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We survey the definition and fundamental properties of the family of short core models, 
which extend the core modei K of Dodd and Jensen to include a-sequences of measurable 
cardis& (arE On). The theory is applied to various combiiatorial principles to get lower 
bounds for their consistency streng*ti in terms of the existence of sequences of measurable 
cardinals. We consider instances of Chang’s conjecture, ‘accessible’ J&son cardinals, the free 
subset property for small cardinals, a canonixation property of o,, and a non-closure property 
of elementary embeddings of the universe. In some cases, equiconsistencies are obtained. 

0. Inlruduction 

A major theme in axiomatic set theory is the ranking of consistency strengths 
of combiiatorial principles by the linear scale of large cardinal axioms. Typically, 
a forcing construction is employed to extend a model of a large cardinal property 
to a model of the combinatorial property considered, whereas, given the 
principle, one seeks for large cardinals within inner models. ConstmctibZe models 
of set theory- G6del’s model L of constructible sets, Silver’s Lp for a 
measurable cardinal [18], Mitchell’s LF for a coherent sequence of measures 
[11,12], the core model K of Dodd and Jensen [S] and its generalizations- 
provide natural inner models for large cardinals up to high orders of measurabil- 
ity. If an ordinal is, say, measurable in some inner model, then it is measurable 
within some Silver model LY Thus in applications of inner models it is often 
advantageous to restrict to well-structured ‘L-like’ models right away. 

In my doctoral dissertation [9] I studied the family of short core models which, 
roughly speaking, approximate inner models with (Y measurable cardinals for 
some ordinal 1~. The covering and condensation properties of short core models 
were applied to obtain information on the consistency strengths of certain 
instances of Chang’s conjecture, the Mnsson property and the free subset 
property. The family of short core models which forms just a small subfamily of 
the general core models for sequences of measures as studied by Mitchell [13,14] 
was chosen for several reasons: Since in these models every ordinal carries at 
most one measure the generalized fine structure theory of Dodd [4] can be 
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there were measurable card&k of Mitcheil order 30, a much more 
fine structure is necessary [6]). Short core models have long stretches 

measures where the modek behave very Hike. Short core 
covering theorems with Prikry sequences which are known to faii 

for large core modek. Apart from results and techniques which undoubtedly wiil 
be generalized to higher core modek we also obtained some equiconsistenciesof~ 
the strength%ere are omeasurabIe card&k? 

article is to give an overview of short core model theory 
properties of mice and short core modek for granted, to 

in detail. The theory of my thesis has been improved and I 
on canonical form properties (Shelah [17]) and on a 

non&mue property of elementary embeddings as considered by Sureson [20]. 
Section 1 informally shows how core modek canonicaily arise if one wants to 
prove the existence of inner modek with (many) measurable cardinals. We sketch 
how such modek might be obtained from strong combiitorial principles. Section 
2 gives an outline of the coarse (=non&ne-structurai) theory of mice. It is 
possible to a certain extent-and wiii be done in this paper-to define and use 
short core modek without any expiicit fine structure, the fine+tructurai detaik 
being nicely encapsulated within the fundamental theorems on short core modek. 
These theorems are presented in Section 3. The remaining sections contain the 
q@kations of our theory which we indicate here by typical instances (the 
combinatoriai principles wiil be defined later): 

. IfAisa~~~oncrudinols~thrrt1=05,5<A,otsuchthatAis 
not weakly hyper-M&lo, then for every are On there is OIL inner model 

ar measurable m&nt& (S-2,5.4,2.14). 

4. Z%e m subset property Fr&,,: 0,) is equkonsiwat to “There are 
o1 measwabk car&naW9 (6.7). 

5. Amme that (a3~&a<o) has a (3(nCw)-canonid form for 
i-tiale8 

)q:i<o}, wherethesequence (~k&_aCo) hassupremwn 0,. 
every aEOn there is an inner model with a measurable cardinals 

(7.2,2.14). 

is an eleme~ embeddingj:V+ With CfitiiXdpoint K 
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suchtkot”McMand”M~M,thenforeverycuEOnthereisorrinnetmodelwith 
01 measutabk cardinah (8.1,2.14). 

The combinatorial principles considered could be weakened while still yielding 
the same consequences. In Theorem-l, e.g., a weak.Chang property as defined in 
[7] would give the same conclusion. 

This article requires some acquaintance with constructibility in terms of the 
relativized &hierarchy and of iterated ultrapowers. Standard set-theoretical 
notation will be used throughout. 

1. Motivation 

Assume we are to define an inner model with Q! measurable cardinals, that is, a 
should be the ordertype of the set of measurable cardinals. The Mitchell models 
LF are constructible models of this hind, and we have to End a sequence F of 
filters such that: 

(*) LFV‘F is a sequence of measures on measurable cardinals and the 
ordertype of measurables is cy”. 

The subsequent informal argument will provide us with a ‘local’ criterion for ( * ) 
to hold. It will allow the construction of F by recursion on the ordinals in the 
domain of F (we stipulate that dam(F) c On and F(K) is a filter on x for every 
K E dam(F)). 

Let us analyse the situation where (*) fails. To facilitate our reasoning we 
assume that F is countably compfete (i.e., for every K E dam(F) and {Xi 1 i < 

o}cF(K):~{~~I~<w}#~,, and that Q! < min dam(F). Since (* ) is a n,- 
condition there will be a @ E On such that: 

$[F] V‘F is a sequence of measures”, but 

J”+l[F] V‘F is not a sequence of measures”. 

In Jp+IIF] there is a K E dam(F) and a c c K which codes a counterexample to 
F(K) being a normal measure on K (c could be a non-measured subset of K, or it 
could code a regressive function which is not constant almost everywhere). In 
some weak ense, c has to be definable over M: = $[F] (using F), but to avoid 
tie-structural arguments we assume here that c is C, over M. We shall locate c 
within a naturally defined constructible model. 

Let u:= F 1~. A U-mouse is a structure N =J,[G, u] such that: 
(i) N k “G is a sequence of measures on ordinals > 

(ii) opt dom( U U G) s min dom( u) if dom( U) # 0 and otp(dom(G) n 11) C 
min dam(G) for all q c oy if dam(U) = 0. 

(iii) N is iterable by the measures in G in terms of iterated ultrapowers. 
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The &NV pm of the U-mouse N is defined to be lp(N): = Hf, if A= 
min(dom(G)) exists, and lp(N) : = N otherwise. 

qq: = U{lp(N) IN is a U-mousu} is an inner model of ZFC. In case 
K[UlV‘U is a sequence of measurPs~, K[Ul is called a c0~ moclel. 

l%w, by the countable completeness of F, M=JB[F\U, Ul is a U-mouse. 
IterateMbyallthemeasures in F\U JHMIB~ times for p a sufficiently big regular 

;letN=J,[G,Ulbethis Indiscernibiity arguments show that N 
;,[G+, Ul, G+ZB G. Sink the iteration 

X1(N) cN+. So c E lp(N+) c K[U& (If the 
of c over Ad is more in4ved than X3 a M has to be iterated in a more 

e2aborabe, &+@u&re preserving way.) So if F is not a sequence of measures in 
LF, then F(K) does not measure gp(R)nK[Fr~] for some K. This implies the 
f6llowing criterion for a countably complete filter sequence to satisfy (*): 

(t) Assume that for all Sodom, F(K) is a normal measure on !P(K)~) 

K[F ear]. Then LF V‘F is a sequence of measures”. 

lhiscanbeextendedto: 

(w) Assume that for all K ~dom(F), F(K) is a normal measure on UP n 

K[Frlr]. Then aFlk“F is a sequence of measures”. So K[I;] is a core 
model, and all the models K[li /K] are core models, too. 

(it) is us&l f6r constructing a good sequence F by recursion on dam(F). 
We shall now briefly describe a strategy to show that a strong combinatorial 

prin6pk P implies the existence of an inner model with (Y measurable cardinals. 
If it is possl’bie to apply (tt) ar times we are done of course. Othenvise, 
application of (w) leads to a marimal core model Ki[Ul where the measure 
sequence U cannot be properly end-extended. Every x E K[U] is in the low part 
of some U-mouse M, the low part ax&sting exactly of those elements of M 
which are not altered by iterations. N may be iterated up to a U-mouse 
A#* =J&, v] where C is a sequence of closed unbounded filters on regular 
card&k So any set x E K[Ul and indeed any subset of K[Uj may be considered 
within some M* with a rather simple filter sequence. It then becomes conceivable 
that K[Ul is an L-like inner model. 

The maximality of K(q implies that K[q ‘covers’ the universe to a degree, 
which imposes traces of amstructibility upon the set-theoretical universe. If our 
principle P now is sticiently ‘non-constructible’ this leads to a contradiction, and 
the definition of filters according to (tt) must be possible LY times as required. 

This vague plan will be realized in various ways in the second half of this paper. 

We work with the relativized J-hierarchy &[A], Q! E On, where the A are used 
as predicates in the recursive definition of the hierarchy. &[A] will denote the set 
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IJ,[,]I as well as the e -structure (lJ&i]~, e 1 IJo[A]l, A 1 IJo[ii]I). If M =JJA], 
then cM denotes the canonicrrl well-ordering of M. For details the reader is 
referred to Devlin [2]. 

AclassDissimpleif(i)everyx~Disoftheformx=(~,a) whereK&n 
andacK,~d(ii)if(K,u)EDthen(K,K)ED.AfiltersequenceasinSectionl 
can be viewed as a simple predicate. For D simple define: dam(D): = 
[; I(;: IC)DE, D},$w) : = {a 1 (K, a) ED} for K E dam(D), and D 1% = 

Ic,u E KE . 
U is a nteQTure on Iy if U is a non-principal, K-complete, normal ultra6lter on K. 

F is a seqz#e?xe of measure if F is simple and F(K) is a measure on K for every 
K E dam(F). 

2.1. De5ition. Let D be simple. M = J,[F, D] is a premouse over D provided: 
(i) F is simple. 

(ii) sup dam(D) <ruin dam(F). 
(iii) M I= “F is a sequence of measures”. 
Then the set of measuIobles in M is meas : = dom(F n M). 
The low part of M is: Ip(M) : = Hf, if K = min meas exists, and lp(M) = M 

otherwise (& is the class of sets of hereditary cardinaby CK). 

It is easy to see that every K E meas is regular within M. 

2.2. Deli&ion. Let M = J,[F, D] be a premouse over D and K E meas( 
a:M+M’isdledtl~edtrupowerofMat~if: 

(i) M’ is transitive. 
(ii) 3r is &-elementary. 
(iii) M’= {adf)(~) 1 f E M, f x-M}. 
(iv)ForxEM, XCK:XEF(K)-KEI~(X). 

There is at most one ultrapower of M at K and if it exists it can be obtained by 
the usual factoring of (“M) n M modulo F(K). M’ will be a premouse over D 
again, and so the operation may be iterated: 

2.3. Definition. Let M =J,[F, D] be a premouse over D. Let I = ( K~ 1 i C 8) .be 
an index, i.e., some sequence of ordinals. Then a system 

It(M, I) = (( Mi 1 i GO), (zJiSjC0)) 

is called the iterated ultrapower of M by I if: 
(i) &= M. 

(ii) ZuZMi+Mj, lGii=idrMi, 3tik=3dik”lGii(i~j~kde). 
(iii) For each limit’ ordinal k S 8, ( Mk, (nik 1 i S k) ) is the transitive direct 

limitof ((MJiCk), (n&dj<k)). 
(iv) Ml is a premouse over D (i s 0). 



(v) If i < 6 ad Q E meas( then JCi,i+l: Mi* Mi+l is the ultrapower Of Mi 

(vi) If i < 8 md Ki $ mea@Q, then Xi,i+l= id 1 Mi and Mi+l= Mi- 
We shall write M&r & and ~~:M-*M~for 1r,:M4&. It(M,I) is called 

~~SKifKi>,KhdIi<8. 

It(M,I)beonitetorion~KofMbyI. Ilien: 
is 

~H~=id~H~(inpat&uk, x&=idt 
r7 MI. 

. A premouse M over D is i&d& if It(M, I) exists for all 

We are now giving a f&w criteria for M to be iterable. Recall that a simple 
predicate F is coti& comp&te if for every K E dam(F) and {Xn 1 n C (u} c 

F(K): n {xm 1 n c (u) 3% 

For (ii), one shows that every iterate of ti can be embedded canonically in 
some iterate of M so that n, the iteration maps, and the em*beddings commute. 

27. L,etQbeatmwitivemo&lofas@&dylargefinitepattofZFC 
d- m&Q. l7ienitemb~pmnicearea&tw4&tforQ, i.e., ifD,MEQ 
then: M is an i@rabh? pmnouse over D ifl Q VM k (~1 &r&k premouse over 
D”. 

LetQbea&,zY me model of a su#Wntly large part of ZFC, and 
be absoeeote for Q. Let j: &+ Q be elementary, and 0 

tnaidive. l%en iitmabk pm&e are absolute for 0, too. 

The main tool in iterable premice is to ‘compare’ different ones 
by iterating them up tci piI embers of the same relativized J-hierarchy. This 
requires a coherence condition for the measure sequences to hold (Mitchell 
[ll, I2]), and we shall ensure this condition by studying prcmia whose sequence 
of measurabks is ‘short’: 

. Let =J,[F, D] be a premouse over D. is called shdprt if 
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either (i) D =$ and opt(meas(M) n y) <minmeas(M) for all y< mu or (ii) 
D #0 and otp meas s min dam(D). 

A D-pwmouse is a short premouse over D, and a D-mouse is an iterable short 
premouse over D. 

The shortness of a D-mouse M implies that for any iteration zI: M-M” we 
have meas = @ meas( no ‘new’ measurables come up in the iteration 
which greatly simplifies the structural analysis of iterates and many ‘iterate and 
compare’-arguments. 

In the proof of the following theorem, both D-mice are iterated up to a simple 
predicate C consisting of closed unbounded filters. 

2.10. Theorem. Let M, N be D-mice. Then there are iterations nI: M-, M”, 
nJ: N-, NJ such that MI, NJ are of the form MI = J,[C, D], N, = J6[C, D] for some 
simple pmdkate C. Assume further that xIe: M-, Ml., nJm: N-, NJ. is another 
pair of iterations to a common predkate Cz : MI* = +[C*, D], NJ. = J&*, D]. 
Then: ySSiffy*QiP. 

2.11. D&IBWO~~ For D-mice M, N set M-D e* N B there are iterations q: M-, 
MI, zJ: N+ NJ such that MI = J,[C, D], N, = J6[C, D], C is simple, and y s 6. 
DeEneM-DNiffMaENandNsgM. 

Using 2.10, we get: 

2J.2, Theorem. (i) “D is an equivalence relation on. the class of D-mice. 
0 ii <g induces a well-ordering of the -D-equk&ence ckksses. 

(ii) If M, N are D-mice and Q: M-+ N is C,-elementary then MS: N. 
(iv) If M ND N are D-mice, M = J,[F, D], N = JB[G, D], and if (F t y) n M fl 

N=(Gry)nMnN, thenP(y)nM=SP(y)nN(y<otu,@). 

The set On c o defined by Solovay [19] can be viewed as the smallest mouse 
transcending all the J,, Q! E On (the existence of On is equivalent to the existence 
of au iterable premouse J,+,[ U] b “U is a measure on K”). Likewise, one can 
define a real number o’“a c o coding the smallest iterable premouse over 8 which 
is not short. Analogous to the Jensen [3] covering theorem for L which holds 
under the assumption “On does not exist”, we will obtain a covering result 
assuming that r‘O’ong does not exist”. This is no restriction for the intended 
applications as demonstrated by Theorem 2.14. There is no need here to exhibit 
O’O* explicitely and we define: 

2.l3. Definition. “O1ong exists” means that there is an iterable premouse over 8 
which is not short. ‘*dong” stands for YI““@ does not exist”. 
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this one iterates the non-short iterable premouse at its smallest 
until the iterate has aa + 1 measurables. The first a measures will 

in the associated Mitchell model. 

Let D be simple such that D =B or opt dam(D) emin( 

aD]: = U {lp(M) 1 M is a D-mouse}. 

For a E On set KJD] : = HzDl. 

FK K[D] fix the moment. 

l K[DjisatmtsiSvekermo~ofZM3. 
D:= D nK[D] E K[o] and K[D] k“V = K[D]“. If a> sup dam(D) is 2 

UBCVW& umikal in KID], then K,[D] k”V = K[D]“. 

Let Q be a transitive model of a s@cientiy huge finite part of 
whe8e be- .- D~QEQ. Assume dom(n)=dom(D) and 

W 6-n&z w absolute for Q. Then Q c K,[D] where a = On n Q s 00. 

3 For x, y E K[D] set x sDy iff x s,,,, y for every D-mouse M where 
x, y E lp(M). hen SD is a well-or&ring of K[o]. 

ThisisduetothefactthatsMisunifo XI(M) and hence preserved under 
iterations of premicek The following technical result will be used in Section 6: 

Let a:P+Q be an ehentary map between transitive mo&k of a 
likgejinitepcutof ZFC. Let Do:= DnQEQ. Let QI=“V=K[DoP 

and let D~+nice be absohte for Q. Assume Dp: = D n P E P, DQ = a(Dp), and 
dom(DP) = dom(DQ) = dam(D). Then x SD a(x) for aU x E P. 

. A model K[Ul is called a (short) core Model if K[ r/l k “U is a 
of measures”. A set U such that K[q is a core model is called strong. 

properties of short core models we have proved need the assumption 
not exist”; this condition will be included as (e’@) in the statement 
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3.7. Theorem (Q’OW). Let K[U] be a core model. Then K[Uj k CXH. Other 
L-like combinatorial properties also hold in K[U]. 

3s. l For strong U, U’ set U a,U’ifU=U’rI)forSOmetlEOn(“U’ 
is an end-exrerrsion of U”). Set UC, U’ if US, U’ and U + U’. A strong U is 
nukmal if there is no U’ >= U. 

3.9. ‘llmrem (-O’Om). Let U be strong and y E On. Then: 
(i) U / y is strong. 

(ii) K[U 1 y] c K[U], indeed K[U 1 y] = (K[O ry])K’U1 where 6 = U n K[Uj. 
(W P(Y) f-l WJ 1 Yl = P(Y) n WI- 

3.10. ‘pheorera (e). Let (U# I/3 < q) be a +ascending chain of strong sets. 
l%en U {U@ 1 j3 C q} is strong. 

Theorem 3.10 readily implies: 

3.11. Theorem (+I’-). Let U be strong. Then there in a maximal strong 
U’a c u- 

3.l2. Lemma (+I’-). Let U be strong. Then for every reguk cardinal 
q: sup(dom(U) n q) c q. 

3.13. ‘I&eorem (eq). Let U be strong and let j: K[U]+ W be elementary, W 
transitive. T&err W = K[U’] where U’ = j(U n K[U]). 

The following results show that under Id**g the family of short core models is 
generated from a unqiue canonkul core model by iterated ultrapowers. Iterated 
ultrapowers of inner models are very similar to iterated ultrapowers of premice 
(2.3). 

3.14. Theorem (ld”p). Let K(U], K[U’] be core models with dam(U) = 
dom(U’). Then IK[U]l = IK[U’]l and U n K[U] = U’ n K[U& 

3.E. IDefinition. Let Ucan be the unique maximal strong sequence satisfying (i) 
UW c K[C/,], and (ii) if K E dom(U,), then K is the minimal ordinal c such 
that there is some U’ >= Ucan 1 K with f; = min dom( U’ \(I&, 1 K)). U, is called 
the canonikal sequence and K[U-] is the canonical core model. 

3.16. Theorem (dl’ong). Let K[a be a core model. Then there is an iteration 
nI: K[U,]+ K[U’] such that U’ ae U. 

3.17. eorem (-@*“g). Let j: M[U,]+ K[U] be elementary. Then j is the 
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iterudnmapofa i&mated ultmpwer of K[UJ, rwmal meaning that its 
in&xisasbktiy incnerrsing sequence of ordinals. 

(Embedding Theorem). Let K[Ul be a core model und let 
+K[&11 b&&m&my wi#h cr&alpoM~>supdom(U). kume 6 Q a 
cmdinal>xwhi&&a&nittmdinalinK[~. IYaentiuretGstsasttong 

U’>,U with t:= mMom(U’\u)w&fying (i) taK, id (ii) z=& if6=ol 

and~CWfQ~f& 

ofthe 
is a covering 

seguence: 

theorem for situations away from the measurabks 

(Covering Theorem). Let ram2 such that 
Let Xc r, card(X) regulat, and card(X) < card(t). 

XC z such &at card~“sp’(z) < r. 

3e38. L,etrbeano&nalwithsupdom(U,]t+l)~r. Then: 
(i) If ~3 tu2 is a kni# or&al and d!(t) <card(a), then t is singular in 

was- 

(i) Take XC r cofklly such that card(X) = cof(r) <card(t). By 3.19 
there is 2 E KiUJ such that XC 2 and cardmuJ(Z) < z. So t is singular in 

KFJcaa* 
(ii) r is singular in K[UJ by (i). Assume t’ : = z+qud < t+. Then cof(t’) C 

r =card(r’). We can apply (i) to t’ and get t’ b&g singular in K[UJ. 
Contradiction. 0 

32l. Tkarem (-ld”B). For a@ XC r~On, card(X) quk~ there ekts YE 
K[UJ such that XcY, and carci(Y)~card(X)+card(y)+~~, whew y= 
supdom(U, t r + 1). 

lhmf. set u:= U,. Assume that XC t is a counterexample to the theorem 
with 7 minimal. set y:= sup dom( U_ 1 z -t 1). Obviously t > y, t a 02, and 
card(X) C card(r). By 3.19, there is 2 c K[ Uj such that X c 2 and cardKtq(Z) < 
zTake~<r,f~K[UIsothatf:tc+Z.Set8:=f-’”X.Bytheminimalityofz 
there is YE K[Uj, zc PC F and card(Y) ~card(X) +card(y) + ol. But then 
Y:=f“&K[q, XcY, and card(Y) s card(X) + card(y) + ol. Contradic- 
tion. Cl 

To obtain covering properties close to the measure sequence we have to extend 
[U-l by a P&y system (note that the universe could be a Prikry extension of 

some core model). 
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3.22. Definition. Let K[U] be a core model. A function C : dom( U)+ V is called 
a P&y system for K[U] if: 

(i) C(K) c K and otp(C(~)) S m for K E dam(U). 
(ii) If (xK 1 K E dam(U)) E K[U) there is a finite set p c On such that 

VK E dam(U) (C(K)\P #Ib+ (x, E U(K) - C(K)\P cx c K)). 

The extension of K[Uj by a Prikry system C is denoted by K[U, C]. 

3.23. Theorem (lo’“g) (Covering Theorem with Prikry sytem). There in a 
Prikry system C fo- K[U-] such that the following holds: ’ Let ra 

(card otp dom(U,))++. Let Xc z, card(X) regular, and card(X) < card(z). Then 
thereisajiutctionf:(t) co)- r, f E K[U,] and a y < z such that 

xcz:= Cf(Q,ji)pcy, jkCnz}, 

where&= U {C(K) 1 K E dam(U)). In particuhr, cardK[@-C1(Z) < t. 

The next 
sections: 

result will be used as a condensation criterion in the two following 

3.24. Theorem. Let D be a simple predicate with otp dam(D) s min(D) or D = 0. 
Let Q be a transitive model of a suflciently largefinitepart of ZFC + “If = K[D]“, 
D = D i7 Q E Q. Let o1 c Q and dam(D) = dam(D). Then: 

(i) Let M be a D-mouse, meas #(b and let K = min meas be singular in 
Q. Then lp(M) c Q. 

(ii) Let il c Q be a cardinal > sup(D) and assume the foIlowing condition is 
sati@ed: 

If Cc A is closed unbounded in A then there exists a K E C which is singular 
in Q. 

Then KA[D] c Q. 

proof, (i) Let f tzQ, f : v+ K cofinal, v < K. D-mice are absolute for Q (2.7), 
and we can take a D-mouse N E Q such that f E lp(N). Let M*, N* be iterates of 
M, N respectively such that IV* c MS or MS E N* (2.10). If N* c MS then 
ftz p(~)nN=p(~)nN*cg(~)n M* = Pi M, contradicting the reg- 
ularity of K inside M. Thus M* E N*, and lp(M) = Hf = HF’ c Hr’ = HFc Q. 

(ii) Let x E K,[D]. Take a D-mouse M such that x E ip(M) and card(M) C 
A (3.2). If meas = 0, then M E LA[D] c Q. So assume meas # 8. Taking 
the ultrapower by the smallest measurable A-times we obtain an iteration 
It(M,I)=((Mili<A), (ZijliGjGA)) of M by r=(KiIi<A) SO that C:= 
{Ki 1 i < a} is closed unbounded in a. By the condition, some Ki, i C A, is singular 
in Q. By (i), x E lp(M) c lp(Mi) c Q. Cl l 

In subsequent proofs, condensation argument c Gil yie!d em-beddings of some _ 
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initial segment of a core model. The final result in this section shows bow to get 
an embedding of the entire axe model fkom this. 

Ihooa, set c:= {x c, a 1 x E KA[Ul A cy E n(x)}. By 3.13, it su&es to show that 
the ultsap~wer UltWjU], G) is well-founded. So assume not and let fo, fi, . . . E 

KIUIbe~o~suchthat{vCa:(f,+l(v)Ef,(v)}EGforn~cu. Let {fnlne 
(u} c&[U] where Kq[q reflects enough properties of K[q. There is an 
elementary map a:Q+&[Uj so that Q is transitive, aU{f,In<a~)c 
mnge(a), and card(Q) <A. Let 0: = U n Q; 0 E Q. By 2.8, &nice are absolute 
tir Q2 and by 3.3, Q c KA[q. Set & : = owl(Jm), (n c a). Then, for n < o: 

hence 

. For K, A, p, V, 8 cardinals let (AK, A) =$e @, v) be the assertion: 

Every structure (A, B, . . . ) where card(A) = K, card(B) = A and whose 
type has cardinal@ ~8 possesses au elementary substructure 
(2, B, . . .) such that card(A) = cc, card(B) = Y. 

(K, A)+- (p, v) is called Chang’s cunjectwe for the pairs (K, A), (JJ, v). 

Chang’s conjecture is presented in Chang-Keisler [ 1,7.3. l], and various 
relations between instances of Chang’s conjecture are discussed there. 

42 Lemma, (P++, P’) % (P’, g) implies (p++, p+) 3cP (p+, ~6). 

Pmuf. Assume (p”, p’) +” (p’, p). Consider a structure S = ($+, p+, 
(R, 1 v < p), & 1 Y C y )) with relations R,, and functions fy. We suppose that 
the family of fy’s contains a set of Skolem functions for S. Define a function F: 
(CL++)<@+ p+ by: 

F(Z) = snp(uV(Z): v < ,u} f-‘~ p+) < p+. 
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By (p++, p’)%, (p+, y) there is Xx (p++, p+, F) such that card(X) = p+ and 
card(Xnp+)=p. Set Y:= U~v(x’)~vcp, VEX}. Y<S, Cara(Y)=p+, and 
Yn~+csup(XnjA+)<~+. 0 

4.3. 'Ilteorem. Amune(~++, p+)*a# (p+, p), p a 01. mm oloq aiS& 

Proof. Assume *Ong. Let U: = &,,, 1 c(? By 3.12, 

(1) supdom(U]p+)<jP and supdom(U)<~++. 

Let H be a transitive structure reflecting enough properties of V with p++, U E H. 
By (p++, p’) 3fl (p’, p) there is an X < H such that p+, c(++, U E X, (c( + 1) c 
X, card(Xnp++)=$, and card(Xnp+)=p. Let &kX<H, fi transitive. 
Set 4x: = a-‘(p’), p : = Jr-y/4++), 0: = a-‘(u). 

(2) X n p+ is transitive. 

proof. Let yExnp+. There isfczX, f:p*y onto. Since PCX, y=r~,6c 
x. O(2) 

Thus: 

(3) Q! = X n p+ is the critical point of ar. 

(4) supdom(U ]$)c&, since supdom(U fp’)~X. 

(5) B=P+= 

Proof. /3 2 p+ since card(X n p”) = p+. If p > $, then Ed is a cardinal in 
V, andp+= X((Y) < J@) c n(B) = J.P. Contradiction. O(5) 

Set Q : = (K[~])‘. By (l), sup dom(@ < /% 

(6) ~i@l c Q- 
Proof. We apply 3.24(ii). Let C c /3 be closed unbounded in @. Choose K E C 
such that K > sup dom( o), lu, and cof(K) # cof(cu); this is possible since there 
are at least two different cofinalities below cc+ 2 02. fi t= cof( K) # cof( cu), 
hence cof(z@)) # cof(lc(cu)) = p+. cof(n@)) < $ = card@(K)) and JG(K) > 
sup dam(U). By 3.20(i), K[U] I= “~G(K) is singular”. Thus Q t= “K is singular”, as 
required. O(6) 

(7) K[o] is a core model. 

Proof. K[D] b “0 is a sequence of measures”, since K,@] c Q and Q t= “0 is a 
sequence of measures”. q l(7) 

dom(o 1 cu) = dom(U 1 cu), and so by 3.14, 0 1 cy = U 1 a. By (4) there is no 
end-extension of U 1 a! with new measurables below $ = /3, and so 0 = 0 1 Q! = 
U l/3. (6) and SO-- LUG absoluteness considerations imply: 
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reis%suchthat 
is elementary with critical point a. By 3.25 

js:gu rj4+1+ U rp’] is elementary with critical point a. 

(10) p+ is a limit cadinal in K[U rp’]. 

wad p+ t q+fl”rp+l, q E &~“r~+lm t) np+=acp+ 
K[u lp’] b “a is singular”, which contradicts (9). !I(1 

Theorem 3.118 there exists U’>, U ]r(’ with mindom(U’\ 
contradicts the de6nition of Ucan. Cl 

5. 

58l. A cardinal A is called a MUSOB cardinal provided every 
stnrdure of &dinality A whose type is countable possesses a proper elementary 
SUM of cardinal&y A. 

For details on J&son cardinals see Chang-Keisler [1,?.3.2]. Every Jonsson 
cardinal is 20, [l, exercise 7.3.151. 

assume v and work for a contradiction. 
Let U:= V,. Let H be a transitive structure reflecting enough properties of 

the universe with A, U E H. Since A is Jonsson there is X < H such that A, U E X, 
card(XnA)=A and XfiA#A. Let a:hX<H, fi transitive. Set &= 
x-‘(u). Let a< A be the cr&ical point of Ed; let a’ : = x(e). 

(1) [a, a’) n X = 0. 

(2) a' is regular in V, a* 3 ml. 

Pro& If cof(a’) < a, there is a sequence in X converging to a’, contradicting 
(1). If a s cof(a’) < a’, then cof(a’) E X which again contradicts (1). O(2) 

(3) sup dom(U 1 a’) < a and dom(U r a*) = dom(e 1 a). 

z:= {/3<A]EWj3 is a cardinal”} is a closed set of ordinals of ordertype 
GE < A. Choose a regular cardinal p such that o2, a, f < p s A. Set p’ : = x(p). 

Let 8:= max(Z n CL) < cc. Set Q : = (K[i? 1 p])Y sup dom( 8 1 cc) c p, by 3.12. 

ly 3.24(ii). Let C c p he closed unbounded in ~1. Choose K E C 
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such that K > sup dom( U ] cc), 0, and cof(K) # cof(t9). R b cof@) # cof(O), and 
cof(lr(JO) # ~f(~(~))* So cof(a(rr)) < a(O) = card&(@), and a@) > 
sup dom(U ]c(‘). By 3.20(i), K[U ]c(‘] b “Z(K) is singular”, and thus Q b “I is 
singular”, a!3 required. O(4) 

(5) ii fp is strong. 

Rvofi K[O Cp] b“o cp is a. sequence of measures”, since K,[o 1~1 c Q, and 
Q VU /cc is a sequence of measures”. O(5) 

Since ay is the critical point of n, dom(U 1 cx) = dom(U ] cu). So by 3.14, 

By (3), U ] cy = U ] (Y’. Since U is ‘canonical’: 

(7) [(w, au’) n dom(@ = 0. 

(8) cw’$dom(U), since cu$dom(@. 

Absoluteness considerations and (4) imply: 

The map IE f K,[U / ar] : K,[U 1 a~]+ K,.[U r cu’] is elementary with critical 
point (Y. By 3.25 there is % such that: 

(IO) &: K[U 1 a]-, K[U 1 or] is elementary with critical point gr. 

As in 4.3(10), 

(11) CE’ = x(cu) is a limit cardinal in K[U 1 ac]. 

By the embedding Theorem 3.18 there exists a strong predicate U’ >= U 1 QI 
with min dom(U’\(U ] cu’)) G (Y’. But by (3) and (8) this contradicts the fact that 
uis canonical. 0 

5.3. T’beorem (-O’Ong). Let A be a J&sson cardinal such that one of the followitig 
holds: 

(i) 0 C cof(A) < A. 
(ii) A is regular but not weakly hyper-Mahlo. 

Then dom(U, IL) is cofinal in A. 

A definition of weakly hyper-Mahlo can be found in Drake [S, Ch. 4, g3.61. 
The subsequent proof also contains a definition of this notion. 

Pmof. Set U:= Ucan, and assume sup dom(U fn, C A. By the previous theorem, 
II = aa. Hence A is a limit cardinal. Let H be a transitive structure reflecting 
enough properties of the universe with 1, U E H. Since h is Mnsson, there is 
X ( ir’ such ihat I, U EX, card(XnA)=n, andXnA#A. Let z:fi=X<& &! 
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transitive.Set&= a-‘(v). lLef 0 < A be the critical point of a; LY’ : = x(a). As 

in the proof of 5.2 we get: 

(1) 0’ is regular in v, (Y’ 2 01. 

(2) sup dom(U ] cu8) < or. 

get Q: = (K[o IA])‘. supdom(0 fA)<k. 

&wfi We apply 3.24@). Let Cc A be closed unbounded in a. 

Case (i): B <cof(a) CA. Then there is a dosed unbounded set D c A 
con&t&g of singular cardinals. We may assume that D E X D: = K’(D) is 

unbounded in 1. Take K E C n D such that K > SUP dom(6 ] a). X(K) is a 
singular cardinal %updom(U fa), and by 3.2O(ii), K[lJl ~“z(K) is singular". 
-I&usQk“~issingular",asreq~. 

C&e (ii): A is m but llot we&” hy~r4khfo. A is weakly inaccessible 
since A= e. Adjoin a suitable set ‘- 1’ as a new least element to the ordinals. 
For 48 E On defhre its (weak) Moh(o degree M(le) E [-I, B] by: 

M(B) a0 iff @ is weakly inaccessible; 
@3)~yiffforallQ<ytheset (9CBIM(r~)~8}isstationaryin)8, (y>O). 

Bis~MohloifM(B)al.BisweaWyMahloofkindyifM(1B)~yaO.~ 
is we&y hyper-M4hlo if M(B) = j3. Thus 0 s M(A) <A. 

To every @GA with OsM(B)cj3 assign a closed unbounded set D&3 such 
that 6 E ID,, implies 6 is a limit cardinal and M(6) < M(B). We may assume that 
the function (D,, ]flsA, O~M(B)c~) is an element of X. 

Let fi be de&xl in fi as M is in V&=(M)? For @GA, OC@~)CJ? set 
Dfi:= x-*(D~~~). & is closed unbounded in /3; 6 E &-,a(@ is a limit cardinal 
and B(6) < A5(B). 

We assume that the closed unbounded set CC A has min(C) > sup dom(D ]iz). 
Do the following construction untii the recursion breaks down: 

set pO:= a, yo:= @(a) c a. If pm, yn are defined, put #In+I : = the O,+l-st 
element of C n I)&, and yn+I : = i@(Bn+l). 

C&m. Let &, ym be const~cted and assume cof(Bn) > o~“+~, a(/.&) 20. Then 
I%J+1, Yn+l e* and cof(Bn+*) ’ q”+r+l’ Aha Yn+l < Yw 

Roof. Because y,, = i@/3,,) >O, & is closed unbounded in /3,,. cof(&) > 

WY.&1 2 ol, and &+1 = the o,,_+I-st element of C n I)@” exists. yn+l = ~(g,,,) < 
M#kJ < Yn, and so w%+d = my”+1 > %,+*+1= O((=@ 

so IL Yl ezw- S~ce yn > Ym+l, the construction br& dam, and by the 
&im there must be nal such that r,=J@&)=-1. get K:=/&. Tlhen 

(Rw = -1, and X(K) is a singular cardinal >supdom(U /il). By 3.2O(ii), 
au Ia] t= ‘%(K) is singular”. &I Q k “K is singular”, as required. O(3) 
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be finished exactly as the proof of 5.2 from 5.2(S) onwards, 
0 

The proof can now 
takingc(:= c(‘:= A. 

r 

As corollaries we get the following results: 

5.4. Theorem. If there e&s a regular Mnsson cardinal A which is not weakly 
hyper4Uahlo, then O’Ow e&s. 

Praof. Assume ea. By 5.3, dom(U, fit) is cofM in A, which contradicts 
3.12. 0 

5.5. Theorem. Let A be a J&son card&? with o < 6 : = cof(n) < A. Then there 

is an inner modkl in which the set of measurabtes <A has Ordertype 36. 

Proof. If O’OW exists this follows from 2.14. Assume that dons does not exist, on 
the other hand. By 5.3, dom(U, IA) is cofinal in A, thus otpdom(U,, fA)a 
6. Cl 

Conversely, we have the well-known result of Prikry [15]: 

5.6. Theorem. If (K~ 1 i < 6) is a strictly increaring sequence of measurable 
card&u& where 6 is a limit ordinal CK~, then A : = SUp{Ki 1 i < 8) is a J&sson 
cardinal. 

Theorems 5.5 and 5.6 yield a family of equiconsistency results of which we 
present just one typical example: 

5.7. Theorem. The theories “ZFC + there is a J&tsson cardinal of cofinality o1” 
and TZFC + there are o1 measurable cardinak” are equiconsistent. 

6. Free snbts 

6.1. Debition. A subset X of a structure S is fkee in S if Vx E Xx $ S[X\ {x}]; 
here S[yI denotes the substructure of S generated from Y by the functions and 
constants of S. For cardinals K, A, p let Fr& A) be the assertion: Every structure 
S with K c S whose type has cardinal@ Gp possesses a free subset Xc K of 
cardinal@ ail. 

Fr&, A) stands for: VP C K Fr,,(rc, A). 

This section extends techniques of [lO] where we proved that Fr,(w,, o) is 
equiconsistent to “there exists a measurab!e cardinal”. The following lemma is 
[lo, 1.11: 
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Let A be an hjinite car& and assume F+(K, A). Let S be a 
K c S whme type has cardindity Sp. Then thete is a subset XC K 

in S with mmwtone enumemtion (xi 1 id) such that: 

(i) icA-,[xi,#~)nS[~~U{~iIr’CjCA}]=B 

( XT is cw&?& >X#). In pa&*: 

(ii) i<A~xi~S[xiU{x~IiCjCA}]. 

(i) Kisaiimitcordina. 

(ii) F~&K, A). 
OF Cd(K) = aIf( 

aoof. Just as Lemma 1.2 of [lo]. 0 

plloob. set u:= &JR= Assume that v:= sup dam(u) C K. By 6.3(iv), K is a 
limit cardinal and so cc: = max(v+, g+, 02) < K. 

(1) There is i! < K so that Fr,@, w). 

hfi If there is k C K such that Fr&, A) we are done. so assume K is minimal 

with h&c, A). By 6.3(s), K is singular and cof(K) = cof(A). Take a cardinal % 6 1 
such that a~f@) #&(A). By 6.3(iii), there has to be ii C K such that Fr,&, A). 
Then Fq,(R, a). Cl(l) 

F”nr k = os <K such that Fq(R, w). By the covering theorem 3.21 there exists 
E e K[ Uj such that {q 1 i c c} c E c % and card(E) < p. Let &[ U], 8 > iii reflect 
suRciently many properties of K[U& Let S:= (K,[Ul, E, (culcusp)) 
augmented by a cou&&le set of Skolem functions for &[UJ; E and every Q! s p 
are understood to ‘be constants of S. By 6.2(i), there is a set XC P free in S with 
monotone emuneration (xi 1 i C 0) so that: 

(2) [Xi,Xi+)nS[xiU{~~)i<j<w}]=B foralli<o. 

For i<o set II&:= S[{+ 1 i “i C 0}] and let Ici : Mi s fii, i@i transitive. Set 
&:= xi(U). For i sj < o let nji : = Iti 0 x,7’ : Il;r,+ 1Gii. 

(3) p c Mi ad Zi rp = id. 

(4) C= “V = K[ Ui]“, Ui = U (I Il;li E h&p ad Q-mice are absolute for A& (the 
latter follows from 2.8). 
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(5) + is elementary, JQ~ rp = id, and nii(Uj) = Ui. 

ForiCoset Ei:= xi(E); nji(Ej) = Ei. Then 3.5 implies: 

(6) EjsuEi, for isjew. 

Since sv well-orders K[q (3.4) there is 
LyIth element of Ei”, for a < Otp(Ei) <cc, is 
and SinOe ni+l,i fl 1 =id: 

(7) Jr- i+l.i w i+l = id. 

Lets:= Xi+l(Xi+) t’ Ei+l. Then: 

i CO SU& that Ei+l= Ei- “X is the 
uniformly definable in Mi and &+I, 

6.5. Theorem. Assume Frcu(oA, A), where 1 k a cardinal with ml S A < oA. Then 
there is an inner model in which the set of measurables Cm* has otdetzype SA. 

Roof. If o’““g exists the theorem follows by 2.14. So assume Id”“‘? Set K : = oA. 
By 6.3, Fr.&K, A) holds- We shall show that otp dom(U, r x) 2 A. By 6.4, 
dom( Ueaa 1 K) is cofmal in K, and for regular il this implies otp dom( Ucan f K) 2 A. 

Now consider the case that A is a singular cardinal. It sufkes to show that 
otp( u- r x) 2 A’ for every regtk cardinal A’ < A. kt A’ < h be regular, A’ 3 01. 
htK’sKtE minimai such that Fr&‘, A’); let K’ = os. Then: 

(1) ~~~<K’=@g. 

(2) Fb(K’, A’), by 6.3(ii). 

(3) COf(K’) 2 A’, by 6.3(iii). 

By 6.4, dom(U, r K’) is cofmal in K’. Then 

otp dom( U, 1 K) 2 otp dom( U, r K’) 2 cof(K’) 2 A’. q 

Conversely, Shelah [17] proves: 

6.6. Theorem. Assur?&? GCH. fit (Ki 1 i C A) be a strictly increasing sequence of 
measurable cardinals; a = me, g C A C K~. tit K : = SUP{ Ki 1 i C A}. Then there is a 
generic extension V[G] of V satisfying: 

V[G] k “K = oA and Fr,,,(wn, A)“. 

Theorem 6.5 and 6.6 imply a series of equiconsistency results of which we 
present one Jypical example: 
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6.7. 79~ theories “ZFC+ Fr,(e~,~, 
measud& &” 

uJ and “ZFC + there are o1 
due eqdonsistent. 

7. 

Let the sequence (a~~(,) 1 n < (u) be strictly increasing with 
By CF(Q we denote the following combinatorial property: 

For every sequence u 1 i < m) of functions, fi:(4~~)~-*2 there exist sets 
44 = %(l8)\~~(aPI), card(&)83 such that for every i<tkl, nl<==-<ni<o, 
@Xl, yap Xi, yi~Ba,,**-,xi, yi, Xi, y,‘~By, With X~<y~<X~<y~<*mmC 
Xi<yi,X;<y;<X;<y;<=..<Xi'<yfwe have: 

f(xr, y1, x2, Jb l l l s Xi, Yi) =f(xL YL &3 YL . . . 9 Xl, yr). 

Such a sequence (B&&o) will be called homogeneous for (Jji<o). The 
&‘s can be viewed as segments of a system of indiscemibles for the functions 
(15: ] i < cu), so that the value of the functions is independent of which pair from a 
segment is chosen. 

In the language of Shelah [16], who studies strong partitior;.propertre_~ P,f o,, 
CF(k) is the same as: (0 (k(n) 1 n < 0) has a (3 1 n < w)uzno~fonn for 

((2,2, ._. . ,2),“p<w}. 

i-times 

The consistency strengths of (reasonable) canonical form properties for o, where 
just s@@ons from each segment of indiscemibles are considered correspond to 
the existence of one measurable cardinal (see [17] and [lo]). So CF(k) is basically 
the next stage as far as the strengths of canonical forms are concerned. A model 
for CF(k) -indeed for a much stronger canonical form property- was con- 
structed by Shel& [16] from a ground model with o strongly compact cardinals 
(with k(ro) = (n + 5) 9 n/2 + n + 1). The following theorem shows that high levels 
of measurability are indeed necessary for such a construction. 

7.2. Theorem. tlssume CF(k) for somefiuaction k. Then dong exists. 

Roof. We assume 10”““9 and work for a contradiction. 
Set K:= o, and LJ:= U-. Let H be a transitive structure reflecting enough 

properties of the universe and let K, U E H. Let H also possess a countable 
collection of Skoiem functions for itself. We assume that the Skolem functions are 
suitably encoded into a sequence (& 1 i C w ) of functions fi : (K)%+ 2 to which we 
will apply the principle m(k). Subsequently a homogeneous sequence for H will 
mean a homogeneous sequence for u I i < 0). 

We obtain a n homogeneous sequence (IV: 1 tz < dr)), W,* = Ix,,, y,,, z,,} 
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for H by successive minimal choices of the x,,: Let (WF 1 i en} be chosen. Let 
x,, < K be minimal such that there exists a homogeneous sequence (WF 1 i c n) U 
(Wi) 1 n s i < co) for H with x,, = min(W:). Then let Wg = (x,, yn, zn} be such a 
Wk. (Wz 1 n < o) is clearly homogeneous for H. 

Set Wn: = (x,, y,}, (n C 0). It is readily seen that IJ {Wn 1 n C 0) is a free 
subset of H. 

(1) [xn, x,‘) n H[x,, u Wn+l U Wn+z u . . l ] = 0. 

proof. Assume not; let y E H[x, U Wn+l U W,+,U l . l ], x, G y<xz. There is 
~EH[~,UW~+~UW~+~U*.=], f:~,*y+l, where co,=card(x,J<x,, and 
hence x,, EMUS c H[x, U Wnal U Wn+2 U. l 01. Let x, = t(uo, . . . , Uk-_19 x~+~, 
Yrl+,, l . -3 x4, y4) for some H-term t, uo, . . . , uk_l Cxn, I3 II + 1. We may 
assume that uo, . . . , uk_l are successively chosen minimal for this equality to 
hold. Hence there are H-terms to, . . . , tk__l such that 

uj = fi(;lcn* &+l* St+19 l l l ) xl, yl)- 

Set 24; : = tj(Ynr&+J_ Y,+I, . . . 9 +,J$), forj=O, . l .,k -1. Then 

Yn =t(u&..., LP Xn+l* Yn+l, l l l 9 Xl, Yl), 

and there must exist some j < k such that uj # ui. 
Set X: : = uj) yJ, : = u;, and ti : = fi(z,,, xn+l, y,,+l, . . . , xl, yl). Then standard 

indiscemibiity arguments show that xi, y;, zk are pairwise distinct and that 

(W 
0 
oI*==, W& {XL, y& zi}, Wr+,, Wr+*, . . . ) is a homogeneous sequence for 

H wi$h min({x& y:, 2:)) SX: <xn = min(Wn). Contradiction. Cl(l) 

(2) Let 0+x, < @,+I. Then w,<x~ and supdom(U r~~+~)<x~<~,,<Or+l= 

Ptoofi We can assume that o, and sup dom(U 1 o,+J are constants of the 
structure H. Then use (1). O(2) 

Inside K[ U], let M* = J,,[F, U] E K[Uj be some U-mouse such that P(K) E 
lp(M*) and F is countably complete. We can assume that M * is a constant of H. 
By2.6, M:= J,,[ U U F, 81 is a &mouse inside K[U], and by 2.7, M is a Bc_mouse 
in the universe. 

For nCo set &:= H[lJ{ll$I asi<w}]. For m<n<o:X,~X,,, and 
xn #X,. Let z,,: H, =X,, H, transitive. For m art C o let j~nm: = 
n;;;‘w,,:H,+H,. For n Co let K,,: = ngl(~), U,: = n,‘(u), M,: = 
J,,&& u F,, fl] : = ~d,l(M), K,,: = (K[Un])Hn. 

(3) 4, s Km formGn<o. 

M, is a $-mouse (2.8). z,,~ 1 M, : M,, + M, is an elementary embedding, and so 
by 2.12(iii): 

(4) Mn %i Mm, formQzCo. 

Let us write G* for <g and - for -+ Since G* is a pre-wellordering (2.12(ii)) 



there exists some q)Ca, so that: 

(7) Zm is the critical point of jit and f(&) = &V+l. 

is a unique elementary map 6: H,+,+l? such that 30 6 = ~~+1,,: 

a & determined by: Xgil(xi) I--) jr-‘&) and Ir,-:lQi) H W-Q’), (n + 1 s i < m)- 
:R&+~-A& #rii&:&+M, are elementary embeddings, and so by 

Since js r#” = id, 

By 2.l2(iv), 

( 10) 
By(1O),andbecause~~istbecriticalpointof~~~:~-*K,: 

(11) Zn is weakly inaccessible in K. 

(12) jin is weakly inaccessible in K,,, and so x, and y,, are weakly inaccessible in 

WI= 

(13) cof(x,) = cof(ym) = 0,. 

Proofi Assume cof(x,) C 0,. o2 sx, and sup dom(U 1 u,+~) <xn (2). By the 
covering property 320(i), x, is singular in K[U], contradicting (12). q (13) 

(14) 4a $H[W-* U {Y,, -G+l, J&+19 l l l }]= 

Prwfi Assumex, = tois Yn, Xn+l, Yn+l, l l 
. , xl, yl) for some H-term t, ij c a~,_~, 

d bn + 1. Since cof(x,,)= clb,, 

x,::= sup(x, f-I (t(C x,, &l-cl, yn,,, l - l 9 Xl, JQ) I 9 < w-1)) -=&. 
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since x, = t(9, y,, &a+10 Ym+l, l l l 3 xl, J+), we obtain xS, <x,, < y& By simple 
indiscemibiity arguments, XL, y:, zi are pairwise distinct and 
(W 

* 0, l l l s W,*_,, {XL, y:, t;}, W,‘,,, W,*,,, . . .) is a homogeneous sequence for 
H. This contradicts the minimal choice of x,. (14) 

Set 2: = &[%I U {A, %+I, $,+I, . . .}]. We shall carry out an analysis of 2 
similar to the preceding one elf Z. Let it: fi = 2, fi transitive. Let P : = P(K,), 

8: = X1(&,), 8: = (K[m)“t and a: = J#?U & $1: = K1(Mn). fi is a 4)_ 
mouse (2.8). By (14), 

(15) g## $2. 

(16) ex& 4 2. 

Proofi Assume a&. Take f& f:&-jm. Then Z&&=rii)r& 
contradicting (15). q (16) 

Let a! be the critical point of j2. 

(17) t%-1 <a<& [CU, tar) n 2 = 0, n(t~) = 6,. 

&K$ Assume j3&, CUSP<& Takef&, f~&_~~~+l. Then &e/3+1 
=: f 

#?- 0 s_1, c 2 Contradiction. q (17) 

In particular, 

(18) sup dom( U, f i;i,) < cy. 

As in the discussion of 2 : I?+ H, there is a unique elementary map 
ii: Hn+l + R such that & 0 6 = ~t,+~,,: 

And as before we obtain: 

(OuE)rcun~nM,=(U,nF,)Ioun~nM,. 

9(cu)nR=9(a)nK,. 

a is weakly in,& p-xssible in t. 

tir is weakly inaccessible in K,, and o, is weakly inaccessible in K[ U]. 

(12) , t%yn <Zn < 6,+, = 1-3,‘~~, and since fi(a) = 61,: 
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(24) lr+%c cr+t 
(25) @Ub) n Km c R. 
pf~# Inside R form an iterate M+ of tri at points a~! so that min(meas(M+)\au) 
>~=~>~~S~~aristhe~~~intofAthe~~tersofM+and1W, 
~fOMllV<d3,.M+ -i&h&, almy 2.12(iv), 

~,)nK,=~9)nM,=~q)nM+cR. w9 

SetD:= {uc(Y~uE~A(YEA(u)}. Disanormal~~~teron~(ar)n1Q. 

(26) Ult(& D) is well-kunded. 

&EM++ vlo ~&.(f)(a) detines a &-preserviug embedding of Ult(& D) into 

Km- Q(2@ 

(27) D EH,. 

hwfi By (24), (Y+R< a+4 Since B satisfies the GCH (3.7), there is g E&, 
g : CY+ P(e) n R onto. Then 

D:= (g@)( ve a! A Ly E k&(V))} 

= ((a(g)(~)) n a 1 v e (Y A a E ii(g)(v)} E zf,. n(n) 

(28) Set lk: = (K&lJ”])~. Then Ult(E, D) is well-founded. 

Roof. By (25), t c k, and Ult(& D) is well-founded by (26). Ezf(28) 

This fact holds as well inside H,. Let a*: = q(a), D* : = q(D). Since 
q, : H,-, H is elementary, Ult(KJq, D*) is well-founded. By 3.25, there is au 
elementary embedding j : K[U 1 or]--, K[U r o,] with ctitical point LY*. LY* > 
sup dom(u 16 (by (18% or is regular and weakly inaccessible in K[U r or] 
(23). By the embedding Theorem 3.18 there is a strong U* >= U to, with 
min dom( U*\cr*)< UPS. But this is a confradii&~ to U being the canonical 
sequence. 0 

of the image model 

8.1. Tbeorenr. Assume there is an elementary embedding JE : V-M, M transitive 
with criticaL point K such that “M c M and =M q! M. Then o’“g exists. 

This strengthens a theorem of Sureson’s [20] who from the same assumption 
could show the existence of au inner model with o1 measurable cardinals. 

FkuuF_ Assume eg and work for a contradiction. Let U, : = Urn, U’ := 

n(U,, and It : = n tK[U,l. 2: K[U+ K[U’] is elementary, and by 3.17, it is 
the iteration map of 2 normal iterated ultrapower of #[UC!. This means that there 
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isastrictlyincreasingindex (Ki(ic6) suchthatif((K[Ui]Iia&), (+Iibj~ 
6)) is the corresponding iteration of K[&] by (Ki 1 i < 6), then K[U’] = K[U6] 
and fi = j~os. We may of course assume that for every i C 6, Ki is a measurable 
cardinti in K[ Ui], Ki E dom( UQ. Them KO = K, and since lolong, 

(1) otp dom( Uo) C K. 

The following claim is taken over from Sureson [20] with a slightly different 
presentation of the proof: 

(2) 6 3 0. 

(2’) X= M. 

proof. For every y E On, y = X&f)(Kg, . . . , Kg-l) = IG(f)(Kg, . . . , Ka-1) for 
somefEKIUo],f:KoX~=~XKg_l + On by the ‘representation properties’ of the 
iterated ultrapower K[&] (compare Definition 2.2(iii)). Hence On c X. 

Let z E M. Let z E V, and take g : /3 - V, onto. Then z(g) : z(B j+ V& onto; 
let z = w@)(y) for some y E On. y = iz(f)(KO, . . . , K&,1) for some f :x0 x 
l =*xKg_1*v. DeGne h:K+ l ==xK6-~+V by: h&o 9**.9 X&-1) = 
gdf(xo, . l l 

, x6+)) if this is defined, and h(xo, . . . , x+~) = 0 else. Then 

z = tc(g)(Z(f)(Ko, . . . , K&-l)) = n(h)(Ko, l l l , Q-1) E X. q (2’) 

(2”) “M c M. 

Proof. Let {~&Y<K}~M. Choose a sequence (~J(Y<K), &:K~x-x 

Kgml- V such that x, = z(~,)(K~, . . c , K& for QI < K. Define F: ~~ X l l l X 

Kdel- V by P(xo, . . . , x~._.~) = (&(x0, . . . , x~_~) 1 CY < K). For lY<K, 

(J@)(Ko, l l l 9 KG--,))(@) = ndfo)(Ko, l l l 9 Km) =& SO 

(x~(cY<K)=(x(F)(K~:...,K~_~))~KEM. q (2”) 

But (2”) contradicts the non-closure property of M. O(2) 

Let C be a Prikry system for K[U,] which satisfies the covering Theorem 3.23. 
Let Co:= U{C(y)] y~dom(U,)}. Set C’:= n(C), C&= z(Co). By (l), the 
ordertype of CA is <K, and we get 

(3) CA= x”Co c range(n). 

Set t:= SUp{KiIiCcO}, X:= {KiIiCO}, and D:= ChfIr. XEM since 

“M c M. In M, apply the covering Theorem 3.23 to X: There is f : (t)‘“+ z, 

f E K[LJ’] and a y < z such that 

(4) Xc:{f($fi)I=y,jiED}. 

Since the iteration by (Ki I i C 6) is normal, P(r) n K[ UJ = P(Z) n K[ Us] 
(compare 2.4(iii)). So J” E K[U,]. Choose i < o such that Ki > y and f E 
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