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We survey the definition and fundamental properties of the family of short core models,
which extend the core model K of Dodd and Jensen to include a-sequences of measurable
cardinals (o€ On). The theory is applied to various combinatorial principles to get lower
bounds for their consistency strengihs in terms of the existence of sequences of measurable
cardinals. We consider instances of Chang’s conjecture, ‘accessible’ J6nsson cardinals, the free
subset property for small cardinals, a canonization property of w,,, and a non-closure property
of elementary embeddings of the universe. In some cases, equiconsistencies are obtained.

0. Introduction

A major theme in axiomatic set theory is the ranking of consistency strengths
of combinatorial principles by the linear scale of large cardinal axioms. Typically,
a forcing construction is employed to extend a model of a large cardinal property
to a model of the combinatorial property considered, whereas, given the
principle, one seeks for large cardinals within inner models. Constructible models
of set theory— Godel’s model L of constructible sets, Silver’s L* for a
measurable cardinal [18], Mitchell’s LF for a coherent sequence of measures
[11, 12], the core model K of Dodd and Jensen [5] and its generalizations —
provide natural inner models for large cardinals up to high orders of measurabil-
ity. If an ordinal is, say, measurable in some inner model, then it is measurable
within some Silver model L*. Thus in applications of inner models it is often
advantageous to restrict to well-structured ‘L-like’ models right away.

In my doctoral dissertation [9] I studied the family of short core models which,
roughly speaking, approximate inner models with @ measurable cardinals for
some ordinal a. The covering and condensation properties of short core models
were applied to obtain information on the consistency strengths of certain
instances of Chang’s conjecture, the J6nsson property and the free subset
property. The family of short core models which forms just a smali subfamily of
the general core models for sequences of measures as studied by Mitchell [13, 14]
was chosen for several reasons: Since in these models every ordinal carries at
most one measure the generalized fine structure theory of Dodd [4] can be
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applied (if there were measurable cardinals of Mitchell order =w, a much more
complicated fine structure is necessary [6]). Short core models have long stretches
of ordinals without measures where the models behave very L-like. Short core
models satisfy covering theorems with Prikry sequences which are known to fail
for large core models. Apart from results and techniques which undoubtedly will
be generalized to higher core models we also obtained some equiconsistencies of
the strength “there are o measurable cardinals”.

The aim of the present article is to give an overview of short core model theory
and, taking fundamental properties of mice and short core models for granted, to
prove our applications in detail. The theory of my thesis has been improved and I
also include results on canonical form properties (Shelah [17]) and on a
non-closure property of elementary embeddings as considered by Sureson [20].
Section 1 informally shows how core models canonically arise if one wants to
prove the existence of inner models with (many) measurable cardinals. We sketch
how such models might be obtained from strong combinatorial principles. Section
2 gives an outline of the coarse (=non-fine-structural) theory of mice. It is
possible to a certain extent—and will be done in this paper—to define and use
short core models without any explicit fine structure, the fine-structural details
being nicely encapsulated within the fundamental theorems on short core models.
These theorems are presented in Section 3. The remaining sections contain the
applications of our theory which we indicate here by typical instances (the
combinatorial principles will be defined later):

Theorem 1. The Chang properiy (ws, 0;)>, (@2, ®,) implies that for every
a € On there is an inner model with @ measurable cardinals (4.3, 2.14).

‘Theorem 2. If A is a Jonsson cardinal such that A= wg, E<A, or such that A is
regular Sut not weakly hyper-Mahlo, then for every a € On there is an inner model
with « measurable cardinals (5.2, 5.4, 2.14).

Theorem 3. The theories “ZFC + there is a Jonsson cardinal of cofinality «,” and
“ZFC + there are w, measurable cardinals” are equiconsistent (5.7).

Theorem 4. The free subset property Fr,(0..,, ©,) is equiconsistent to “There are
w, measurable cardinals (6.7).

Theorem S. Assume that (i) |n<w) has a (3|n<w)-canonical form for
i-times

{(2,2,..., 3)¥:i<w}, where the sequence (wyg,)|n<w) has supremum w,,.

Then for every a € On there is an inner model with « measurable cardinals

(7.2, 2.14).

Theorem 6. If there is an elementary embedding j:V — M, with critical point x
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such that °M < M and "M ¢ M, then for every « € On there is an inner model with
a measurable cardinals (8.1, 2.14).

The combinatorial principles considered could be weakened while still yielding
the same consequences. In Theorem. 1, e.g., a weak Chang property as defined in
[7] would give the same conclusion.

This article requires some acquaintance with constructibility in terms of the
relativized J,-hierarchy and of iterated ultrapowers. Standard set-theoretical
notation will be used throughout.

1. Motivation

Assume we are to define an inner model with & measurable cardinals, that is, «
should be the ordertype of the set of measurable cardinals. The Mitchell models
LT are constructible models of this kind, and we have to find a sequence F of
filters such that:

(*) LFE“F is a sequence of measures on measurable cardinals and the
ordertype of measurables is a”.

The subsequent informal argument will provide us with a ‘local’ criterion for (*)
to hold. It will allow the construction of F by recursion on the ordinals in the
domain of F (we stipulate that dom(F) = On and F(k) is a filter on x for every
k € dom(F)).

Let us analyse the situation where (*) fails. To facilitate our reasoning we
assume that F is countably complete (i.c., for every x e dom(F) and {X;|i<
0} cF(x):N{X;|i<w}+#0), and that & <mindom(F). Since (*) is a IT;-
condition there will be a § € On such that:

Js[F]E “F is a sequence of measures”, but
Jg+1[F)E“F is not a sequence of measures”.

In Jp4[F] there is a k edom(F) and a ¢ c x which codes a counterexample to
F(x) being a normal measure on k (¢ could be a non-measured subset of k, or it
could code a regressive function which is not constant almost everywhere). in
some weak sense, ¢ has to be definable over M: = Jg[F] (using F), but to avoid
fice-structural arguments we assume here that ¢ is X, over M. We shall locate ¢
within a naturally defined constructible model.

Let U:= F[k. A U-mouse is a structure N =J,[G, U] such that:

(i) NE“G is a sequence of measures on ordinals > sup(U)”.

(ii) optdom(U U G)<mindom(U) if dom(U)## and otp(dom(G)Nn)<
min dom(G) for all 5 < wy if dom(U) =0.

(iii) N is iterable by the measures in G in terms of iterated ultrapowers.
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The low part of the U-mouse N is defined to be Ip(N):= HY, if A=
min(dom(G)) exists, and Ip(N): = N otherwise.

K[U):= U{lp(N) | N is a U-mouse} is an inner model of ZFC. In case
K[U)E“U is a sequence of measures”, K[U] is called a core model. .
Now, by the countable completeness of F, M =J;[F\U, U] is a U-mouse.
Iterate M by all the measures in F\ U u-many times for u a sufficiently big regular
cardinal; let N =J,[G, U] be this iterate. Indiscernibility arguments show that N
can be extended to a U-mouse N*=J,,,[G*, U], G* o G. Since the iteration
maps are Z-elementary, ¢ is Z,(N)cN*. So celp(N*)cK[U]. (If the
definition of ¢ over M is more involved than Z,, M has to be iterated in a more
elaborate, fine-structure preserving way.) So if F is not a sequence of measures in
LF, then F(x) does not measure P(x) N K|F |x] for some x. This implies the

following criterion for a countably complete filter sequence to satisfy (*):

() Assume that for all x edom(F), F(x) is a normal measure on P(x)N
K[F|x]. Then LT E*F is a sequence of measures”.

This can be extended to:

(1) Assume that for all x edom(F), F(k) is a normal measure on P(x)N
K|F|x]. Then K[F]E“F is a sequence of measures”. So K[F] is a core
model, and all the models K[F | k] are core models, too.

(11) is useful for constructing a good sequence F by recursion on dom(F).

We shall now briefly describe a strategy to show that a strong combinatorial
principle P implies the existence of an inner model with a measurable cardinals.
K it is possible to apply ({f) « times we are done of course. Otherwise,
application of (1f) leads to a maximal core model K[U] where the measure
sequence U cannot be properly end-extended. Every x € K[U] is in the low part
of some U-mouse M, the low part consisting exactly of those elements of M
which are not altered by iterations. M may be iterated up to a U-mouse
M* =J5[C, U] where C is a sequence of closed unbounded filters on regular
cardinals. So any set x € K[U] and indeed any subset of K[U] may be considered
within some M* with a rather simple filter sequence. It then becomes conceivable
that K[U] is an L-like inner model.

The maximality of K[U] implies that K[U] ‘covers’ the universe to a degree,
which imposes traces of constructibility upon the set-theoretical universe. If our
principle P now is sufficiently ‘non-constractible’ this !eads to a contradiction, and
the definition of filters according to (1) must be possible « times as required.

This vague plan will be realized in various ways in the second half of this paper.

2. Iterable premice

We work with the relativized J-hierarchy J,[A], @ € On, where the A are used
as predicates in the recursive definition of the hierarchy. J,[A] will denote the set
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Wa[A]| as well as the e -structure (|L[A]l, € | V.[A]l, A [VLIA]l). If M =J,[A],
then <,, denotes the canonical well-ordering of M. For details the reader is
referred to Devlin [2].

A class D is simple if (i) every x € D is of the form x = (k, a) where x € On
and a c K, and (ji) if (x, @) € D then (k, k) € D. A filter sequence as in Section 1
can be viewed as a simple predicate. For D simple define: dom(D):=
{x|(x,x)eD}, D(x):={a|(x,a)eD} for xkedom(D), and D|X:=
{{x,a)eD|xeX}.

U is a measure on k if U is a non-principal, x-complete, normal ultrafilter on k.
F is a sequence of measures if F is simple and F(x) is a measure on k for every
k e dom(F).

2.1. Definition. Let D be simple. M =J,[F, D] is a premouse over D provided:
(i) Fis simple.
(ii) sup dom(D) < min dom{F).
(iii) ME“F is a sequence of measures™.
Then the set of measurables in M is meas(M) : = dom(F N M).
The low part of M is: Ip(M) : = HY, if x = min meas(M) exists, and Ip(M) =M
otherwise (H, is the class of sets of hereditary cardinality <x).

It is easy to see that every x € meas(M) is regular within M.

2.2. Definition. Let M =J,[F, D] be a premouse over D and k € meas(M).
z:M— M’ is called the idtrapower of M at k if:
(i) M' is transitive.
(ii) mis 2;-elementary.
(i) M’ ={n(f)(x) |f € M, f:x— M}.
(iv) For xe M, x c k: x € F(x) © k € n(x).

There is at most one ultrapower of M at k and if it exists it can be obtained by
the usual factoring of (*M) N M modulo F(x). M' will be a premouse over D
again, and so the operation may be iterated:

2.3. Definition. Let M =J,[F, D] be a premouse over D. Let I =(x;|i<0) be
an index, i.e., some sequence of ordinals. Then a system

M, = ((M; | i< @), (m;|i<j<8))

is called the iterated ultrapower of M by I if:
(i) Mo=M.
(i) mj:M;—>M;, m;=id [ M, my = mpom; (i<j<k=<8).
(iii) For each limit ordinal k<8, (M,, (m; |i=<k)) is the transitive direct
limit of ((M; |i<k), (m;|i<j<k)).
(iv) M; is a premouse over D (i <0).
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(v) If i < 0 and x; e meas(M;), then &;;,,: M;— M,,, is the ultrapower of M;
at x;.
(vi) If i < 0 and x; ¢ meas(M;), then x;;,, =id [ M; and M;,, = M,.
We shall write M; for M, and 5x;: M— M; for mgo: M —> My. It(M, 1) is called
an iteration =k if ;= Kk for all i < 6.

2.4. Lemma. Let It(M, 1) be an iteration =k of M by 1. Then:
(i) m;:M— M, is Z,-elementary.
(ii) HY=H and =, | H¥ =id | H¥ (in particular, ;| x =id | x).
(iii) P(x)NM =P(x) N M,.

2.5. Definition. A premouse M over D is iterable if It(M, I) exists for all
indices 1.

We are now giving a few criteria for M to be iterable. Recall that a simple
predicate F is countably complete if for every x e dom(F) and {X, |n<w}c
F(x):N{X,|n<o}+6.

2.6. Theorem. Let M =J,[F, D] be a premouse over D.

(i) K F is countably complete, then M is iterable.

(ii) Assume that M is iterable and that n:M— M is 3,-elementary, M =
Js[F, D). Then M is an iterable premouse over D.

For (ii), one shows that every iterate of M can be embedded canonically in
some iterate of M so that x, the iteration maps, and the embeddings commute.

2.7. Theorem. Let O be a transitive model of a sufficiently large finite part of ZFC
and assume w, c Q. Then iterable premice are absalute for Q, i.e., if D,MeQ
then: M is an iterable premouse over D iff Q E“M is an iterable premouse over
D”.

2.8. Theorem. Let O be a t.. =:vive model of a sufficiently large part of ZFC, and
let iterable premice be absowite for Q. Let j:Q—Q be elementary, and QO
transitive. Then iterable premice are absolute for Q, too

The main tool in working with iterable premice is to ‘compare’ different ones
by iterating them up tc - 2mbers of the same relativized J-hierarchy. This
requires a coherence condition for the measure sequences to hold (Mitchell
[11, 12]), and we shall ensure this condition by studying prcmice whose sequence
of measurables is ‘short’:

2.9. Definition. Let M =J,[F, D] be a premouse over D. M is called shert if
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cither (i) D=0 and opt(meas(M) N y) <min meas(M) for all y<wa or (ii)
D #@ and otp meas(M) < min dom(D).

A D-premouse is a short premouse over D, and a D-mouse is an iterable short
premouse over D.

The shortness of a D-mouse M implies that for any iteration &x;: M— M; we
have meas(M;) =} meas(M); no ‘new’ measurables come up in the iteration
which greatly simplifies the structural analysis of iterates and many ‘iterate and
compare’-arguments.

In the proof of the following theorem, both D-mice are iterated up to a simple
predicate C consisting of closed unbounded filters.

2.10. Theorem. Let M, N be D-mice. Then there are iterations 7;:M— M,,
7y : N— N, such that M;, N, are of the form M, =J,[C, D], N; =Js[C, D] for some
simple predicate C. Assume further that m;-:M—> M., y.:N—> N,. is another
pair of iterations to a common predicate C*:M,.=J .[C*, D}, N,;.=175.[C*, D}.
Then: y <94 iff y* < é6*.

2.11. Definition. For D-mice M, N set M <[, N iff there are iterations x;: M —
M;, &y:N— N, such that M, =J,[C, D], N;=Js[C, D], C is simple, and y <.
Define M~ Niff M<j N and N<p M.

Using 2.10, we get:

2.12. Theorem. (i) ~, is an equivalence relation on the class of D-mice.

(ii) <} induces a well-ordering of the ~p-equivalence classes.

(iii) If M, N are D-mice and 6:M—> N is =,-elementary then M<p N.

(iv) If M~p N are D-mice, M =J,[F, D], N =J4[G, D}, and if (F[Y)NMN
N=(G[y)NMNN, then P(Y)NM = P(y) NN (y < wa, of).

The set 0* c @ defined by Solovay [19] can be viewed as the smallest mouse
transcending all the J,, a € On (the existence of 0* is equivalent to the existence
of an iterable premouse J, . [UjE“U is a measure on k”’). Likewise, one can
define a real number 0°" c w coding the smallest iterable premouse over @ which
is not short. Analogous to the Jensen [3] covering theorem for L which holds
under the assumption “0* does not exist”, we will obtain a covering result
assuming that “0'"® does not exist”. This is no restriction for the intended
applications as demonstrated by Theorem 2.14. There is no need here to exhibit
o'o"¢ explicitely and we define:

2.13. Definition. “0'°"® exists” means that there is an iterable premouse over §
which is not short. “—0'°"2” stands for *“0'"® does not exist”.
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2.14. Theorem. If 0°°® exists, then for every a € On there is an inner model with
a measurable cardinals <a* + w,.

To get this one iterates the non-short iterable premouse at its smallest
measurable until the iterate has =a + 1 measurables. The first & measures will
then be measures in the associated Mitchell model.

3. Short core models

3.1. Definition. Let D be simple such that D=@ or optdom(D)=<min(D).
Define the class K[D] as:

K[D):= U {ip(M) | M is a D-mouse}.
For @ € On set K,[D]): = HX),

Fix K[D] for the moment.

3.2. Theorem. K[D)j is a transitive inner model of ZFC.
D:= DNK[D}eK[D)] and K[D)t“V =K[D]". If a>supdom(D) is an
uncountable cardinal in K[D), then K, [D]t“V = K[D]”.

33. Lemma. Let Q be a transitive model of a sufficiently large finite part of
ZFC+“V =K[D)", where D:= DNQ e Q. Assume dom(D)=dom(D) and
that D-mice are absolute for Q. Then Q c K,[D] where =0nN Q <,

3.4. Theorem. For x, y € K[D) set x<py iff x<py for every D-mouse M where
x, y €lp(M). Then <, is a well-ordering of K[D].

This is due to the fact that <,, is uniformly 2,(M) and hence preserved under
iterations of premice. The following technical result will be used in Section 6:

3.5. Lemma. Let 0:P— Q be an elementary map between transitive models of a
sufficiently large finite part of ZFC. Let Dp:= DN Q € Q. Let QE“V =K[Dy]”
and let Dg-mice be absolute for Q. Assume Dp:= DN P e P, Dy = o(Dp), and
dom(Dp) = dom(Dp) = dom(D). Then x <p o(x) for ail x € P.

3.6. Definition. A model K[U] is called a (short) core model if K[UJE“U is a
sequence of measures™. A set U such that K[U] is a core model is called strong.

Most properties of short core models we have proved need the assumption
“0*"8 does not exist”; this condition will be included as (—0"™) in the statement
cf theorems.
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3.7. Theorem (—0""). Let K[U] be a core model. Then K[Ujt GCH. Other
L-like combinatorial properties also hold in K[U].

3.8. Definition. For strong U, U’ set U< U’ if U= U’ | 1 for some n € On (“U’
is an end-extension of U). Set U<, U’ if U< .U’ and U#U'. A strong U is
maximal if there is no U’ >, U.

3.9. Theorem (—0""8). Let U be strong and y € On. Then:
(i) U|yis strong.
(i) K{U[y)< K[U), indeed K[U | y] = (K[U | y])X!! where U = U N K[U}.
(i) P(y)NK[U [y]=2(y) NK[U]).

3.10. Theorem (—0""%). Let (Us | B <n) be a < -ascending chain of strong sets.
Then \J {U; | B <1} is strong.

Theorem 3.10 readily implies:

3.11. Theorem (—0'°"®). Let U be strong. Then there is a maximal strong
u=uU.

3.12. Lemma (—0'"). Let U be strong. Then for every regular cardinal
n: sep(dom(U)Nn) <.

3.13. Theorem (—0'°"¢), Let U be strong and let j: K[U|— W be elementary, W
transitive. Then W = K[U'] where U’ = j(U N K[U])).

The following results show that under —10'°"8 the family of short core models is
generated from a ungiue cancnical core model by iterated ultrapowers. Iteraied
ultrapowers of inner models are very similar to iterated ultrapowers of premice
(2.3).

3.14. Theorem (—0'"¢). Let K[U), K[U'] be core models with dom(U)=
dom(U"). Then |K[U)| = |K[U'}| and U N K[U}= U’ NK[U].

3.15. Definition. Let U, be the unique maximal strong sequence satisfying (i)
Uen © K[Uca,), and (ii) if x € dom(Uc,,), then k is the minimal ordinal £ such
that there is some U’ >, U,,, [ k with £ = min dom(U’\(Ueay [ k). U.a, is called
the canonical sequence and K[U.,,] is the canonical core model.

3.16. Theorem (—0"°"8). Let K[U] be a core model. Then there is an iteration
7ty: K{Ucan)— K[U'| such that U' =, U.

3.17. Theorem (—0°"%). Let j: K[U...]— K[U)] be elementary. Then j is the
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iteration map of a normal iterated ultrapower of K[U_,,], normal meaning that its
index is a strictly increasing sequence of ordinals.

3.18. Theorem (—0*"%) (Embedding Theorem). Let K[U] be a core model and let
j: K{U]— K[U] be elementary with critical point x >sup dom(U). Assume § is a
regular cardinal >x which is a limit cardinal in K[U). Then there exists a strong
U’ >, U with t: = min dom(U’'\U) satisfying (i) t=K, and (ii) =0 if 6= w,
and T<d if 6 = w,.

The following is a covering theorem for situations away from the measurables
of the canonical sequence:

3.19. Theorem (~0""¢) (Covering Theorem). Let t=w, such that
supdom(U, [t +1)<t. Let X1, card(X) regular, and card(X) < card(z).
Then there exists Z € K[U), X c Z such that card!V=}(Z) < t.

3.20. Theorem (—0"°¢). Let t be an ordinal with sup dom(U,, [ T + 1) < 7. Then:
() If T=w, is a limit ordinal and cof(t) <card(z), then t is singular in
K[Ucal-
(i) If t is a singular cardinal in V, then t is singular in K|[U.,] and
T4 = Kl

Proof. (i) Take X c t cofinally such that card(X) = cof(z) <card(z). By 3.19
there is Z € K{U,)] such that X c Z and card*1V=}{Z) < 7. So t is singular in
K[Ul-

(ii) T is singular in K[U_,,] by (i). Assume 7’: = t+XU=l < £* Then cof(z') <
t=card(t'). We can apply (i) to z' and get ' being singular in K|U,,)}.
Contradiction. O

3.21. Theorem (—0*"®). For all X c € On, card(X) regular there exists Y €
K{Uun] such that XY, and cara(Y) <card(X) + card(y) + @y, where y=
supdom(U,,, [z +1).

Proof. Set U:= U,,. Assume that X c 7 is a counterexample to the theorem
with 7 minimal. Set y:= sup dom(U_, |z +1). Obviously t>y, 7=w,, and
card(X) < card(z). By 3.19, there is Z ¢ K[U] such that X c Z and card¥1V}(Z) <
1. Take <7, f € K[U] so that f: T Z. Set X: = f~'"X. By the minimality of 7
there is Ye K[U], Xc¥c 7 and card(¥Y) <card(X) + card(y) + @,. But then
Y:=f"YeK[U], XcVY, and card(Y)=<card(X)+card(y) + @,. Contradic-
tion. O

To obtain covering properties close to the measure sequence we have to extend

K[U_,,] by a Prikry system (note that the universe could be a Prikry extension of
some core model).



Some applications of short core models 189

3.22. Definition. Let K[U] be a core model. A function C:dom(U)— V is called
a Prikry system for K[U] if:

(i) C(x) ck and otp(C(k)) < w for x € dom(V).

(i) If (x, | x e dom(U)) € K[U] there is a finite set p = On such that

Vk e dom(V) (C(x)\p # 8- (x, € U(x) © C(x)\p cx = K)).
The extension of K[U] by a Prikry system C is denoted by K[U, C].

3.23. Theorem (—0""8) (Covering Theorem with Prikry sytem). fﬂtere is
Prikry system C fo- K|[U.,] such that the following holds: 'Let t>
(card otp dom(U_,,))**. Let X c 7, card(X) regular, and card(X) <card(t). Then
there is a function f :(7)~*—t, f € K[U.,)] and a y <t such that

XcZ:= {f( @)|¥<y, ie€n1),
where C: = |J {C(x) | k e dom(U)}. In particular, cardX!V==Y(Z) < 7.

The next result will be used as a condensation criterion in the two following
sections:

3.24. Theorem. Let D be a simple predicate with otp dom(D) < min(D) or D = .
Let Q be a transitive model of a sufficiently large finite part of ZFC + “V = K[D]”,
D=DNQeQ. Let w,c Q and dom(D) = dom(D). Then:

(i) Let M be a D-mouse, meas(M) 9 and let x = min meas(M) be singular in
Q. Then Ip(M) = Q.

(ii) Let AcQ be a cardinal >sup(D) and assume the following condition is
satisfied:

If Cc A is closed unbeunded in A then there exists a x € C which is singular
in Q.

Then KA[D] c Q.

Proof. (i) Let f € Q, f:v— K cofinal, v<k. D-mice are absolute for Q (2.7),
and we can take a D-mouse N € Q such that f € Ip(N). Let M*, N* be iterates of
M, N respectively such that N*cM* or M*eN*(2.10). If N*cM* then
feP(k)NN=P(k)NN*c P(k)NM*=P(k)NM, contradicting the reg-
ularity of k inside M. Thus M* € N*, and Ip(M)=HY=HY cHY =H}c Q.

(ii) Let x € K;[D]. Take a D-mouse M such that x eip(M) and card(M) <
A (3.2). If meas(M) =0, then M € L,[D] = Q. So assume meas(M)#0. Taking
the ultrapower by the smallest measurable A-times we obtain an iteration
It(M, I)= ((M;|i<A), (m;|i<j<A)) of M by I=(k;|i<A) so that C:=
{k; | i <A} is closed unbounded in A. By the condition, some k;, i <4, is singular
in Q. By (i), xelp(M) clp(M;)cQ. O

In subsequent proofs, condensation arguments will yield embeddings of some
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initial segment of a core model. The final resuit in this section shows how to get

L al *

an emoeuumg of the entire core model from this.

3.25. Theorem (10*%¢), Let K[U)] be a core model. Let A be a cardinal >y: =

sup dom(U), A>wl Ass;me x: KA[UI->W is elementary, W transitive, and n
has critical point « > y. Then there is an elementary embedding 7 : K[U]— K[U]
with critical point a.

- r 3 oM_a v ,.,,_" = — -
Proof. Set G: = {x =& | x € K [U] A @ € n(x)}.

}. By 3.13, it suffices to show ihat
tha mltcannmas ITIA K TIT ) ie nrnl|=&\‘|ntlnﬂ Qn nconnma nat and lag £ £ -~
i ‘“u“w"‘l A2 L] l\lvl’ U’ D WVIITIVUIIWVA. UV GOOUiIIIv IIUL Gl Ve Jo, Jl, <
K[U] be functions such that {v<a|f .;(v)ef.(v)}eGforn<m. Let {f, !u<

o} cK,[U] where K,[U] reflects enough properties of K[U). There is an
elementary map o: Q—»K,,[U] so that Q is tramsitive, aU {f, |n<w}c
range(o), and card(Q) <A. Let U: = UN Q; U € Q. By 2.8, U-mice are absolute
for Q, and by 3.3, @ c K, [U]. Set f,: = 07 (f,), (n <w). Then, for n < w:

{v<ea|feri(V)efa(M} ={v<a|fisi(¥) efi(¥)} €G,

hence

and Jz(ﬁ,+l)(az) € n(f,)(«). Contradiction. [I

4. Chang’s conjecture

4.1. Definition. For k, 4, u, v, 6 cardinais let (x, 1) >, (4, v) be the assertion:

Every structure (A, B, . ..) where card(A) = k, card(B) = A and whose

type has cardinality <0 possesses an elementary substructure
(A, B, ...) such that card(4) = s, card(B) = v.

(x, A)=>,, (1, v) is called Chang’s conjecture for the pairs (k, 1), (i, v).

Chang’s conjecture is presented in Chang-Keisler [1,7.3. ] and various
e

malntinme hatirnam tnotnnmnsne AL MNhanala Ane

ICi1ausns oStWween 1afices O1 Lnangs bﬁlljeC"lii'

. PY. TV P

are discu
4.2. Lemma. (u**, u*)>, (u*, u) implies (u**, "}, (u™, u).

Proof. Assume (u*t, pg‘_*):},,, (u*, p). Consider a structure S={(u**, u*,
(R,|v<pu), {f,| v<pu)) with relations R, and functions f,. We suppose that
the family of f,’s contains a set of Skolem functions for S. Define a function F:

£ FH\<@
\»

)=*—u" by:
FRE)=sup({f.():v<pu}np?)<p™
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By (u**, u*)>, (u*, ) there is X < (u**, u*, F) such that card(X) = u* and
card( XNu*)=p. Set Y:= U {f,(®)|v<p, FeX}. Y<S, card(Y)=pu*, and
YNutecsup(XNu*)<u*. O

4.3. Theorem. Assume (u**, u*)=>, (u*, u), = w,. Then 0°" exists.

Proof. Assume —0"°"8, Let U:= U, [u**. By 3.12,
(1) supdom(U[u*)<pu* and supdom(U)<pu**.

Let H be a transitive structure reflecting enough properties of V with u**, Ue H.
By (u**, p*)=>, (u™, p) there is an X < H such that u*, u**, UeX, (u+1)c
X, card XNpu**)=pu*, and card(X Np*)=pu. Let n: H=X <H, H transitive.
Set a: =z~ (u*), B:=a Y (u*), U:= n~ (V).

(2) XNput is transitive.

Proof. Let yeXNpu*. There is fe X, f:p—y onto. Since pcX, y=f'uc
X. 02

Thus:
(3) a=XnNpu" is the critical point of x.
(4) supdom(U | u*) < a, since supdom(U | u*) €eX.
) B=wu"

Proof. B=p" since card(XNu**)=u*. If >pu*, then x(u*) is a cardinal in
V, and u* = (o) <m(u*) <m(B)=p**. Contradiction. [I(5)

Set Q: = (K[J])”. By (1), sup dom(J) < B.
(6) Ks[O]<=Q.

Proof. We apply 3.24(ii). Let C =B be closed unbounded in 8. Choose x € C
such that x>supdom(U), a, and cof(x)+# cof(a); this is possible since there
are at least two different cofinalities below u*=w,. H Ecof(x)# cof(a),
hence cof(nw(kx)) #cof(w(a)) =pu*. cof(x(x))<u* =card(w(x)) and =x(x)>
sup dom(U). By 3.20(i), K[U] k “z(x) is singular”. Thus Q k “‘k is singular”, as
required. [J(6)

(7) K[O] is a core model.

Proof. K[U]E“U is a sequence of measures”, since Kz[U]lcQ and QF“Uis a
sequence of measures”. [(7)

dom(U | @) =dom(U | ), and so by 3.14, U a=U[a. By (4), there is no
end-extension of U [ @ with new measurables below u* =g, andso U=U[a=
U | B. (6) and scitic absoluteness consideratior:s imply:
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®) Ks[Ul=(X,[O]".

So x| Ks{U]: K,+[U]— K,++[U] is elementary with critical point a. By 3.25
there is & such that

(9 #:K[U[n*}—K[U|pu"]is elementary with critical point a.

(10) u* is a limit cardinal in K[U | u*].

Proof. Assume instead u*=n*KlVI’l pecard®V*) peXnNut=a<pu*
implies K[U [ u*]E“a is singular”, which contradicts (9). 3(10)

By the embedding Theorem 3.18 there exists U’ >, U [ u* with min dom(U’\
(U p*))<u*. But this contradicts the definition of U,,. O

S. ‘Accessible’ Jonsson cardinals

S.. Definitton. A cardinal A is called a Jonsson cardinal provided every
structure of cardinslity A whose type is countable possesses a proper elementary
substructure of cardinality A.

For details on J6asson cardinals see Chang—Keisler [1,7.3.2]. Every J6nsson
cardinal is =, [1, exercise 7.3.15].

§.2. Theorem. Let A be a Jonsson cardinal and A = wg, & <A. Then 0'°"® exists.

Proof. We assume —0'°"¢ and work for a contradiction.

Let U:= U,,. Let H be a transitive structure reflecting enough properties of
the universe with 4, U € H. Since A is J6nsson there is X < H such that A, Ue X,
card(XNA)=A and X~ A+#A. Let a:H=X<H, H transitive. Set U:=
&~} (U). Let a <A be the critical point of x; let a' : = n(a).

1) [aa)NX=4.

(2) a'isregularinV, o' = w,.

Proof. If cof(a') < a, there is a sequence in X converging to ', contradicting
(1). If @<cof(a’) < a’, then cof(a’') € X which again contradicts (1). 0(2)

(3) supdom(Ufa’)<a and dom(U |a’')=dom(U [ a).

Z:= {B<A|HE"B is a cardinal”} is a closed set of ordinals of ordertype
<§ <A. Choose a regular cardinal pu such that W, @, E<p<A. Set u':= n(p).
Let 6: = max(Z N p) <p. Set Q: = (K[U [ u])". supdom(U | u) <pu, by 3.12.

@ Kl[Olul<Q.
Proof. We apply 3.24(ii). Let C cu be closed unbounded in u. Choose x € C
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such that x >supdom(U [ ), 6, and cof(x) # cof(0). H k cof(i) # cof(8), and
cof(r(x)) # cof(w(0)). So cof(nx(x)) <n(0)=card(x(x)), and =a(x)>
supdom(U | u'). By 3.20(i), K[U | u']E“m(x) is singular”, and thus Q E“k is
singular”, as required. [1(4)

(5) U |uis strong.

Proof. K[U [ulE«U [ is a sequence of measures”, since K,[U[p]<Q, and
QU | u is a sequence of measures”. O(5)

Since « is the critical point of &z, dom(U [ &) = dom(U | @). So by 3.14,
6) Ula=Ule
By 3), Ulae=U|«'. Since U is ‘canonical’:
(7 [a, a")Ndom(0)=49.
(8) «' ¢ dom(U), since a ¢ dom(D).
Absoluteness considerations and (4) imply:
9 KJUla]=(K,[0}aD".

The map #x [K,[U|a]):K,[U]a]—> K, [U[a'] is elementary with critical
point a. By 3.25 there is 7 such that:

(10) #:K[U | a]— K[U | o] is elementary with critical point a.
As in 4.3(10),
(11) o' = () is a limit cardinal in X[U | a].

By the embedding Theorem 3.18 there exists a strong predicate U’'>. U [
with min dom(U’\(U | @')) < '. But by (3) and (8) this contradicts the fact that
U is canonical. O

5.3. Theorem (—0'°"8). Let A be a Jonsson cardinal such that one of the following
holds:

(i) o <cof(A)<A.

(ii) A is regular but not weakly hyper-Mahlo.
Then dom(U.,, [ A) is cofinal in A.

A definition of weakly hyper-Mahlo can be found in Drake [8, Ch. 4, §3.6].
The subsequent proof also contains a definition of this notion.

Proof. Set U:= U_,, and assume sup dom(U/[1) <A. By the previous theorem,
A=w,. Hence A is a limit cardinal. Let H be a transitive structure reflecting
enough properties of the universe with A, Ue H. Since A is J6nsson, there is
X<Hsuchthat A, Ue X, card(XNA)=A, and XNA#A Let i:H=X<H,
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transitive. Set J: = (V). Let & <A b the critical point of &; &’ : = x(a). As

in the proof of 5.2 we get:

(1) a'isregularinV, o' = w,.

(2) supdom(U[a’)<a.
Set O : = (KT ' ADMA. sup
wwes % \* 177 T

LA

® Kil0l1co. |
Proof. We apply 3.24(ji). Let C c A be closed unbounded in A.

Case (i): » <cof(d)<A. Then there is a closed unbounded set DcA
consisting of singular cardinals. We may assume that DeX. D:= n~'(D) is
closed unbounded in A. Take x € CN D such that x> sup dom(U [ 2). (k) is a
singular cerdinal >supdom(U [ 1), and by 3.20(ii), K[U]k“n(k) is singular”.
Thus Q k“k is singular”, as required.

Case (ii): A is regular but not weakly hyper-Mahlo. A is weakly inaccessible
since A = @,. Adjoin a suitable set ‘—1’ as a new least element to the ordinals.
For 8 € On define its (weak) Mahlo degree M(B) € [—1, B] by:

M(B)=0iff B is weakly inaccessible;

M(B) =y iff for all & <y the set {n < | M(n)= 5} is stationary in 8, (y >0).

B is weakly Mahlo if M(B)=1. B is weakly Mahlo of kind y if M(B) =y =0. 8
is weakly hyper-Mahlo if M(8) = . Thus 0<M(A)<A.

To every B <A with 0<M(B) <p assign a closed unbounded set Dy c  such
that € D implies § is a limit cardinal and M(8) < M(8). We may assume that
the function (D | <4, 0<M(B) <B) is an element of X.

Let M be defined in H as M is in V:M = (M)". For B<A, 0<M(B)<B set
Dg:= A7 Y(D g)- D is closed unbounded in 8; 8 € Dg—> n(J) is a limit cardinal
and M(3) < M(B).

We assume that the closed unbounded set C = A has min(C) > sup dom(U [ 2).
Do the following construction until the recursion breaks down:

Set Bo:= A, vo:= M(A)<A. If B,, v, are defined, put B,.,:= the @, , st
element of CN D, and ¥,.;: = M(B,.,)-

Claim. Let B,, v, be constructed and assume cuf(B,) > w,_+;, M(B,)=0. Then
ﬁml-l’ Yn+1 exist and COf(ﬁ,,...l) > a))’.+|+l' AISO Yn+1 < Ya-

Proof. Because y,=M(B,)=0, Dy is closed unbounded in B,. cof(B,)>
@y, +1= 0y, and B, =the @, ,,-st element of C N Dy exists. Yns1=M(Bos1) <
M(B,) < Y., and so cof(B,.+1) = 0, 41> @, , 4, O(Claim)

So B, 1 exist. Since ¥, > ¥,+1, the construction breaks down, and by the
claim there must be n=1 such that y,=M(B,)=-1. Set x:= p,. Then
M(n(x))=—1, and n(x) is a singular cardinal >sup dom(U [1). By 3.20(ii),
K[U [ A}k “m(x) is singular”. So Q k“k is singular”, as required. [1(3)
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The proof can now be finished exactly as the proof of 5.2 from 5.2(5) onwards,
taking u:=pu':=4. 0O

As corollaries we get the following results:

5.4. Theorem. If there exists a regular Jonsson cardinal A which is not weakly
hyper-Mahlo, then 0/°"® exists.

Proof. Assume —0'"¢, By 5.3, dom(U, [2) is cofinal in A, which contradicts
312. O

5.5. Theorem. Let A be a Jonsson cardina! with @ < é: = cof(A) <A. Then therc
is an inner model in which the set of measurables <A has ordertype =6.

Proof. If 0'°"8 exists this follows from 2.14. Assume that 0'°"® does not exist, on
the other hand. By 5.3, dom(U_, [2) is cofinal in A, thus otp dom(U,,, [A)=
6. O

Conversely, we have the well-known result of Prikry [15]):

5.5. Theorem. If (Kx;|i<&8) is a strictly increasing sequence of measurable
cardinals where 0 is a limit ordinal <k, then A:= sup{k;|i<é} is a Jonsson
cardinal.

Theorems 5.5 and 5.6 yield a family of equiconsistency results of which we
present just one typical example:

5.7. Theorem. The theories “ZFC + there is a Jonsson cardinal of cofinality w,”
and “ZFC + there are @, measurable cardinals™ are equiconsistent.

6. Free subsets

6.1. Definition. A subset X of a structure S is free in S if Vx € Xx ¢ S[X\{x}];
here S[Y] denotes the substructure of S generated from Y by the functions and
constants of S. For cardinals k, A, p let Fr,(k, 1) be the assertion: Every structure
S with k = S whose iype has cardinality <p possesses a free subset X c k of
cardinality =A.

Fr.,(k, A) stands for: Vu <k Fr,(k, A).

This section extends techniques of [10] where we proved that Fr,(w,, @) is
equiconsistent to “there exists a measurable cardinzi”. The following lemma is
[10,1.1):
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6.2. Lemma. Let A be an infinite cardinal and assume Fr,(x,A). Let S be a
structure with k c S whose type has cardinality <p. Then there is a subset X c k
free in S with monotone enumeration (x; | i <A) such that:

() i<A-o[x, x)NSx:U{x;li<j<A}j=0
(xi" is the smallest cardinal >x;). In particular:
(ii) i<1'-)xi¢8[in{x§|i<i<l}].

6.3. Lemma. Let A, pu be infinite cardinals and let x be the least cardinal such that
Fr_(x. A). Then:
(i) x is a limit cardinal.
(i) Fr . (x, A).
(iii) K is weakiy inaccessible or cof(x) = cof(A).
(v} If p = @, then x = wg,,;.

Proof. Just as Lemma 1.2 of [10}. O

6.4. Theorem (—0*"8). Let x = w;, & <k and Fr_,(x, X), where A is an uncount-
able cardinal. Then dom(U,, | k) is cofinal in k.

Proof. Set U:= U, [ k. Assume that v: = sup dom(U)<k. By 6.3(iv), x is a
limit cardinal and so u: = max(v*', §*, w,)<k.

(1) There is k <k so that Fr,(k, @).

Proof. If there is k < k such that Fr,(k, A) we are done. So assume k is minimal
with Fr, (x, 1). By 6.3(iii), x is singular and cof(k) = cof(A). Take a cardinal A < 4
such that cof(1) #cof(4). By 6.3(iii), there has to be k <k such that Fr,(k, 1).
Then Fr,(k, ). 0O(1)

Fix k& = @; <k such that Fr.(k, o). By the covering theorem 3.21 there exists
E € K[U] such that {w; | i < §} c E c k and card(E) < p. Let Ko[U], 0 > & reflect
sufficiently many properties of K[U]. Let S:= (KG[UL E, (aja<pu))
augmented by a couriable set of Skolem functions for Ky[U]; E and every a<pu
are understood to de constants of S. By 6.2(i), there is a set X c i free in S with
monotone enumeration (x;|i < ®) so that:

@ xxHNSxU{x:|li<j<w}]=96 foralli<ew.

For i< set M;:= S[{x;|i<j<w)}] and let x;: M;=M,, M; transitive. Set
Up:= m(U). Fori<j<wlet n: = m;o 7' : M—> M,.

(3) ucM;, and =@ |p=id.

4) M;e“V=K[U}J’, U=UNM;eM, and U-mice are absolute for M; (the
latter follows from 2.8).
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(5) m; is elementary, &; [ p =id, and ,(U) = U
For i <w set E;: = n(E); n;(E;) = E;. Then 3.5 implies:
(6) E;<yE, forisj<o.

Since <, well-orders K[U] (3.4) there is i < such that E,,,=E;. “x is the
a-th element of E;”, for « <otp(E;) <u, is uniformly definable in M; and M,,,,
and since ;. [u =id:

M Al Ea=id.
Let 6: = m;4(x;) € E; ;. Then:
:41,{0) = mi(x;") > m(x;) = otp(M; N x;) = otp(M; ., N x;)
=otp(M;+1 Nx7') (by (2)) = 7,41(x) = 6,
which contradicts (7). O

6.S. Theorem. Assume Fr,(w,, A), where A is a cardinal with 0, <A< ®,. Then
there is an inner model in which the set of measurables <w, has ordertype =A.

Proof. If 0°"¢ exists the theorem follows by 2.14. So assume —0"". Set k: = w,.
By 6.3, Fr_,(x, A) holds. We shall show that otpdom(U_, [x)=A. By 6.4,
dom(U_,, | ) is cofinal in k, and for regular A this implies otp dom(U_,, [ x) =A.

Now consider the case that A is a singular cardinal. it suffices to show that
otp(Ucan | k) = A’ for every regular cardinal A’ < A. Let A’ < A be regular, 1’ = w,.
Let k' < k be minimal such that Fr,(x’, A'); let ' = w,. Then:

(1) =i<Kk'=o.
() Froo(x',2), by 6.3(i).
(3) cof(x’)=1", by 6.3(iii).
By 6.4, dom(U_,, [ k') is cofinal in x’. Then
otpdom(U,, [ k) =otpdom(U,,, [ k') =cof(x')=A’. O

Conversely, Shelah [17] proves:

6.6. Theorem. Assume GCH. Let (k;|i <A) be a strictly increasing sequence of
measurable cardinals, A = wg, E <A <ky. Let x: = sup{k; |i <A}. Then there is a
generic extension V[G] of V satisfying:

V[G]E“k = w, and Fr,(w,, A)”.

Theorem 6.5 and 6.6 imply a series of equiconsistency results of which we
present one typical example:
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6.7. Theorem. The theories “ZFC + Fr,(®,,, @,)” and “ZFC + there are w,
measurable cardinals™ are equiconsistent.

7. Canonical forms

7.1. Definition. Let the sequence (w.,)|n<®) be strictly increasing with
supremum @,,. By CF(k) we denote the following combinatorial property:

For every sequence (f;|i<®) of functions, f:(w,)*—>2 there exist sets
B, € 04(n)\ Wy (n—-1), card(B,)=3 such that for every i<w, n,<:--<m;<w,
and x,, » xi: y;EBnp e Xy Yo xl!’ )’.5631..-, with H<N<X<)<:--<
X <Y X1<y1<X3<y3;< -+ <x!<y! we have:

[ Y15 X2, Yoo - - <5 Xis Yi) = Fi(X1, Y15 X2, Y25 < 5 Xi, Vi)

Such a sequence (B, |n <) will be called homogeneous for (f.|i<w). The
B.’s can be viewed as segments of a system of indiscernibles for the functions
{f:li <), so that the value of the functions is independent of which pair from a
segment is chosen.

In the language of Shelah [16], who studies strong partiiior:-propertic: ~f @,,
CF(k) is the same as: {@,) | » <) has a (3 | n < @)-canonical form for

{(2,2,...,2)¥|i<w).
i-times

The consistency strengths of (reasonable) canonical form properties for w,, where
just singletons from each segment of indiscernibles are considered correspond to
the existence of one measurable cardinal (see [17] and [10]). So CF(k) is basically
the next stage as far as the strengths of canonical forms are concerned. A model
for CF(k)—indeed for a much stronger canonical form property—was con-
structed by Shelai [16] from a ground model with @ strongly compact cardinals
{with k(n)=(n +5) - n/2 + n + 1). The following theorem shows that high levels
of measurability are indeed necessary for such a construction.

7.2. Theorem. Assume CF(k) for some function k. Then 0/°¢ exists.

Proof. We assume —0'°"¢ and work for a contradiction.

Set k: = @, and U:= U,. Let H be a transitive structure reflecting enough
properties of the universe and let x, Ue H. Let H also possess a countable
collection of Skoiem functions for itself. We assume that the Skolem functions are
suitably encoded into a sequence (f;|i < @) of functions f;: (x)*— 2 to which we
will apply the principle CF{k). Subsequently a homogeneous sequence for H will
mean a homogeneous sequence for (f;|i <w).

We obtain a natural homogeneous sequence (W}, |n<w), W} = {x,, ¥, 2.}
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for H by successive minimal choices of the x,: Let (W} |i<n} be chosen. Let
X, < k be minimal such that there exists a homogeneous sequence (W} |i<n) U
(W;|n<i<w) for H with x,, =min(W,). Then let W} = {x,,, y., z,} be such a
W,. (W, |n <) is clearly homogeneous for H.

Set W,.:= {x,, ya}, (n<w). It is readily seen that | {W, |n<w} is a free
subset of H.

1) [x,x3)NH[x,U W, ,UW,,,U--]=0.

Proof. Assume not; let ye H{x,UW,,,UW,,,U-:‘], x,<sy<x}. There is
feH[x,UW,,,UW,,U--'], f:o,oy+1, where o,=card(x,)<x,, and
hence x,€f'w,cHlx, UW,,;UW,,U---]. Let x,=t(ug, ..., U1, Xns1,
Yn+1s - -+ %, yi) for some H-term ¢, up,...,u—1<x, [=n+1. We may
assume that u, ..., u;_, are successively chosen minimal for this equality to
hold. Hence there are H-terms ¢, . . . , #;_; such that

U= ti(xm Xn+1s Yn+1s <+ » Xps }’l)-

Set u; : = ;(Yn» Xnt1. Yn+15 - - - s X, Y1), for j=0, ..., k—1. Then

— ’ '
Y= t("o» oo s Uk—1Xn41r Ynt1s - - - 5 XDy yl)’

and there must exist some j < k such that u; # u;.

Set x,:= uj, yo:= u;, and z,:= t{(Z,, Xp+15 Yu+1» - - - » X1 Yi)- Then standard
indiscernibility arguments show that x,, y,, z, are pairwise distinct and that
(W3, ..., Wn_y, {xn, Yo 20}, Wiy, Wiy, ... ) is a homogeneous sequence for
H with min({x,, y,, z;}) <x,<x,=min(W,). Contradiction. [1(1)

(2) Let w,<x,<w®,.;. Then w, <x, and supdom(U | w,,,) <x, <y, < @,+1.
p

Proof. We can assume that w, and supdom(U | w,,;) are constants of the
structure H. Then use (1). 0O(2)

Inside K[U], let M*=J,[F, U] e K[U] be some U-mouse such that P(x)e
Ip(M*) and F is countably complete. We can assume that M* is a constant of H.
By 2.6, M: = J[UUF, #] is a §-mouse inside K[U], and by 2.7, M is a #-mouse
in the universe.

For n<w set X,:= HU{W;|hn<i<w}]. For m<n<w:X,<X, and
X,+X, Let =&n,:H,=X, H, transitive. For m<n<o let =x,,:=
alox,:H,—»H,. For n<eo let k,:=x;(x), U,:=a=;'(U), M,:=
J,[U, UE,, 0]: = n, (M), K,: = (K[U,])"™.

B) k., <kKk, form=n<o.

M, is a §-mouse (2.8). x,,,,, | M,,: M,— M,, is an elementary embedding, and so
by 2.12(iii):

4 M,<¢M,, formsn<o.

Let us write <* for <g and ~ for ~,. Since <* is a pre-wellordering (2.12(ii))
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there exists some ny, <o so that:
(5) M,~M, and K,=kK,, forallz=n,

Fix n=ny 50 that 6, <@, <X, <Yp < Op1- Let 5;:= x71(x), ¥i:= x7200),
W.:= {%. %), forn<i<w. Let @;: = x;(w,), fori<w.

Now set X:= H 5, UU{W,|n+1<i<w)}] iet #:H=X, H transitive.
Let &:= &' (x,), U:=a'(U,), K:=(K[O)?, and M:=J{OUF, 0]:=
#-Y(M,). M is a $-mouse (2.8). By (1),

6) %.cX and [&,, @, )NX=0.
Hence:
(7) x,is the critical point of & and i(X,) = @,;.
There is a unique elementary map &:H,.,—> H such that i © & = %,.1,4:

Hn+l Hpeln H,,
N A
H

& is determined by: ax;1,(x;)~ &7'(%;) and #;1,(y) > A7(F), (n+1<i<w).
M, 1:M,,,—> M, #[M:M—M, are elementary embeddings, and so by
2.12(iii) and (5),

8) M~M,.
Since # [ £, =id,
9 (uF)|s,NnMNM,=(U,UE)|x,NMNM,.
By 2.12(iv),
(10) PEI)NK=PE,)NM=PE,)NM,=PF,)NK,.
By (10), and because £, is the critical point of 7 | K: K— K,,:
(11) £, is weakly inaccessible in K.

(12) x, is weakly inaccessible in K,,, and so x,, and y, are weakly inaccessible in

K[U].
(13) cof(x,) = cof(y,.) = @,

Proof. Assume cof(x,)<®,. ®,<x, and supdom(U |®,;)<x, (2). By the
covering property 3.20(i), x,, is singular in K[U], contradicting (12). 0O(13)

(14) Xn ¢ H[wr—l U {yn’ Xn+1s yn+1: .. -}]-

Proof. Assume x, =t(}, Y, Xp+1> Yn+1s - - - » X1, ) for some H-term ¢, # < w,_,,
and I =n + 1. Since cof(x,,) = ,,

xr'z: = sup(xn n {t(v’ Xns Xn+1s Yns1s - - - > Xps }’1) I i" <w —1}) <xn-
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Set
)’:. = S“P()'n n {t(-‘"r yru Xn+1> yn+l’ oo s Xpy yl) ' i” < wr—l}), and
Z,', = S“P(Zn n {t(i’” Zps Xn+1> Ynt1s - - - > ¥y }’1) l v< mr—l})'

Since X, =t(3, Vus Xn+1s Yas1> - - - » X Y1), We obtain x,<x,<y, By simple
indiscernibility arguments, x,, Yy, 2z, are pairwise distinct and
(WS, ..., Wa_y, {x0, Yn» Zn}, Wi, Wiy, .. .) is a homogeneous sequence for
H. This contradicts the minimal choice of x,. (14)

Set X:= H,[@,—1V {Fns Fx+1, Jas1, - - -}] We shall carry out an analysis of X
similar to the preceding one of X. Let #: A =X, H transitive. Let &: = A7'(x,),
O:=a2'(U,), R:=(K[O])?, and M:=2JOUF,0):= 27'(M,). M is a &
mouse (2.8). By (14),

(15) %.¢X.
a16) @, ¢X.

Proof. Assume ®,cX. Take feX, f:®,<7, Then %, ey, =f'®,cX,
contradicting (15). CI(16)

Let a be the critical point of 7.
17) @&,,<a<d, [ood)NX=0, #a)=d

Proof. Assume BeX, a<p<a, Take feX, f:@,_,<>p+1. Then acf+1
=f"®,_, c X. Contradiction. O(17}

In particular,
(18) supdom(U, [ ®,)< a.
As in the discussion of 7:H— H, there is a unique elementary map

6:H,,,— Hsuch that e 6 =7, .

Tneln
Hn+l Hn

N
A

And as before we obtain:

(19) M~M,.

(20) (OURanNnMNM,=(U,NE)[aNMNM,.

(1) P(@)NK=P(a)NK,.

(22) « is weakly inz2ccessible in K.

(23) @, is weakly inaccessibie in K,,, and w, is weakly inaccessible in K[U].

By (12), @} % <%, < @,,, = @}, and since (@)= @,:
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(24) a+ﬁ < a-i-é.

@5 P@)NnK,ck

Proof. Inside R form an iterate M* of M at points = so that min(meas(M*)\ &)
>R =x,>®, Since « is the critical point of & the ultrafilters of M* and M,
agree for all v<&,. M* ~ M ~ M, and by 2.12(iv),

Hd,)NK,=P(@,)NM,=P@)NM*cR.  DO(25)
Set D:= {uc a|ueR A aef(n)). Dis a normal ultrafilter on P(a) N K.
(26) UI(R, D) is well-founded.

Proof. [flo+> #(f)(«) defines a Z,-preserving embedding of Ult(K, D) into
K,. 0(26)
(27) DeH,.
Proof. By (24), a*®<a*?. Since R satisfies the GCH (3.7), there is g€ H,
g:a— P(a) N K onto. Then
D:= {g{v)|v<a A aef{g(v))}
={(z@)V)Nalv<aaaeci(g)(v)}eH, 0O27)
(28) Set K:= (K;[U.])™. Then Ult(K, D) is well-founded.
Proof. By (25), K c K, and U(K, D) is well-founded by (26). [1(28)

This fact holds as well inside H,. Let a*:= x,(a), D*:= x,(D). Since
n,:H,— H is elementary, Ult(K,, [U], D*) is well-founded. By 3.25, there is an
elementary embedding j:K[U | ,]> K[U | ®,] with critical point a*. a*>
sup dom(U | w,) (by (18)), @, is regular and weakly inaccessible in K[U | w,]
(23). By the embedding Theorem 3.18 there is a strong U*>.U [w, with

mindom{U*\a*)<w,. But this is a contradiction io U being the canorical
sequence. [

8. Non-closure of the image model

8.1. Theorem. Assume there is an elementary embedding x:V — M, M transitive
with critical point x such that M c M and “"M ¢ M. Then 0'°"¢ exists.

This strengthens a theorem of Sureson’s [20] who from the same assumption
could show the existence of an inner model with @, measurable cardinals.

Proof. Assume 0% and work for a contradiction. Let U,:= U, U':=
A(Usy), and 7:= x| K{Up). :K[Up)— K[U'] is elementary, and by 3.17, & is
the iteration map of a normal iterated ultrapower of K[Upl. This means that there
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is a strictly increasing index (k; |i <) such that if ((K[U]|i=<¥d), (m;|i<j=
6)) is the corresponding iteration of K[Up] by (k;|i <é), then K{U’] = K[U;]
and 7 = my;. We may of course assume that for every i <, k; is a measurable
cardinal in K[U]}, k; € dom(U;). Then x, = Kk, and since —10'"¢,

(1) otpdom(Up) <k.

The following claim is taken over from Sureson [20] with a slightly different
presentation of the proof:

2 d6=z0.

Proof. Assum: 6 <. Let X:= {a(f)(ko, ..., Ks_1) |f:KpX -+ XKs_1—>V}
2) X=M.

Proof. For every y€On, y=mo(f)(Ko, - .-, Ks—1)=5(f) Ko, - .., Ks—) for
some f € K[Up), f:ko X+ - - X K5_;—> On by the ‘representation properties’ of the
iterated ultrapower K[U;] (compare Definition 2.2(iii)). Hence On c X.

Let z € M. Let z € V, and take g: 8— V, onto. Then n(g): z(8)— V¥, onto;
let z=xn(g){y) for some yeOn. y=.(f)(ko,...,Ks-1) for some f:KoX
<+ XKs_1—V. Define h:kgX-:-XKks_1—=V by: h(xe...,X5-1)=
g(f(xo, . - . , X5-1)) if this is defined, and h(x,, . . . , x5—;) =0 else. Then

z=a@)(x(f)(ko, - - - , Ks—1)) = w(h)(Ko, . . . , K5_1) € X. 02"
2) *"McM.
Proof. Let {x,|a<kx}cM. Choose a sequence (f,|@<K), Ja:KoX---X
Ks_1— V such that x, = n(f,)(ko, . . - , Ks5—1) for a<k. Define F:xoX---X

Ks_1—V by F(xo,...,xs_1)={fu(X0,...,Xs-1)|®<k). For a<k,
(@(F)(xo5 - - - » Ks-))(@) = 7(fa) (Ko, - - - , K5—1) = Xa. SO

(xo | @ <K)=(w(F)(Ko, ..., Ks_1)) [KeM.  DO(2")
But (2”) contradicts the non-closure property of M. 0(2)

Let C be a Prikry system for K[U,,,] which satisfies the covering Theorem 3.23.
Let Co:= U {C(y) |y edom(U,,)}- Set C': = a(C), Co:= 7(Co). By (1), the
ordertype of C, is <k, and we get

(3) Co=a"Cycrange(r).

Set t:=sup{k;|li<w}, X:={k;|i<w}, and D:=CoN1. XeM since
“M c M. In M, apply the covering Theorem 3.23 to X: There is f:(7)~“— 71,
f e€K[U'] and a y <7 such that

(@) Xc{f(m@)|v<vy,neD}

Since the iteration by (x;|i<é) is normal, ?(z) N K[U,]= P?(7) N K[U;]
(compare 2.4(iii)). So f € K[U,]. Choose i<w such that x;>y and fe
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range(f,, ); let f = m,(f). By (4), x;=f(¥, i) for some ¥ <k, jie D. By (3),
D c range(7,,); let i = 7, (fi). Then

K;= J’i-(f)(i “w(ﬁ)) = “im(f ¥, ﬁ» € range(71;,, ).
But since k; is the critical point of x;, this is impossible. [
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