ), R(γ ))})). The injectivity
of δ is proved analogously. δ is order preserving by definition. qed (2)

A triple ( Ī , R̄, γ ) can be coded as a natural number. Ī is a natural number, and to code
R̄ we observe, that only finitely many registers are used in P . Every η < ωω can be
represented as η = ωn−1 · cn−1 + . . .+ ω . . . c1 + c0 for some cn−1, . . . , c0 ∈ ω.
Define x as the set of codes of elements in ≺. We want to prove that x is computable.
To construct a program that computes x we have to build a counter which will be able
to count an ordinal η < ωω that is coded by a sequence of natural numbers 〈ci | i ∈ n〉
as above. For this modify the program in the proof of Lemma 1. We observed that on
the first limit time with v(t)(i + 1) = 0, t = ωi holds. By the main claim in this proof
we further know that for � ∈ ω and t = ωi · �, v(t)(i) = 0 holds. For every limit time
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t with ωi · � < t < ωi · (�+ 1) holds v(t)(i + 1) = 1. A traversal of the main loop in
the program takes only finitely many steps, so we may assume that an execution of a
step of it is a full traversal of the main loop.
We have to modify the program: At the beginning of the main loop we insert a block
that checks if a limit time is reached. If the flag that corresponds to the maximal i such
that ci �= 0, we decrease ci by one. If c0 �= 0 we can’t use the technique explained
above. But counting finitely many steps is no problem. So the program checks at any
limit time if ωi additional steps are made. Since we do this beginning with the biggest
we can count η steps in this way.
Let a ∈ x code the pair (( Ī , R̄, γ ), ( Ī ′, R̄′, γ )). In the following code let _I denote
Ī , _I’ denote Ī ′, _R_{i} denote R̄(i) and so forth. Let Z and Z’ be to counters as
described above. We may assume that they are correctly initialized from the input at
the beginning of the program.
We replace every instruction Pi of P with the following block:

% Check if the configuration (_I, _R) is reached
if _I = i and _R_0 = R(0) and ... and _R_{r-1} = R(r-1)
then
execute a step of Z
if Z = _gamma then

if result != 2 then result = 1
reached_1 = 1

end if
end if

% Check if the configuration (_I’, _R’) is reached
if _I’ = i and _R’_0 = R(0) and ... and _R’_{r-1} =
R(r-1) then
execute a step of Z’
if Z = _gamma’ return 0

if result != 1 then result = 2
reached_2 = 1

end if
end if

P_i

As in the proof of the Generalized Speed-up Lemma we have to set up all these
things carefully, but the techniques used there are also applicable in this case.

At the beginning the program has to check if the input is a valid coding of an ele-
ment of x , whether it is a pair of two distinct elements of S and return 0 if this is not
the case. We also insert a block at the end of the program, that returns 0 in the case
that reached_1 or reached_2 is 0, in which case one of the triples isn’t in s. If
this is not the case, then we return 1 if result is 1 and return 0 if not. Furthermore
all jumps in P that terminate the program should be replaced with jumps to this block.
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It remains to check if this program computes x . If the input isn’t a code for a valid
element of ≺, then we return 0. But if this is the case we count the occurrence of ( Ī , R̄)
and ( Ī ′, R̄′), and decide <. So this program computes x . 
�

6 The lost melody theorem

Intuitively, the lost melody theorem says that there are reals that can be recognized,
but not computed. In [2], this is shown in the context of ITTMs. Here, we prove the
same holds for ITRMs. Accordingly, let us call a real r recognizable if the set of reals
{r} is computable in the empty oracle ∅.

Theorem 8 There is a real r which is recognizable, but not computable. Thus, the
Lost Melody Theorem holds for ITRM’s as well.

The rest of the paper is devoted to the proof of this theorem.
We need some notions from the fine structure theory of the constructible universe L .

F1(x, y) = {x, y}
F2(x, y) = x × y

F3(x, y) = {(u, v):u ∈ x ∧ v ∈ y ∧ u ∈ v}
F4(x, y) = x − y

F5(x, y) = x ∩ y

F6(x, y) = ∪x

F7(x, y) = dom(x)

F8(x, y) = {(u, v):(v, u) ∈ x}
F9(x, y) = {(u, v, w):(u, w, v) ∈ x}

F10(x, y) = {(u, v, w):(v,w, u) ∈ x}

From now on, we define α to be the smallest ordinal such that Jα |� Z F−, where
Z F− is Zermelo–Fraenkel set theory without the power set axiom. Thus, α is a
countable ordinal and Jα is itself countable. In fact, we have:

Lemma 5 There is s ∈ Jα+2 such that s : ω → Jα is surjective.

Proof Let Mα be the �ω Skolem hull of {Jα} in Jα+1. All elements of Mα are of
the form h(i, {Jα}), where h is the canonical �1 Skolem function for Jα+1 (which
is �1 over Jα+1 and hence an element of Jα+2). Also, we have Mα ∈ Jα+2. Let
πβ(x):x → y be the collapsing map for elements x of Sβ , where y is the transitive
collapse of x ; this can be defined by induction on β and is easily seen to be an element
of Jα for ωα > β. Furthermore, let π be the collapsing map for Mα , i.e. ∪βπβ .

By the condensation lemma, the transitive collapse of Mα is of the form Jγ for
some ordinal γ ≤ α+ 1. Since Jα+1 |� ‘there is a maximal J -stage’ (namely Jα), the
same holds in Jγ and so γ = δ + 1 for some ordinal δ. Furthermore, for each axiom
φ of Z F−, Jα+1 |� φ Jα , and hence Jγ |� φ Jδ . Now, since α was minimal, it follows
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that α ≤ δ, so we get α = δ. Now f :i → π(h(i, {Jα})) is a partial surjection from
ω onto Jα+1. Define s(x) = f (x) if f (x) ∈ Jα,∅ otherwise. Since Jα and Jα+1 are
in Jα+2 and the latter is closed under rudimentary functions, f is easily seen to be an
element of Jα+2 as well and is the desired surjection.

Let p:ω × ω → ω be the Cantor pairing function. Given a surjective map s as
above, we can code Jα by a real r in a canonical way by simply putting n = p(i, j)
into r iff s(i) ∈ s( j). Conversely, any real can be interpreted as a (possibly ill-
founded) countable ∈-structure in this way: Introduce countably many constants ci

and let ci Ec j ↔ p(i, j) ∈ r . We say that r codes a model of Z F− iff the ∈-structure
obtained in this way is such a model. (Obviously, any structure obtained in this way
is transitive.) From now on, r denotes the <L -minimal real that codes a Jα |� Z F−.
Since a real coding Jα is easily generated from s as in Lemma 8 by applying some
Gödel functions, we have r ∈ Jα+2. From now on, we write P∅(n) for the output that
the program P generates from the input n in the empty oracle.

We start by proving:

Lemma 6 r is not computable.

Proof Suppose for the sake of a contradiction that P computes r . Since computations
are absolute between transitive models of ZF−, there is an ∈-formula φ(v) such that
P∅(n) = 1 ↔ Jα |� φ(n). Since comprehension holds in Jα , we have r ∈ Jα . But
then, since Jα satisfies replacement, the structure coded by r is itself an element of
Jα , and we get Jα ∈ Jα , a contradiction. 
�

The algorithm for deciding whether or not the oracle number o is equal to r pro-
ceeds in three steps: First, it is checked whether the ∈-structure R coded by o (in the
sense mentioned above) is well-founded. This can be done as in Sect. 3. If it doesn’t
succeed, we stop with negative result. If it does, we have to check whether all axioms
of ZF− + V = L are valid in R and R is ∈-minimal with this property. How to do
this will follow easily from the effort taken for the last step: Assuming that the last
step was successful (so o codes an ∈-minimal model of ZF− + V = L), we have to
check whether o is<L -minimal with this property. For this purpose, we fix the oracle
number o for the rest of the proof.

Since it is checked by now that R is isomorphic to a transitive, well-founded,
∈-minimal model of ZF− + V = L, we may assume that R is of the form Jγ for some
ordinal γ .

The J -hierarchy is obtained by iterating the process of closing Jβ ∪ {Jβ} under
Gödel functions and taking unions at limits. Each element of L = ⋃

β Jβ can there-
fore be represented as an iteration of Gödel functions applied to several of the Sγ .
We view such a representation as a name for the element; if we restrict ourselves to
an initial segment of L below a countable ordinal, this concept can be arithmetized,
which will allow us to decide ∈-formulas relativized to Jα+2 when a Jα-oracle is given,
where Jα is the minimal ZF−-model as above.

We start by assigning natural numbers to the constituting elements of names; having
a surjection s as in the introduction at our disposal, we let 3n code s(n). Sω(α+i)+ j , j ∈
ω, i ∈ {0, 1} is represented by 3 j + i + 1. Names can now be coded by a suitable
application of the pairing function p:
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Definition 7 A name is any number generated in the following way:

(i) p(2n, i) is a name for all i, n ∈ ω
(ii) if a and b are names, i ∈ ω, then so is p(2i + 1, p(a, b)).

Thus a name is an ordered pair 〈a, b〉 of naturals; the parity of the first element shows
whether the name is flat, i.e., an Sβ or an element of Jγ if a is even or whether and
which Gödel function was applied. We explain the coding by giving the interpretation
function I :

Definition 8 The interpretation function I is defined as follows:

(i) if i = 3k + j, j ∈ {1, 2}, then I (p(2n, i)) = Sω(γ+ j−1)+k

(ii) otherwise, I (p(2n, 3i)) = s(i)
(iii) if j = 10k + l, 0 ≤ l < 10, then I (p(2 j + 1, p(a, b))) = Fl+1(I (a), I (b))

Obviously, we assign multiple (and in fact infinitely many) names to each interpreta-
tion. However, this has a technically advantageous consequence:

Proposition 3 Every natural number is a name.

This will allow us to search through Jγ+2 by searching through ω without any further
checks.

The idea of a final constituent of a name is given by the following formal notion:

Definition 9 The argument set A(n) of a name n is given by the following recursive
rules:

(i) A(p(2n, i)) = {i}
(ii) A(p(2k + 1, p(a, b))) = A(a) ∪ A(b)

The following is the main tool for inductive arguments and definitions on names. For
rational q, �q� denotes the smallest integer n such that n ≥ q.

Definition 10 Let a be a name. Then ps(a), the pseudostage of a, is defined as follows:

(i) for i = 3k + j, j ∈ {1, 2}, ps(p(2n, i)) = ω(γ + j − 1)+ 3k
(ii) otherwise, ps(p(2n, i)) = 0

(iii) if A(a), A(b) ⊆ {3i |i ∈ ω}, then ps(p(2k + 1, p(a, b)))=max{ps(a), ps(b)}+1
(iv) if k = 10n + 1 for some n ∈ ω ps(p(2k + 1, p(a, b))) = max{ps(a), ps(b)} + 1
(v) for k = 10n + j, n ∈ ω, j ∈ {4, 5, 6}, if max{ps(a), ps(b)} = ω(γ + j)+ t , let

ps(p(2k + 1, p(a, b))) = ω(γ + j)+ 3� t
3� + 1

(vi) for k = 10n+ j, n ∈ ω, j ∈ {2, 3, 7, 8, 9, 0}, if max{ps(a), ps(b)} = ω(γ+ j)+t ,
let ps(p(2k + 1, p(a, b))) = ω(γ + j)+ 3� t

3� + 2

We call a name m minimal if any name n with I (n) = I (m) satisfies ps(n) ≥ ps(m).
In our arithmetization, the ordinal ω(γ + j)+ i will be coded by p( j, i). Accord-

ingly, we slightly abuse our notation by viewing ps as a function taking naturals to
naturals rather than to ordinals. If we talk about relations between pseudostages like<,
we nevertheless mean the ordinals, and similarly for ps(a)+2 etc. Since the definition
consists of easy recursive rules, which can be implemented even on a classical (finite)
register machine, we note:
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Proposition 4 The pseudostage of a name can be computed by an ITRM-program in
finite time.

From now on, if a and b are names, we write a∈̃b and a=̃b instead of I (a) ∈ I (b)
and I (a) = I (b). Furthermore, we write a <ps b for ps(a) < ps(b), similarly for
>,= etc. If β is an ordinal a <ps β means ps(a) < β. Sometimes we will write
a <ps+i b, i ∈ ω to indicate that ps(a)+ i < ps(b).

The following lemma is the main reason for the usefulness of the pseudostage. To
enhance readability, we will e.g. write 〈8, x, y〉 instead of p(8, p(x, y)).

Lemma 7 Suppose a and b are names such that I (a) ∈ I (b). Then:

(i) If ps(b) > 0 then there is a name c such that ps(c) < ps(b) and I (c) = I (a).
Thus, minimal names of elements of sets with names of ps > 0 have a strictly
smaller pseudostage.

(ii) If ps(b) = 0 then there is a name c such that ps(c) = 0 and I (c) = I (a).

Proof (a) Easy induction on the pseudostage. To give a feeling for the kind of argu-
ment used here, we prove this for names of the form 〈8, x, y〉. In the following, all
names are chosen minimal. Consider z ∈ 〈8, x, y〉, so that z is of the form 〈v, u〉,
where 〈u, v〉 ∈ x . By definition of ps, we have x <ps+1 〈8, x, y〉; now, by induction,
〈u, v〉 <ps x, {u, v} <ps 〈u, v〉, u <ps {u, v}, v <ps {u, v}. Since pairing (i.e. appli-
cation of F1) increases the pseudostage by 1, we have 〈v, u〉 <ps x <ps 〈8, x, y〉.
(b) By transitivity of Jγ . 
�

We will now define a ∈ b and a = b by induction on a partial order � of the triples
〈σ, a, b〉, where σ ∈ {∈,=}, a, b names without using the interpretation function. This
will allow a purely syntactical decision procedure for atomic formulas by inspection
of the names.

Definition 11 For triples as mentioned above, let ma = max{ps(a1), ps(a2)},mb =
max{ps(b1), ps(b2)}. Then define 〈σ1, a1, a2〉 � 〈σ2, b1, b2〉 iff one of the following
holds:

(i) ma < mb

(ii) ma = mb, and left triple satisfies that σ1 is ∈ and a1 <ps a2, while the analogous
proposition for the right triple is not true

(iii) ma = mb and the left, but not the right triple satisfies that σ1is =.

Thus, given that we already know what ∈ and = mean for names with ps < β, we
first explain a ∈ b for ps(a) < β. Now, since elements of sets have names of smaller
pseudostages than the sets themselves, we can define a = b for names with ps ≤ β

and then also a ∈ b for β = ps(a) > ps(b), since this is only possible if there is a
name c with ps(c) < β and c = a.

This approach leads to a meaningful definition: Since the maximum of the pseudo-
stages cannot increase when going down in �, and since we can go down at most
two steps while preserving the maximum and these maxima are ordinals, we have the
following:
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Proposition 5 � is well-founded.

We will now give a formal version of the above sketch by induction on �.

Definition 12 For the sake of brevity, we abbreviate names and write e.g. a∈̃{x, y},
where we really mean a∈̃〈1, x, y〉, and similar for ordered pairs and triples. The
replacement function η assigns (codes of) formulas to (codes of) formulas as follows:

(i) a=̃b �−→ ∀x <ps max{1, ps(a), ps(b)}(x∈̃a ↔ x∈̃b)
(ii) if ps(a) = ps(b) = 0, then (a∈̃b) �−→ true, if p(a, b) ∈ o, false, otherwise

(iii) if ps(a) > 0, ps(a), ps(b) ∈ ω, then (a∈̃b) �−→ (∃a0, b0 =ps 0(a0=̃a ∧b0=̃b ∧
a0∈̃b0))

If ps(b) = β �∈ ω, ps(a) < β:

(i) (a∈̃b = 〈1, x, y〉) �−→ (a=̃x ∨ a=̃y)
(ii) (a∈̃b = 〈2, x, y〉) �−→ (∃t1 <ps x∃t2 <ps y(t1∈̃x ∧ t2∈̃y ∧ 〈t1, t2〉=̃a))

(iii) (a∈̃b = 〈3, x, y〉) �−→ (∃t1 <ps x∃t2 <ps y(t1∈̃x ∧ t2∈̃y∧〈t1, t2〉=̃a∧ t1∈̃t2))
(iv) a∈̃b = 〈4, x, y〉 �−→ a∈̃x ∧ a /̃∈y
(v) a∈̃b = 〈5, x, y〉 �−→ a∈̃x ∧ a∈̃y

(vi) a∈̃b = 〈6, x, y〉 �−→ ∃z <ps x(z∈̃x ∧ a∈̃z)
(vii) a∈̃b = 〈7, x, y〉 �−→ ∃u, v <ps+3 x∃z <ps x(z=̃〈u, v〉 ∧ a=̃u)

(viii) a∈̃b = 〈8, x, y〉 �−→ ∃z <ps x∃u, v <ps+1 z(z=̃〈u, v〉 ∧ a=̃〈v, u〉 ∧ z∈̃x)
(ix) a∈̃b = 〈9, x, y〉 �−→ ∃z <ps x∃u <ps+1 z∃v,w <ps+3 z(z=̃〈u, w, v〉 ∧ z∈̃x ∧

a=̃〈u, v, w〉)
(x) a∈̃b = 〈10, x, y〉 �−→ ∃z <ps x∃v <ps+1 z∃w, u <ps+3 z(z=̃〈v,w, u〉∧z∈̃x∧

a=̃〈u, v, w〉)
(xi) b is an S-stage: j ∈ {1, 2}, a∈̃b = p(2n, 3k + j) �−→ ∃c ≤ps a(c=̃a∧c <ps b)

If ps(α) ≥ ps(β):
a∈̃b �−→ ∃c <ps b(a=̃c ∧ c∈̃b)

If 0 = ps(a) < ps(b) ∈ ω then the above almost works. Just replace each<ps x by
<ps max{1, ps(x)} and terms like 〈u, v〉 by their definition (so if, for example, {u, v}
appears, replace it by a new variable c and add the condition ∀x <ps max{1, ps(c)}(x ∈
c ↔ x = u ∨ x = v); similarly for ordered pairs and triples.)

This function produces for every triple 〈s, x, y〉, where s is ∈̃ or =̃, an equivalent
formula which is only based on �-smaller atomic formulas. This procedure can be
implemented on an ITRM.

For this, an arithmetization of the appearing formulas is needed: So set a(x∈̃y) =
5p(x, y), a(x=̃y) = 5p(x, y) + 1, a(φ ∧ ψ) = 5p(a(φ), a(ψ)) + 2, a(¬φ) =
5a(φ) + 3, a(∃tiψ) = 5p(p(i, a(ψ)) + 4. A formula of the form ∃ti <ps+ jφ is
viewed as ∃ti (ps(ti ) + j < ps(x) ∧ φ in this respect; this will, in connection with
the fact that the implementation considers conjunctions from left to right, lead to the
termination of the algorithm. For the sake of uniformity, we introduce the symbol �
and write unbounded quantifiers like ∃xφ as ∃x <ps �φ. We now describe a stack
algorithm for deciding ∈-formulas in Jγ+2.

The implementation essentially uses only two registers, one of which contains a
sequence of (codes of) ∈-formulas coded by iterating the pairing function, while the

123



The basic theory of infinite time register machines 271

others holds a status for the most recently processed element of this sequence (true,
false, unknown, represented by 0, 1, 2, respectively). In addition, numerous auxiliary
registers are used for calculating the auxiliary functions. We leave out those details.

For the description, we use sequences of pairs of the form 〈 f1, s1〉 �−→ 〈 f2, s2〉,
where the first element represents the sequence of formulas, the second the status; the
reader will easily convince himself that the described development of the stack contents
can easily be generated by a standard register machine without assigning other values to
the two central registers in between. 〈〉 is the empty sequence, 〈S|e〉, S = 〈s1, . . . , sn〉
denotes the sequence 〈s1, . . . , sn, e〉; φ[x/ i] for i ∈ ω is the formula derived from φ

by replacing every free occurrence of x in φ by i .
Base cases:

〈〈〉, 1〉 : output = true; , 〈〈〉, 0〉 : output = f alse, 〈〈〉, ?〉 : output = true
〈〈S| f alse〉, ?〉 �−→ 〈S, 0〉
〈〈S|true〉, ?〉 �−→ 〈S, 1〉
Atomic formulas, s ∈ {∈,=}:
〈〈S|s(x, y)〉, ?〉 �−→ 〈〈S|η(s(x, y))〉, ?〉 (where η is the replacement function defined
above; we assume that the formula on the right hand side is rewritten in such a way
that in contains only ∃,¬ and ∧ as logical symbols.)
Conjunction:
〈〈S|φ ∧ ψ〉, ?〉 �−→ 〈〈〈S|φ ∧ ψ〉|φ〉, ?〉
〈〈S|φ ∧ ψ〉, 0〉 �−→ 〈S, 0〉
〈〈S|φ ∧ ψ〉, 1〉 �−→ 〈〈S|ψ〉, ?〉
Negation:
〈〈S|¬φ〉, ?〉 �−→ 〈〈〈S|¬〉|ψ〉, ?〉
〈〈S|¬〉, 0〉 �−→ 〈S, 1〉
〈〈S|¬〉, 1〉 �−→ 〈S, 0〉
Existential quantifier:
〈〈S|∃xφ〉, ?〉 �−→ 〈〈〈S|〈∃xφ, 0〉〉|φ[x/0]〉, ?〉
〈〈S|〈∃xφ, k〉〉, 1〉 �−→ 〈S, 1〉
〈〈S|〈∃xφ, k〉〉, 0〉 �−→ 〈S, 0〉 �−→
〈〈〈S|〈∃xφ, k + 1〉〉|φ[x/k + 1]〉, ?〉
We will now show that this algorithm, given the input 〈〈φ〉, ?〉, φ an ∈-formula without
free variables, always terminates and returns the truth value of Jα+2 |� φ. We do this
by induction on a well-order on these formulas.

In the following, at(φ) is the set of atomic subformulas of φ, written in the form
〈∈, x, y〉 etc. First, write φ in prenex normal form and bound all unbounded quantifiers
with the help of the symbol � as introduced above.

For β = ωγ + j , we set β− i = ωγ + ( j − i) for i ≤ j and otherwise β− i = ωγ .

Definition 13 For such a formula ψ we define pt(ψ), the potential of ψ , as follows:

(i) pt(∃x <ps+i yφ) = � − max{ψ[x/ps(y)− i]|ψ ∈ at(φ)}
(ii) pt(¬φ) = pt(φ)

(iii) pt(φ ∧ ψ) = � − max{pt(φ), pt(ψ)}
Intuitively, pt(ψ) is an upper bound for the complexity of an atomic formula that has to
be decided in order to evaluateψ . For our purposes, a slightly finer order is necessary:
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Definition 14 If φ and ψ are formulas as described above, we let φ <F ψ iff one of
the following cases occurs:

(i) pt(φ) � pt(ψ)
(ii) pt(φ) and pt(ψ) are incomparable in � and φ is a proper subformula of ψ .

Proposition 6 <F is a well-order on formulas of this kind.

By case distinction and the definition of the replacement function:

Lemma 8 Whenever the algorithm puts a new formula φ on the stack on top of the
formula ψ , we have φ <F ψ .

Therefore, finally:

Lemma 9 The algorithm terminates and gives the correct result.

Proof By induction on <F with the help of the last lemma and the last proposition;
observe that the bounding of a quantifier is always processed as the first conjunct by
the way the algorithm treats conjunctions and that the complexity drop is therefore
mirrored by the processing steps. The only interesting case is existential quantifica-
tion: If ∃xφ is true, a witnessing x will be found, the formula will be taken off the
stack, and the status register will be set to 1. If it is false, the seemingly pointless step
in the last line in the description of the algorithm forces the occurrence of a limit state,
in which the formula is off the stack and the status register contains a 0. 
�
Thus, we are now able to decide arbitrary ∈-formulas in Jα+2.

Finally, we have to check the<L -minimality of o. Since in this case, we have o = r
and we know that r ∈ Jα+2, we can do this by finding a name n for o and then checking
for each name u whether I (u) <L r and u codes an ∈ −minimal model of Z F−. We
just gave a procedure for the latter; the well-order <L of the constructible hierarchy
(restricted to Jα+2) can be expressed by an ∈-formula in Jα+2 and thus computed by
the same method. Since there are only countably many names, we will have a way
to test for <L -minimality of a real given in the oracle as soon as we can tell how to
find n such that I (n) = o. Again, since the number of names is countable, it suffices
to be able to test for some given name m and some oracle number z whether or not
I (m) = z.

For this, we first run through all the names until we find one, say y0, such that
¬∃t (t ∈ I (y0)), that is, I (y0) = ∅ and save it in a separate register.

Definition 15 For k ∈ ω the canonical name cn(k) of k is defined as follows:

(1) cn(0) = y0
(2) cn(k + 1) = 〈6, 〈1, cn(k), 〈1, cn(k), cn(k)〉〉, 0〉
Proposition 7 I (cn(k)) = k for k ∈ ω
Proof By definition of y0 for k = 0, else I (cn(k + 1)) is just
∪{I (cn(k)), {I (cn(k)), I (cn(k))}}, which, by induction, equals
∪{k, {k, k}} = ∪{k, {k}} = k ∪ {k} = k + 1. 
�
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cn(k) is obviously easy to compute. So we can check for a name m whether I (m) ∈ ω
simply by checking for any i ∈ ω whether I (m) = I (cn(i)), at the same time finding
the corresponding i in case of success. From this, one constructs an algorithm for
checking I (m) ⊂ ω by running through the names and testing for being an element
of I (m) and of ω.

To find out if z ⊆ I (m), run through ω, checking by oracle call for every k ∈ ω

whether k ∈ z, then, if so, whether c(k) ∈ I (m).
Finally, check I (m) ⊆ z by finding out if I (m) ⊆ ω and, if so, running through the

canonical names of all k ∈ ω and calling the oracle for each cn(k) ∈ m to see if k ∈ z.
This concludes the description of the algorithm, and thus the proof of the lost

melody theorem.
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