
Parsing and Disambiguation of Symbolic

Mathematics in the Naproche System

Marcos Cramer, Peter Koepke, and Bernhard Schröder

University of Bonn and University of Duisburg-Essen
{cramer,koepke}@math.uni-bonn.de, bernhard.schroeder@uni-due.de

http://www.naproche.net

Abstract. The Naproche system is a system for linguistically analysing
and proof-checking mathematical texts written in a controlled natural
language. The aim is to have an input language that is as close as pos-
sible to the language that mathematicians actually use when writing
textbooks or papers.

Mathematical texts consist of a combination of natural language and
symbolic mathematics, with symbolic mathematics obeying its own syn-
tactic rules. We discuss the difficulties that a program for parsing and
disambiguating symbolic mathematics must face and present how these
difficulties have been tackled in the Naproche system. One of these dif-
ficulties is the fact that information provided in the preceding context –
including information provided in natural language – can influence the
way a symbolic expression has to be disambiguated.

Keywords: Symbolic mathematics, mathematical formulae, Naproche,
formula parsing.

1 Introduction

In recent years, formal mathematics has seen remarkable progress. Proofs of
significant mathematical theorems like the Jordan Curve Theorem or the Prime
Number Theorem have been formalized and formally checked in powerful systems
like HOL light [10][1]. Some large scale formalization projects related to current
research mathematics are under way [11].

This creates a demand for presenting developments in formal mathematics
within the ordinary language used by mathematics. De Bruijn [3], one of the
pioneers of formal mathematics, formulated :

[...] the Automath project tries to bring communication with ma-
chines in harmony with the usual communication between people.

He describes his approach as follows:

So I got to studying the structure of mathematics by starting from
the existing mathematical language and from the need to make such lan-
guage understandable for machines. I think we might call that approach
“natural”. “Natural deduction” is a part of it. [...] the word “natural”
[...] refers to the reasoning habits of many centuries, [...]

J.H. Davenport et al. (Eds.): Calculemus/MKM 2011, LNAI 6824, pp. 180–195, 2011.
c© Springer-Verlag Berlin Heidelberg 2011

http://www.naproche.net

Parsing and Disambiguation of Symbolic Mathematics 181

The Naproche project1 (NAtural language PROof CHEcking) tries to take up
some of the challenges of natural formal mathematics. Due to the tremendous
difficulties in in the deep semantic analysis of natural language and common
(mathematical) arguments, known from linguistics and artificial intelligence, at
the moment, success can only be limited: the general problem appears to be “AI-
hard”. Naproche therefore restricts itself to a kind of existence proof: to show
that one can formulate substantial mathematical texts, so that they are accept-
able texts for ordinary mathematicians, but simultaneously computer readable
and checkable for linguistic and mathematical correctness. This involves sev-
eral subtasks, in particular the development of a controlled natural language for
mathematics with corresponding parsing mechanisms, parsing of (LATEX-style)
mathematical formulae, translations into first-order formats, and the connec-
tion with strong automatic provers to supply missing “trivial” proof elements.
Currently we are in the process of reformulating parts of E. Landau’s Grundla-
gen der Analysis [16] in the Naproche controlled language and simultaneously
developing the Naproche formal mathematics system.

In this paper we address the problem of parsing mathematical formulae em-
bedded in some mathematical text. Despite the widespread assumption that
mathematical formulae are exact, they are often very ambiguous in a way that
(standard) typing does not sufficiently resolve. We study situations in which fur-
ther information, mathematical and linguistic, from the ambient text has to be
taken into account.

We demonstrate with a number of representative examples, that fairly com-
plex formulae, written in “simple LATEX”, can be correctly parsed, and we expect
to be able to parse nearly all formulae that will be coming up in the formaliza-
tion of Landau’s Grundlagen. Unfortunately, a further evaluation of our methods
appears to be problematic at this moment. Due to the many styles of writing
mathematics and coding it in LATEX we cannot hope to be able to parse arbi-
trary formulae from large repositories of mathematical material. Like with the
controlled input language we are dependent on adequate reformulations, where
adequacy has to be judged by experts in the subject. Note that reformulations
and reformalizations are ubiquitous in formal mathematics anyway, to get proofs
to work. To determine “degrees of naturality” is notoriously problematic, as is
well-known from experimental linguistics, and has to be left to the reader’s ap-
preciation.

After presenting the Naproche System in section 2, we exhibit the flexibility of
symbolic mathematics in section 3, explaining why this flexibility makes symbolic
mathematics so difficult to parse and disambiguate. In section 4, we proceed to
discuss possible approaches to tackling these difficulties. Our solution to these
problems is presented in sections 5 to 8, which are followed by a section on
related work and a conclusion.

1 Naproche is a joint initiative of Peter Koepke (Mathematics, University of
Bonn) and Bernhard Schröder (Linguistics, University of Duisburg-Essen). The
Naproche system is technically supported by Gregor Büchel from the University
of Applied Sciences in Cologne.

182 M. Cramer, P. Koepke, and B. Schröder

2 The Naproche System

A central goal of Naproche is to develop and implement a controlled natural
language (CNL) for mathematical texts which can be transformed automati-
cally into equivalent formulae of first-order logic using methods of computational
linguistics [7]. We have developed a prototypical Naproche system, which can au-
tomatically check texts written in the Naproche CNL for logical correctness [6].
We test this system by reformulating parts of mathematical textbooks and the
basics of mathematical theories in the Naproche CNL and having the resulting
texts automatically checked.

The Naproche system transforms a given input text into a logical represen-
tation of its content, called a Proof Representation Structure (PRS). The PRS
is checked for logical correctness with the aid of automated theorem provers.
More precisely, the PRS creation and checking process is performed sentence
by sentence: For every sentence in the text, the system first parses the sentence
and updates the PRS accordingly; afterwards, it checks the logical correctness
of the additions that have been made to the PRS. The checking algorithm keeps
a list of first order formulae it considers to be true, called premises, which gets
continuously updated during the checking process, and which represents the
mathematical knowledge that a reader of the text has collected up to a given
point in the text.

3 Symbolic Mathematics

One of the conspicuous features of the language of mathematics is the way it
integrates mathematical symbols into natural language material. The mathemat-
ical symbols are combined to mathematical expressions, which are often referred
to as mathematical formulae or mathematical terms depending on whether they
express propositions or whether they refer to a mathematical object. Already at
first sight, a whole variety of syntactic rules are encountered for forming com-
plex terms and formulae out of simpler ones; a basic classification of these was
provided by Ranta [18]:

– There are infix operators that are used to combine two terms to one complex
term, e.g. the + symbol in m + n or 1

x + x
1+x .

– There are suffix operators that are added after a term to form another term,
e.g. the ! symbol in n!.

– There are prefix operators that are added in front of a term to form another
term, e.g. sin in sin x.

– There are infix relation symbols used to construct a formula out of two terms,
e.g. the < symbol in x < 2.

As noted by Ganesalingam [9], “this simple classification is adequate for the
fragment Ranta is considering, but does not come close to capturing the breadth
of symbolic material in mathematics as a whole.” It does not include notations

Parsing and Disambiguation of Symbolic Mathematics 183

like [K : k] for the degree of a field extension, it does not allow infix operators
to have an internal structure, like the ∗G in a ∗G b for denoting multiplication in
a group G, nor does it account for the common way of expressing multiplication
by concatenation, as in “a(b + c)”.

Another kind of prefix operator not mentioned by Ranta is the one that re-
quires its argument(s) to be bracketed, e.g. f in f(x). (Of course, the argument
of a prefix operator like sin might also be bracketed, but generally this is done
only if the argument is complex and the brackets are needed for making sure the
term is disambiguated correctly.) This is even the standard syntax for applying
functions to their arguments, in the sense that a newly defined function would
be used in this way unless its definition already specifies that it should be used
in another way.

The expression a(x + y) can be understood in two completely different ways,
depending on what kind of meaning is given to a: If a is a function symbol and
x+y denotes a legitimate argument for it, then a(x+y) would be understood to
be the result of applying the function a to x+ y. If on the other hand a, x and y
are – for example – all real numbers, then a(x + y) would be understood as the
product of a and x+y. Now whether a is a function or a real number should have
been specified (whether explicitly or implicitly) in the preceding text. This is why
we say that the disambiguation of symbolic expressions requires information from
the preceding text, and this information might have been provided in natural
language rather than in a symbolic way.

As one can already see from these sketches of symbolic mathematics, the task
of parsing and disambiguating symbolic expressions has a lot of aspects.

One of the issues that has to be surmounted in order to treat mathemati-
cal symbolism directly in a computer program is its two-dimensionality. Math-
ematicians extensively use superscripts and subscripts and put terms above
other terms as in the fraction notation. Naproche has already for some time
adopted LATEX for its input, so that in this paper we restrict ourselves to parsing
and disambiguating the LATEX code that is used for generating mathematical
formulae2. The reversion of a pictorial symbolic input into a LATEX input or an-
other linearisation of it is certainly an interesting undertaking, but outside the
scope of this paper.

In order to cope efficiently with the diversity of possible LATEX codes for a
given symbolic output – e.g. a^b and a^{b} both producing ab – we normalise
the LATEX input before the actual parsing process, in this case to a^{b}. For the
rest of this paper, we use this normalised LATEX code whenever it is necessary
for the explanation; when the LATEX code is not necessary for the explanation,
we use the typographic notation that depicts the mathematical symbols as they
are commonly drawn and printed.

2 We restrict ourselves to standard LATEX, i.e. without any user-defined macros. Ad-
ditionally, we in some respects require the author to use neat LATEX, e.g. to write
the sine function using \sin rather than sin in order to distinguish it from the
concatenation of the three variables s, i and n.

184 M. Cramer, P. Koepke, and B. Schröder

4 Possible Approaches to Disambiguation

If a(x + y) is to be read as the value of a function a at x + y, then a has
to be a function. This requirement can be understood in two different ways,
which are nevertheless related and combinable: Either it is considered to be a
presupposition of the symbolic expression a(x + y); in this case, the linguistic
theory of presuppositions with all its elaborations might be considered to be
applicable to this case [13][8]. Or it is considered to be a type judgement about
a; in this case, it should be possible to formulate a type system for symbolic
mathematics and reuse existing ideas from type theory to describe and work
with this type system.

In the context of a proof checking system like Naproche, presuppositions have
to be checked for their correctness, i.e. the presuppositions of an expression
have to be checked to logically follow from the premises that are available at
the point where the expression is used [8]. One possible approach that we took
into consideration for disambiguating symbolic expressions was to check their
presuppositions already during the parsing process, so that readings which lead
to wrong presuppositions would already be blocked during the parsing process.
This approach, however, has turned out to be far too inefficient: It would involve
constantly calling automatic theorem provers during the parsing process and
waiting for their output before continuing the parsing.

Another approach is to rely on a type system rather than on presupposition
fulfillment for disambiguating symbolic mathematics. In that case, one needs
a very rich and flexible type system for symbolic mathematics. Such a type
system has been developed ingeniously by Ganesalingam [9]. However, to attain
the richness of the type system required for handling all kinds of ambiguities
that can arise, he was obliged to require the author of a text that is to be parsed
by his system to write sentences whose sole function is to create types that are
needed for certain disambiguations. Given that the goal of Naproche is to stay as
close as possible to the language that mathematicians naturally use, this aspect
of Ganesalingam’s approach made it less attractive for us.

So we decided to take up a combined approach, in which there is a rela-
tively simple type system capable of blocking most unwanted readings during
the parsing process, with the remaining readings being filtered by checking their
presuppositions.

5 A Type System for Symbolic Mathematics

In the type system that Naproche uses for handling symbolic mathematics, there
are two basic types: i for individuals and o for formulae expressing propositions.
Apart from these, there are function types of the form [t1, ...tn] → t, where
t1, . . . , tn are the types of the arguments the function takes and t is the type
of the term that we get when we apply this function to legitimate arguments.
So unlike in the Simple Theory of Types (STT) [5], we have an inherent way
of handling multi-argument functions. In STT, multi-argument functions must

Parsing and Disambiguation of Symbolic Mathematics 185

be simulated by functions whose codomain type is again a function type, e.g. +
would be considered a function from natural numbers to functions from natural
numbers to natural numbers. We, however, want to use types to describe how
mathematical formulae are structured in actual mathematical texts, and for this
purpose it is better to have multi-argument functions inherently in the type
system.

Note that formulae are also considered terms (namely terms of type o), and
that the logical connectors are considered functions of type [o, o] → o or [o] → o.
Even quantifiers are considered to be functions, namely two-place functions
whose first argument has to be a variable and whose second argument is a term
of type o that may depend on the variable. We formalise this by writing the type
of quantifiers as [var(, X), X − o] → o], where var(, X) means that the first
argument is a variable X of type (i.e. of any type), and X − o means that the
second argument is a term of type o possibly depending on X3.

5.1 Syntactic Types

As already discussed in section 3, functions can behave in syntactically different
ways. For example, + is generally used as an infix function symbol (“a + b”),
whereas the notation f(x) uses a function symbol f in prefix position with
its argument in brackets. In Naproche, we distinguish six basic ways in which
function symbols behave syntactically, and call these the syntactic types of the
corresponding function symbols:

1. infix : Two-argument function symbol placed between its arguments (e.g. +
in n + m).

2. suffix : One-argument function symbol placed after its argument (e.g. ! in
n!).

3. prefix : One-argument function symbol placed before its argument (e.g. sin
in sin x).

4. classical : Function symbol with one or more arguments preceding its argu-
ments, which are bracketed and separated by commas (e.g. f in f(x) or
f(x, y)).

5. quantifier : Two-place function symbol placed before its two arguments, where
the arguments have to have types of the form var(t1, X) and X − t2, and
where the first argument position may be filled with a variable list rather
than a single variable (e.g. ∀x, y R(x, y)).

6. circumfix : Expression for a function with one or more arguments, which are
embedded into a predefined string of symbols, with at least one symbol at
the beginning, at the end and between any two successive arguments (e.g.
the degree of a field extension, [K : k], considered as a two-place function
depending on K and k). The name of a circumfix function is this predefined
string with [arg] denoting the positions of its arguments. For example, the
name of the field extension function is [[arg]:[arg]].

3 We use Prolog-like notation, i.e. capital letters for variables and for an anonymous
variable, when describing the type system.

186 M. Cramer, P. Koepke, and B. Schröder

Now consider an example from real analysis, namely the differentiation func-
tion, which is a function from differentiable real functions to real functions,
sending any f to its derivative f ′. When written in this ′-notation, this function
clearly has syntactic type suffix. But when we write f ′(x), we use the complex
function name f ′ as a function with syntactic type classical. Now this does not
seem to depend on the syntactic type of f : Suppose we have defined an exten-
sion of the factorial function ! to the reals (e.g. by x! := Γ (x + 1) using the
Gamma function [12]). If we then apply its derivative !′ to some real x, we would
write !′(x) and not x!′4. So it seems to be inherent in the way the differen-
tiation function symbol ′ is used that the complex function name it produces
is of syntactic type classical. We formalise this by saying that ′ is of syntactic
type [suffix,classical]. This means that its basic syntactic type is suffix, and the
syntactic type of any function name whose head is ′ is classical.

This machinery makes it possible to correctly handle many complicated no-
tations: For example, exponentiation is treated as a function of syntactic type
[circumfix,suffix] and of type [i] => ([i] => i)) (so in this case the notation we
use makes us treat this multiple-argument function in the way such functions are
treated in STT rather than using an inherent multiple-function type), where the
name of the circumfix function is ^{[arg]}. In the case of x^{y}, this function
is first applied to y, yielding ^{y}, which is considered a suffix function, so that
applying it to x yields x^{y}.

In Naproche we distinguish two different kinds of math modes: The first is
used for formulae (like x = y2) and terms that serve as definite noun phrases
(like 2x− 1). The second is used for quantified terms, like the first two symbolic
expressions in “For every x there is some f(x) such that R(x, f(x)).” Terms
of the first kind are parsed by what we call the normal formula grammar, and
terms of the second kind are parsed by what we call the quantterm grammar.

6 Normal Formula Grammar

Below we describe the normal formula grammar semi-formally by first listing
(in a formal DCG-notation with Prolog-like syntax) a list of simplified gram-
mar rules that any term must obey and then describing informally additional
constraints that any term must satisfy in order to be actually parsed by the
grammar. The constituent “term” used in the DCG rules below has an argument
specifying the syntactic type of the term (i.e. a list of basic syntactic types). We
use the variable name ST for a variable ranging over syntactic types.

Simplified normal formula grammar

term(ST) → term([classical|ST]), [’(’], term list, [’)’].
term(ST) → term(), term([suffix|ST]).

4 Since this is a made-up example, we should add that our intuition as to what notation
would be appropriate here has been confirmed by a number of mathematicians from
the University of Bonn.

Parsing and Disambiguation of Symbolic Mathematics 187

term(ST) → term([prefix|ST]), term().
term(ST) → term([quantifier|ST]), variable list, term().
term(ST) → term(), term([infix|ST]), term().
term(ST) → circumfix term(ST).
term(ST) → [’(’], term(ST), [’)’].
term(ST) → variable(ST).

term list → term(), [’,’], term list.
term list → term().

variable list → quantified variable, [’,’], variable list.
variable list → quantified variable.
quantified variable → [].
variable → [].

For every predefined or accessible5 variable V of syntactic type ST, add
a rule of the following form to the grammar:
variable(ST) → V.

For every accessible circumfix function of syntactic type ST and name
S1

1 . . . Sn1
1 [arg]S1

2 . . . Sn2
2 [arg] . . . [arg]S1

m . . . Snm
m , add a rule of the fol-

lowing form to the grammar:
circumfix term(ST) →
[S1

1], . . . , [Sn1
1], term(), [S1

2], . . . , [Sn2
2], term(), . . . , term(), [S1

m], . . . , [Snm
m].

6.1 Operator Priorities

Syntactic disambiguation principles like the precedence of multiplication and
division operators over addition and subtraction operators are encoded into the
grammar using predefined operator priorities. We use the following operator
priorities (in the order of decreasing precedence):

– +, −, → and ↔
– Prefix functions
– Suffix functions
– Other infix functions

Additionally, there is a principle which overrides the above operator priorities,
namely that the operators used to form atomic formulae always have a higher
precedence than the operators used to combine atomic formulae into complex
formulae.

As an example for the functioning of these syntactic disambiguation principles,

5 Given that Naproche’s Proof Representation Structures are a variant of Discourse
Representation Structures [14], “accessible” is to be understood as in Discourse Rep-
resentation Theory. Basically, an accessible variable is a variable that was introduced
in the preceding text that we can refer to by using the same variable name.

188 M. Cramer, P. Koepke, and B. Schröder

(1) x + yz = sin an! ∧ x = y → z − y + z = 0

is disambiguated as

(2) (((x + (yz)) = sin(a(n!))) ∧ (x = y)) → (((z − y) + z) = 0).

In all cases that we are aware of, these syntactic disambiguation principles lead
to an intuitive reading of the symbolic expression.

6.2 Defaultness of the Syntactic Type Classical

As already alluded in section 3, the syntactic type classical is the default syn-
tactic type for newly introduced functions. This principle is implemented into
the grammar by an additional constraint that in the second to fifth DCG rule
specified above, as well as in the rule “variable → [].”, the syntactic type of a
term may not be instantiated to infix, prefix, quantifier, suffix or circumfix. For
example, the requirement of the final term to have “suffix” as syntactic type in
the second rule means that this syntactic type must already be associated with
the term when parsing it and may not be attached to the term afterwards. There
is a limited list of predefined infix function symbol (·, +,−, ∗, ., ◦, /) for which
this constraint does not apply.

In practice, this constraint means that when you are quantifying over a func-
tion, this function may be used with classical syntactic type or, if a preferred
infix function symbol is used, with infix syntactic type, but not with prefix, suf-
fix or quantifier syntactic type. So (3) and (4) are allowed, but (5), (6) and (7)
(with z read as an infix, f as a prefix and g as a suffix function symbol) are not
allowed.

(3) ∃f f(a) = 0

(4) ∃ ∗ x ∗ x = x

(5) ∃z xzx = x

(6) ∃f fa = 0

(7) ∃g ag = 0

The defaultness of the syntactic type classical also explains why we don’t
formalise functions used in this syntactic way as circumfix functions. This would
certainly be possible: A one-argument classical function f could also be con-
sidered a circumfix function with name f([arg]). However, this way we would
not be able to account for the fact that a function that was introduced without
fixing its syntactic type can be used with syntactic type classical.

Parsing and Disambiguation of Symbolic Mathematics 189

6.3 Predefined Variables

It should be noted that we do not make the distinction between variables and
constants that is usually made in the syntax of first-order logic and many other
logical systems. In the semi-formal language of mathematics, there is a con-
tinuum between variable-like and constant-like expressions; this continuum is
captured in Naproche through the use of dynamic quantification inherent in
Discourse Representation Theory [14], so that the bivalent distinction used in
first-order logic is not needed.

However, logical constants are still treated in a special way, namely as “pre-
defined variables”. These are also given a predefined type and syntactic type as
follows:

Predefined variable Type Syntactic type
→, ↔, ∧ and ∨ [o, o] → o infix
¬ [o] → o prefix
∀ and ∃ [var(, X), X − o] → o quantifier
= [T, T] → o6 infix

= [,] → o7 infix

6.4 Kinds of Variables

In the parsing process we distinguish different kinds of variables:

– Predefined variables (logical constants)
– Bound variables
– Variables that were implicitly introduced earlier on in the symbolic expres-

sion and are now reused
– Accessible variables whose antecedent is in the same sentence
– Accessible variables whose antecedent is in a preceding sentence
– Implicitly introduced variables

When trying to parse a variable, we always first try to parse it according to a
variable kind higher up in the above list before trying the kinds lower down in
the list. Once a variable has been parsed in one way, it may no longer be parsed
in such a way as to be of a kind that is mentioned later in the above list than
the kind that it has already been assigned. This means, for example, that if x
is accessible and we parse ∃x x + x = x, then all instances of x in this formula
are bound by the existential quantifier; none of the instances of x refers to the
accessible variable.

6.5 Coverage of the Formula Grammar

The formula grammar can cope with almost all terms that serve as definite noun
phrases and formulae found in mathematical texts. Here is a list of formulae that
can be correctly parsed and disambiguated by it:
6 i.e. the two arguments must be of the same type.
7 i.e. the two arguments may be of distinct types.

190 M. Cramer, P. Koepke, and B. Schröder

x(y + z) = 0
x = y < z

x ∗G x = x
n∑

i=0

i =
n(n + 1)

2

x0 lim
x→x0

f(x2) = 2f(
xx0

0

2
)
= f ′(N !)

T = m0
l2

2
((cosϕ0ϕ

′
0)

2 + (−sinϕ0ϕ
′
0)

2)

Of course, these formulae can only be parsed if the types and syntactic types of
the function symbols appearing in them are known in advance. This information
is created by the quantterm grammar described in section 7 when the functions
are introduced.

There are some limitations of the current implementation of the formula gram-
mar that we are aware of: Firstly our formula grammar can only handle variable
binding if the occurrence of the variable that binds the other occurrences pre-
cedes the bound occurences. Hence the formula grammar cannot handle the
integral notation of the form

∫
f(x)dx, where the first occurence of x is bound

by the final occurence of x. Furthermore, the formula grammar can currently
not cope with formula fragments like “= 0” nor with formulas containing triple
dots like “n ∈ {1, . . . , N}”. However, we believe that the approach presented in
this paper constitutes a framework for tackling even these harder cases, i.e. that
the current limitations are not due to principle limitations of our approach, but
rather due to the prototypical character of the implementation.

As already mentioned in the introduction, a quantitative evaluation of the
coverage of the formula grammar is a highly nontrivial task. It involves refor-
mulating the natural language context of the formulae in a controlled natural
language, so that a full semantic analysis of the context can be achieved. This
has so far only be accomplished for the first chapter of Landau’s Grundlagen
der Analysis, where the formula grammar parsed and correctly disambiguated
all formulae [4].

7 Quantterm Grammar

Consider the following example text from [15]:

(8) Suppose that, for each vertex v of K, there is a vertex g(v) of L such that
f(stK(v)) ⊂ stL(g(v)). Then g is a simplicial map V (K) → V (L), and
|g| � f .

Here the natural language quantification “there is a vertex g(v)” locally intro-
duces a new vertex to the discourse; but since the choice of the vertex depends
on v and we are universally quantifying over v, it globally introduces a function

Parsing and Disambiguation of Symbolic Mathematics 191

g to the discourse. In the next sentence there is an explicit reference to this
implicitly introduced function.

Quantterms are symbolic expressions that appear in the scope of a natural
language quantification, and are either just simple variables (in which case we
call them simple quantterms), or, like in the above example, complex expressions
that implicitly introduce a function to the discourse.

In order to discuss the functioning of quantterms, consider the following three
example sentences:

(9) There is some y such that R(y).

(10) For every x there is some y such that R(x, y).

(11) For every x there is some g(x) such that R(x, g(x)).

As described in [8], the premise added to the premise list for representing
the information from (9) would not be ∃y R(y), but R(cy) for a new constant
symbol cy. The reason for this replacement of existentially quantified variables
by constant symbols is that the first-order quantifier ∃ does not have the dynamic
properties of the natural language quantification with “there is”: After stating
sentence (9), we can later use the symbol y to refer to the same object that was
introduced by this sentence. If we represented the content of the sentence by
∃y R(y), then the scope of the y would only be this formula and could thus not
include later uses of y. By using R(cy) for the content of (9) and replacing later
uses of y by cy, we do get the wanted coreference between the y in (9) and the
later y.

This replacement of an existentially quantified variable by a constant is a
special case of skolemization [2][8]. In the representation of sentence (10) we make
use of the more general kind of skolemization, which involves introducing new
function symbols rather than new constant symbols. Its representation becomes
∀x R(x, fy(x)), where fy is a newly introduced function symbol; fy(x) replaces
all occurrences of y in the scope of ∀x, where the argument x makes explicit that
the choice of y depends on the value of x.

In the case of sentence (11), g(x) can at first be considered to just be a
complex variable name, usable in this very form later on in the sentence. Just as
in the case of sentence (10), we skolemize this variable and make its dependencies
explicit; in this case g(x) depends on x. All this is the same as for sentence (10).
But now we have to take into account that the author made this dependency
explicit by writing g(x) instead of y. This makes it possible to identify g with the
skolem function that skolemization gives rise to, and to use this g as a function
outside the universally quantified sentence in which g(x) was introduced.

Now let us look at a somewhat more complex example:

(12) For all x, y there is some gx(y) such that R(x, y, gx(y)).

After this sentence, we want to be able to use a function of syntactic type
[circumfix,classical] named g_{[arg]}. So already when parsing the quantterm,
we want to identify this syntactic type and name of the head function. This is

192 M. Cramer, P. Koepke, and B. Schröder

done by recursively allowing the head function of a quantterm to be again a
quantterm. So in the case of g(x) in (11), g may again be a quantterm, and is
actually a simple quantterm. Now in the case of (12), gx is first identified as
head function of syntactic type classical, and is further analysed as quantterm.
This further analysis recognises gx as circumfix function g_{[arg]}.

7.1 Disambiguating Quantterms

Now one problem is that the quantterm grammar finds a number of possible
readings for any input. For example, f(x, y) can be interpreted in four ways:

1. as two-place classical function f (depending on x and y)
2. as two-place circumfix function f([arg],[arg]) (depending on x and y)
3. as one-place circumfix function f([arg],y) (depending on x)
4. as one-place circumfix function f(x,[arg]) (depending on y).

Here we want to choose the first reading as the preferred reading to be used
by the program. This is done by a special algorithm for selecting the preferred
reading, which works as follows:

– Non-circumfix readings are always preferred over circumfix readings.
– Between two circumfix readings, one is preferred over the other if its cir-

cumfix name has an [arg] at a place, where the other has a symbol.
– A reading that has classical in the second position of the syntactic type list

is preferred over one that does not. (This principle is needed, for example, to
ensure that in f ′(x), ′ is interpreted as a suffix function making f ′ classical
rather than as a classical function making ′(x) a suffix function.)

– When none of the above rules decides which reading is better, we recursively
check which head function is preferred by those rules.

8 Disambiguation after Parsing

As mentioned in section 4, the type system is not capable of blocking all un-
wanted readings. This is due to the fact that our type system is not fine-grained
enough. All objects that are not functions are of the same type, namely i. So,
for example, both natural numbers and sets would be of the type i. If one has
defined that for sets A, B, the expression AB denotes the set of functions from
A to B, and one has furthermore defined that for natural numbers m, n, the
expression mn denotes the nth power of m, then one has defined two functions of
syntactic type [circumfix,suffix] and type [i] → ([i] → i), both named ^{[arg]}.
Since their name, type and syntactic type are identical, they are indistinguish-
able during the parsing process. Thus, the ambiguity arising from this notational
clash has to be resolved after the parsing process.

After updating the Proof Representation Structure with the representation of
a parsed sentence, the Naproche system checks this added representation for log-
ical correctness. This checking process involves the checking of presuppositions

Parsing and Disambiguation of Symbolic Mathematics 193

[8]. The two just mentioned functions of equal name, type and syntactic type
would trigger different presuppositions: The first would trigger the presupposi-
tion that both of its arguments are sets, whereas the second would trigger the
presupposition that both of its arguments are numbers. Since it is not possible
for both of these presuppositions to be fulfilled for a given pair of arguments,
the ambiguity can certainly be removed in the process of checking the presup-
positions8.

It is also possible that the type information needed for disambiguating a
symbolic expression is only available after the completion of the parsing process
for that expression. Suppose, for example, that a user has defined a relation “>”
on both natural numbers and functions of natural numbers, and uses the symbol
1 not only for the natural number 1, but also for the identity function. Now
consider the following sentence:

(13) For all x > 1 such that x2 + 1 is prime we have R(x).

If the exponential notation x2 is only defined for numbers and not for functions,
then this sentence can be disambiguated using type information: x has to be of
type i in “x2 + 1” and therefore also in “x > 1”, and so the “>” in “x > 1”
refers to the relation on numbers and not the one on functions. But this type-
based disambiguation of “x > 1” was not possible during the process of parsing
“x > 1”, because at that point “x2 + 1” had not yet been parsed. In order
to handle such type-based disambiguations that occur after that parsing of an
expression, we use type-dependency graphs, which specify which reading of an
expression depends on which type judgements. A detailed description of type-
dependency graphs would, however, go beyond the scope of this paper.

9 Related Work

For understandable reasons, most formal mathematics systems simplify sym-
bolic mathematics to a purely formal language, thus avoiding the issues that
our paper is intended to tackle. Even languages of systems that clearly aim at
a higher degree of naturality, like Mizar [17] and SAD [19], still largely treat
the symbolic parts of mathematical texts like a formal language. The only work
outside Naproche we are aware of that recognises the problem of parsing and
disambiguating symbolic mathematics as intertwined with the natural language
component of mathematical texts and as of a completely different kind than
parsing formal languages is Ganesalingam [9]. He has analysed the language of
mathematics – including symbolic mathematics – in much detail and developed
a very ingenious theory for “a computer language which closely resembles the
8 It is of course also possible that a user defines two clashing notations whose presup-

positions may be fulfilled by the same argument(s); this, however, is almost certainly
bad style, so that the user should get a warning from the system when this happens;
nevertheless, the system does always choose one reading as the preferred one, using
other heuristics, for example preferring notations that were defined later over ones
that were defined earlier.

194 M. Cramer, P. Koepke, and B. Schröder

language used by human mathematicians in publications”9. We owe him a lot,
since his work has enhanced our understanding of the language of mathemat-
ics and has helped us to develop the ideas presented in this paper. There are,
however, two main differences between Ganesalingam’s approach and ours:

Firstly, he has a methodological principle that no mathematical content is
encoded directly into his theory, and he considers such syntactic disambiguation
principles as the precedence of multiplication over addition as part of mathe-
matical content10 Thus he does not encode such principles into his theory, but
requires the author to write sentences of the following form in order to get the
desired disambiguation of arithmetic expressions:

(14) If m, n and k are natural numbers, then “m + nk” means “m + (nk)”.

We on the other hand do not want to require the author to write things that
mathematicians do not normally write, and so decided to encode some basic
syntactic disambiguation principles directly into our theory.

Secondly, as already alluded in section 4, he relies much more heavily on a
type system than we do for disambiguating symbolic mathematics. This is due
to the fact that he does not include presuppositions into the disambiguation
machinery. By making use of presuppositions for disambiguation, we were able
to attain similar goals as Ganesalingam with a much more coarse type system.
One of the benefits of the coarseness of the type system is that we do not require
the author to make statements whose only goal is to influence the typing of
symbolic material.

10 Conclusion

We have presented the difficulties that a computer program for analysing math-
ematical texts faces with respect to symbolic mathematics, given that the input
language is to be as similar as possible to the language that mathematicians com-
monly use in journals and textbooks. We have described how these difficulties are
solved in the Naproche system, and compared this solution to Ganesalingam’s
solution.

References

1. Avigad, J., Donnelly, K., Gray, D., Raff, P.: A formally verified proof of the prime
number theorem. ACM Transactions on Computational Logic 9(1:2) (2007)

2. Brachman, R., Levesque, H.: Knowledge Representation and Reasoning. Morgan
Kaufmann Publishers, Massachusetts (2004)

3. de Bruijn, R.G.: Reflections on Automath. In: Nederpelt, R.P., et al. (eds.)
Selected Papers on Automath. Studies in Logic, vol. 133, pp. 201–228, 215. El-
sevier, Amsterdam (1994)

9 Page 9 in [9]
10 Page 105 in [9]).

Parsing and Disambiguation of Symbolic Mathematics 195

4. Carl, M., Cramer, M., Kühlwein, D.: Chapter 1 from Landau in Naproche 0.5
(2011), http://naproche.net/downloads/2011/landauChapter1.pdf

5. Church, A.: A Formulation of the Simple Theory of Types. The Journal of Symbolic
Logic 5(2), 56–68 (1940)

6. Cramer, M., Koepke, P., Kühlwein, D., Schröder, B.: The Naproche System.
Calculemus, Emerging Trend Paper (2009)

7. Cramer, M., Fisseni, B., Koepke, P., Kühlwein, D., Schröder, B., Veldman, J.: The
Naproche Project – Controlled Natural Language Proof Checking of Mathematical
Texts. In: Fuchs, N.E. (ed.) CNL 2009. LNCS, vol. 5972, pp. 170–186. Springer,
Heidelberg (2010)

8. Cramer, M., Kühlwein, D., Schröder, B.: Presupposition Projection and Accom-
modation in Mathematical Texts. In: Semantic Approaches in Natural Language
Processing: Proceedings of the Conference on Natural Language Processing 2010
(KONVENS), pp. 29–36. Universaar (2010)

9. Ganesalingam, M.: The Language of Mathematics, PhD thesis, University of
Cambridge (2009)

10. Hales, T.: Jordan’s proof of the Jordan Curve theorem. Studies in Logic, Grammar
and Rhetoric 10(23) (2007)

11. Hales, T.: Introduction to the Flyspeck Project. Dagstuhl Seminar Proceedings
(2006)

12. Heuser, H.: Lehrbuch der Analysis. In: Teil 2, 6th edn., B.G. Teubner, Stuttgart
(1991)

13. Kadmon, N.: Formal Pragmatics. Wiley-Blackwell, Oxford, UK (2001)
14. Kamp, H., Reyle, U.: From Discourse to Logic: Introduction to Model-theoretic

Semantics of Natural Language. Kluwer Academic Publishers, Dordrecht (1993)
15. Lackenby, M.: Topology and Groups. Lecture Notes (2008),

http://people.maths.ox.ac.uk/lackenby/tg050908.pdf

16. Landau, E.: Grundlagen der Analysis, 3rd edn (1960)
17. Matuszewski, R., Rudnicki, P.: Mizar: The first 30 years. Mechanized Mathematics

and Its Applications 4 (2005)
18. Ranta, A.: Structure grammaticales dans le français mathématique II (suite et fin).

Mathématiques, Informatique et Sciences Humaines 139, 5–36 (1997)
19. Verchinine, K., Lyaletski, A., Paskevich, A.: System for Automated Deduction

(SAD): a tool for proof verification. In: Pfenning, F. (ed.) CADE 2007. LNCS
(LNAI), vol. 4603, pp. 398–403. Springer, Heidelberg (2007)

http://naproche.net/downloads/2011/landauChapter1.pdf
http://people.maths.ox.ac.uk/lackenby/tg050908.pdf

	Parsing and Disambiguation of Symbolic Mathematics in the Naproche System
	Introduction
	The Naproche System
	Symbolic Mathematics
	Possible Approaches to Disambiguation
	A Type System for Symbolic Mathematics
	Syntactic Types

	Normal Formula Grammar
	Operator Priorities
	Defaultness of the Syntactic Type Classical
	Predefined Variables
	Kinds of Variables
	Coverage of the Formula Grammar

	Quantterm Grammar
	Disambiguating Quantterms

	Disambiguation after Parsing
	Related Work
	Conclusion
	References

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (Gray Gamma 2.2)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (ISO Coated v2 300% \050ECI\051)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Error
 /CompatibilityLevel 1.3
 /CompressObjects /Off
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJobTicket false
 /DefaultRenderingIntent /Perceptual
 /DetectBlends true
 /DetectCurves 0.1000
 /ColorConversionStrategy /sRGB
 /DoThumbnails true
 /EmbedAllFonts true
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 1048576
 /LockDistillerParams true
 /MaxSubsetPct 100
 /Optimize true
 /OPM 1
 /ParseDSCComments true
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveDICMYKValues true
 /PreserveEPSInfo true
 /PreserveFlatness true
 /PreserveHalftoneInfo false
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts false
 /TransferFunctionInfo /Apply
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /CropColorImages true
 /ColorImageMinResolution 149
 /ColorImageMinResolutionPolicy /Warning
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 150
 /ColorImageDepth -1
 /ColorImageMinDownsampleDepth 1
 /ColorImageDownsampleThreshold 1.50000
 /EncodeColorImages true
 /ColorImageFilter /DCTEncode
 /AutoFilterColorImages true
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.40
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /ColorImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasGrayImages false
 /CropGrayImages true
 /GrayImageMinResolution 149
 /GrayImageMinResolutionPolicy /Warning
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 150
 /GrayImageDepth -1
 /GrayImageMinDownsampleDepth 2
 /GrayImageDownsampleThreshold 1.50000
 /EncodeGrayImages true
 /GrayImageFilter /DCTEncode
 /AutoFilterGrayImages true
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.40
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /GrayImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasMonoImages false
 /CropMonoImages true
 /MonoImageMinResolution 599
 /MonoImageMinResolutionPolicy /Warning
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 600
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.50000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /CheckCompliance [
 /None
]
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile (None)
 /PDFXOutputConditionIdentifier ()
 /PDFXOutputCondition ()
 /PDFXRegistryName ()
 /PDFXTrapped /False

 /CreateJDFFile false
 /Description <<
 /ARA <FEFF06270633062A062E062F0645002006470630064700200627064406250639062F0627062F0627062A002006440625064606340627062100200648062B062706260642002000410064006F00620065002000500044004600200645062A064806270641064206290020064406440637062806270639062900200641064A00200627064406450637062706280639002006300627062A0020062F0631062C0627062A002006270644062C0648062F0629002006270644063906270644064A0629061B0020064A06450643064600200641062A062D00200648062B0627062606420020005000440046002006270644064506460634062306290020062806270633062A062E062F062706450020004100630072006F0062006100740020064800410064006F006200650020005200650061006400650072002006250635062F0627063100200035002E0030002006480627064406250635062F062706310627062A0020062706440623062D062F062B002E0635062F0627063100200035002E0030002006480627064406250635062F062706310627062A0020062706440623062D062F062B002E>
 /BGR <FEFF04180437043f043e043b043704320430043904420435002004420435043704380020043d0430044104420440043e0439043a0438002c00200437043000200434043000200441044a0437043404300432043004420435002000410064006f00620065002000500044004600200434043e043a0443043c0435043d04420438002c0020043c0430043a04410438043c0430043b043d043e0020043f044004380433043e04340435043d04380020043704300020043204380441043e043a043e043a0430044704350441044204320435043d0020043f04350447043004420020043704300020043f044004350434043f0435044704300442043d04300020043f043e04340433043e0442043e0432043a0430002e002000200421044a04370434043004340435043d043804420435002000500044004600200434043e043a0443043c0435043d044204380020043c043e0433043004420020043404300020044104350020043e0442043204300440044f0442002004410020004100630072006f00620061007400200438002000410064006f00620065002000520065006100640065007200200035002e00300020043800200441043b0435043404320430044904380020043204350440044104380438002e>
 /CHS <FEFF4f7f75288fd94e9b8bbe5b9a521b5efa7684002000410064006f006200650020005000440046002065876863900275284e8e9ad88d2891cf76845370524d53705237300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c676562535f00521b5efa768400200050004400460020658768633002>
 /CHT <FEFF4f7f752890194e9b8a2d7f6e5efa7acb7684002000410064006f006200650020005000440046002065874ef69069752865bc9ad854c18cea76845370524d5370523786557406300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c4f86958b555f5df25efa7acb76840020005000440046002065874ef63002>
 /CZE <FEFF005400610074006f0020006e006100730074006100760065006e00ed00200070006f0075017e0069006a007400650020006b0020007600790074007600e101590065006e00ed00200064006f006b0075006d0065006e0074016f002000410064006f006200650020005000440046002c0020006b00740065007200e90020007300650020006e0065006a006c00e90070006500200068006f006400ed002000700072006f0020006b00760061006c00690074006e00ed0020007400690073006b00200061002000700072006500700072006500730073002e002000200056007900740076006f01590065006e00e900200064006f006b0075006d0065006e007400790020005000440046002000620075006400650020006d006f017e006e00e90020006f007400650076015900ed007400200076002000700072006f006700720061006d0065006300680020004100630072006f00620061007400200061002000410064006f00620065002000520065006100640065007200200035002e0030002000610020006e006f0076011b006a016100ed00630068002e>
 /DAN <FEFF004200720075006700200069006e0064007300740069006c006c0069006e006700650072006e0065002000740069006c0020006100740020006f007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400650072002c0020006400650072002000620065006400730074002000650067006e006500720020007300690067002000740069006c002000700072006500700072006500730073002d007500640073006b007200690076006e0069006e00670020006100660020006800f8006a0020006b00760061006c0069007400650074002e0020004400650020006f007000720065007400740065006400650020005000440046002d0064006f006b0075006d0065006e0074006500720020006b0061006e002000e50062006e00650073002000690020004100630072006f00620061007400200065006c006c006500720020004100630072006f006200610074002000520065006100640065007200200035002e00300020006f00670020006e0079006500720065002e>
 /ESP <FEFF005500740069006c0069006300650020006500730074006100200063006f006e0066006900670075007200610063006900f3006e0020007000610072006100200063007200650061007200200064006f00630075006d0065006e0074006f00730020005000440046002000640065002000410064006f0062006500200061006400650063007500610064006f00730020007000610072006100200069006d0070007200650073006900f3006e0020007000720065002d0065006400690074006f007200690061006c00200064006500200061006c00740061002000630061006c0069006400610064002e002000530065002000700075006500640065006e00200061006200720069007200200064006f00630075006d0065006e0074006f00730020005000440046002000630072006500610064006f007300200063006f006e0020004100630072006f006200610074002c002000410064006f00620065002000520065006100640065007200200035002e003000200079002000760065007200730069006f006e0065007300200070006f00730074006500720069006f007200650073002e>
 /ETI <FEFF004b00610073007500740061006700650020006e0065006900640020007300e4007400740065006900640020006b00760061006c006900740065006500740073006500200074007200fc006b006900650065006c007300650020007000720069006e00740069006d0069007300650020006a0061006f006b007300200073006f00620069006c0069006b0065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e00740069006400650020006c006f006f006d006900730065006b0073002e00200020004c006f006f0064007500640020005000440046002d0064006f006b0075006d0065006e00740065002000730061006100740065002000610076006100640061002000700072006f006700720061006d006d006900640065006700610020004100630072006f0062006100740020006e0069006e0067002000410064006f00620065002000520065006100640065007200200035002e00300020006a00610020007500750065006d006100740065002000760065007200730069006f006f006e00690064006500670061002e000d000a>
 /FRA <FEFF005500740069006c006900730065007a00200063006500730020006f007000740069006f006e00730020006100660069006e00200064006500200063007200e900650072002000640065007300200064006f00630075006d0065006e00740073002000410064006f00620065002000500044004600200070006f0075007200200075006e00650020007100750061006c0069007400e90020006400270069006d007000720065007300730069006f006e00200070007200e9007000720065007300730065002e0020004c0065007300200064006f00630075006d0065006e00740073002000500044004600200063007200e900e90073002000700065007500760065006e0074002000ea0074007200650020006f007500760065007200740073002000640061006e00730020004100630072006f006200610074002c002000610069006e00730069002000710075002700410064006f00620065002000520065006100640065007200200035002e0030002000650074002000760065007200730069006f006e007300200075006c007400e90072006900650075007200650073002e>
 /GRE <FEFF03a703c103b703c303b903bc03bf03c003bf03b903ae03c303c403b5002003b103c503c403ad03c2002003c403b903c2002003c103c503b803bc03af03c303b503b903c2002003b303b903b1002003bd03b1002003b403b703bc03b903bf03c503c103b303ae03c303b503c403b5002003ad03b303b303c103b103c603b1002000410064006f006200650020005000440046002003c003bf03c5002003b503af03bd03b103b9002003ba03b103c42019002003b503be03bf03c703ae03bd002003ba03b103c403ac03bb03bb03b703bb03b1002003b303b903b1002003c003c103bf002d03b503ba03c403c503c003c903c403b903ba03ad03c2002003b503c103b303b103c303af03b503c2002003c503c803b703bb03ae03c2002003c003bf03b903cc03c403b703c403b103c2002e0020002003a403b10020005000440046002003ad03b303b303c103b103c603b1002003c003bf03c5002003ad03c703b503c403b5002003b403b703bc03b903bf03c503c103b303ae03c303b503b9002003bc03c003bf03c103bf03cd03bd002003bd03b1002003b103bd03bf03b903c703c403bf03cd03bd002003bc03b5002003c403bf0020004100630072006f006200610074002c002003c403bf002000410064006f00620065002000520065006100640065007200200035002e0030002003ba03b103b9002003bc03b503c403b103b303b503bd03ad03c303c403b503c103b503c2002003b503ba03b403cc03c303b503b903c2002e>
 /HEB <FEFF05D405E905EA05DE05E905D5002005D105D405D205D305E805D505EA002005D005DC05D4002005DB05D305D9002005DC05D905E605D505E8002005DE05E105DE05DB05D9002000410064006F006200650020005000440046002005D405DE05D505EA05D005DE05D905DD002005DC05D405D305E405E105EA002005E705D305DD002D05D305E405D505E1002005D005D905DB05D505EA05D905EA002E002005DE05E105DE05DB05D90020005000440046002005E905E005D505E605E805D5002005E005D905EA05E005D905DD002005DC05E405EA05D905D705D4002005D105D005DE05E605E205D505EA0020004100630072006F006200610074002005D5002D00410064006F00620065002000520065006100640065007200200035002E0030002005D505D205E805E105D005D505EA002005DE05EA05E705D305DE05D505EA002005D905D505EA05E8002E05D005DE05D905DD002005DC002D005000440046002F0058002D0033002C002005E205D905D905E005D5002005D105DE05D305E805D905DA002005DC05DE05E905EA05DE05E9002005E905DC0020004100630072006F006200610074002E002005DE05E105DE05DB05D90020005000440046002005E905E005D505E605E805D5002005E005D905EA05E005D905DD002005DC05E405EA05D905D705D4002005D105D005DE05E605E205D505EA0020004100630072006F006200610074002005D5002D00410064006F00620065002000520065006100640065007200200035002E0030002005D505D205E805E105D005D505EA002005DE05EA05E705D305DE05D505EA002005D905D505EA05E8002E>
 /HRV (Za stvaranje Adobe PDF dokumenata najpogodnijih za visokokvalitetni ispis prije tiskanja koristite ove postavke. Stvoreni PDF dokumenti mogu se otvoriti Acrobat i Adobe Reader 5.0 i kasnijim verzijama.)
 /HUN <FEFF004b0069007600e1006c00f30020006d0069006e0151007300e9006701710020006e0079006f006d00640061006900200065006c0151006b00e90073007a00ed007401510020006e0079006f006d00740061007400e100730068006f007a0020006c006500670069006e006b00e1006200620020006d0065006700660065006c0065006c0151002000410064006f00620065002000500044004600200064006f006b0075006d0065006e00740075006d006f006b0061007400200065007a0065006b006b0065006c0020006100200062006500e1006c006c00ed007400e10073006f006b006b0061006c0020006b00e90073007a00ed0074006800650074002e0020002000410020006c00e90074007200650068006f007a006f00740074002000500044004600200064006f006b0075006d0065006e00740075006d006f006b00200061007a0020004100630072006f006200610074002000e9007300200061007a002000410064006f00620065002000520065006100640065007200200035002e0030002c0020007600610067007900200061007a002000610074007400f3006c0020006b00e9007301510062006200690020007600650072007a006900f3006b006b0061006c0020006e00790069007400680061007400f3006b0020006d00650067002e>
 /ITA <FEFF005500740069006c0069007a007a006100720065002000710075006500730074006500200069006d0070006f007300740061007a0069006f006e00690020007000650072002000630072006500610072006500200064006f00630075006d0065006e00740069002000410064006f00620065002000500044004600200070006900f900200061006400610074007400690020006100200075006e00610020007000720065007300740061006d0070006100200064006900200061006c007400610020007100750061006c0069007400e0002e0020004900200064006f00630075006d0065006e007400690020005000440046002000630072006500610074006900200070006f00730073006f006e006f0020006500730073006500720065002000610070006500720074006900200063006f006e0020004100630072006f00620061007400200065002000410064006f00620065002000520065006100640065007200200035002e003000200065002000760065007200730069006f006e006900200073007500630063006500730073006900760065002e>
 /JPN <FEFF9ad854c18cea306a30d730ea30d730ec30b951fa529b7528002000410064006f0062006500200050004400460020658766f8306e4f5c6210306b4f7f75283057307e305930023053306e8a2d5b9a30674f5c62103055308c305f0020005000440046002030d530a130a430eb306f3001004100630072006f0062006100740020304a30883073002000410064006f00620065002000520065006100640065007200200035002e003000204ee5964d3067958b304f30533068304c3067304d307e305930023053306e8a2d5b9a306b306f30d530a930f330c8306e57cb30818fbc307f304c5fc59808306730593002>
 /KOR <FEFFc7740020c124c815c7440020c0acc6a9d558c5ec0020ace0d488c9c80020c2dcd5d80020c778c1c4c5d00020ac00c7a50020c801d569d55c002000410064006f0062006500200050004400460020bb38c11cb97c0020c791c131d569b2c8b2e4002e0020c774b807ac8c0020c791c131b41c00200050004400460020bb38c11cb2940020004100630072006f0062006100740020bc0f002000410064006f00620065002000520065006100640065007200200035002e00300020c774c0c1c5d0c11c0020c5f40020c2180020c788c2b5b2c8b2e4002e>
 /LTH <FEFF004e006100750064006f006b0069007400650020016100690075006f007300200070006100720061006d006500740072007500730020006e006f0072011700640061006d00690020006b0075007200740069002000410064006f00620065002000500044004600200064006f006b0075006d0065006e007400750073002c0020006b00750072006900650020006c0061006200690061007500730069006100690020007000720069007400610069006b007900740069002000610075006b01610074006f00730020006b006f006b007900620117007300200070006100720065006e006700740069006e00690061006d00200073007000610075007300640069006e0069006d00750069002e0020002000530075006b0075007200740069002000500044004600200064006f006b0075006d0065006e007400610069002000670061006c006900200062016b007400690020006100740069006400610072006f006d00690020004100630072006f006200610074002000690072002000410064006f00620065002000520065006100640065007200200035002e0030002000610072002000760117006c00650073006e0117006d00690073002000760065007200730069006a006f006d00690073002e>
 /LVI <FEFF0049007a006d0061006e0074006f006a00690065007400200161006f00730020006900650073007400610074012b006a0075006d00750073002c0020006c0061006900200076006500690064006f00740075002000410064006f00620065002000500044004600200064006f006b0075006d0065006e007400750073002c0020006b006100730020006900720020012b00700061016100690020007000690065006d01130072006f00740069002000610075006700730074006100730020006b00760061006c0069007401010074006500730020007000690072006d007300690065007300700069006501610061006e006100730020006400720075006b00610069002e00200049007a0076006500690064006f006a006900650074002000500044004600200064006f006b0075006d0065006e007400750073002c0020006b006f002000760061007200200061007400760113007200740020006100720020004100630072006f00620061007400200075006e002000410064006f00620065002000520065006100640065007200200035002e0030002c0020006b0101002000610072012b00200074006f0020006a00610075006e0101006b0101006d002000760065007200730069006a0101006d002e>
 /NLD (Gebruik deze instellingen om Adobe PDF-documenten te maken die zijn geoptimaliseerd voor prepress-afdrukken van hoge kwaliteit. De gemaakte PDF-documenten kunnen worden geopend met Acrobat en Adobe Reader 5.0 en hoger.)
 /NOR <FEFF004200720075006b00200064006900730073006500200069006e006e007300740069006c006c0069006e00670065006e0065002000740069006c002000e50020006f0070007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e00740065007200200073006f006d00200065007200200062006500730074002000650067006e0065007400200066006f00720020006600f80072007400720079006b006b0073007500740073006b00720069006600740020006100760020006800f800790020006b00760061006c0069007400650074002e0020005000440046002d0064006f006b0075006d0065006e00740065006e00650020006b0061006e002000e50070006e00650073002000690020004100630072006f00620061007400200065006c006c00650072002000410064006f00620065002000520065006100640065007200200035002e003000200065006c006c00650072002000730065006e006500720065002e>
 /POL <FEFF0055007300740061007700690065006e0069006100200064006f002000740077006f0072007a0065006e0069006100200064006f006b0075006d0065006e007400f300770020005000440046002000700072007a0065007a006e00610063007a006f006e00790063006800200064006f002000770079006400720075006b00f30077002000770020007700790073006f006b00690065006a0020006a0061006b006f015b00630069002e002000200044006f006b0075006d0065006e0074007900200050004400460020006d006f017c006e00610020006f007400770069006500720061010700200077002000700072006f006700720061006d006900650020004100630072006f00620061007400200069002000410064006f00620065002000520065006100640065007200200035002e0030002000690020006e006f00770073007a0079006d002e>
 /PTB <FEFF005500740069006c0069007a006500200065007300730061007300200063006f006e00660069006700750072006100e700f50065007300200064006500200066006f0072006d00610020006100200063007200690061007200200064006f00630075006d0065006e0074006f0073002000410064006f0062006500200050004400460020006d00610069007300200061006400650071007500610064006f00730020007000610072006100200070007200e9002d0069006d0070007200650073007300f50065007300200064006500200061006c007400610020007100750061006c00690064006100640065002e0020004f007300200064006f00630075006d0065006e0074006f00730020005000440046002000630072006900610064006f007300200070006f00640065006d0020007300650072002000610062006500720074006f007300200063006f006d0020006f0020004100630072006f006200610074002000650020006f002000410064006f00620065002000520065006100640065007200200035002e0030002000650020007600650072007300f50065007300200070006f00730074006500720069006f007200650073002e>
 /RUM <FEFF005500740069006c0069007a00610163006900200061006300650073007400650020007300650074010300720069002000700065006e007400720075002000610020006300720065006100200064006f00630075006d0065006e00740065002000410064006f006200650020005000440046002000610064006500630076006100740065002000700065006e0074007200750020007400690070010300720069007200650061002000700072006500700072006500730073002000640065002000630061006c006900740061007400650020007300750070006500720069006f006100720103002e002000200044006f00630075006d0065006e00740065006c00650020005000440046002000630072006500610074006500200070006f00740020006600690020006400650073006300680069007300650020006300750020004100630072006f006200610074002c002000410064006f00620065002000520065006100640065007200200035002e00300020015f00690020007600650072007300690075006e0069006c006500200075006c0074006500720069006f006100720065002e>
 /RUS <FEFF04180441043f043e043b044c04370443043904420435002004340430043d043d044b04350020043d0430044104420440043e0439043a043800200434043b044f00200441043e043704340430043d0438044f00200434043e043a0443043c0435043d0442043e0432002000410064006f006200650020005000440046002c0020043c0430043a04410438043c0430043b044c043d043e0020043f043e04340445043e0434044f04490438044500200434043b044f00200432044b0441043e043a043e043a0430044704350441044204320435043d043d043e0433043e00200434043e043f0435044704300442043d043e0433043e00200432044b0432043e04340430002e002000200421043e043704340430043d043d044b04350020005000440046002d0434043e043a0443043c0435043d0442044b0020043c043e0436043d043e0020043e0442043a0440044b043204300442044c002004410020043f043e043c043e0449044c044e0020004100630072006f00620061007400200438002000410064006f00620065002000520065006100640065007200200035002e00300020043800200431043e043b043504350020043f043e04370434043d043804450020043204350440044104380439002e>
 /SKY <FEFF0054006900650074006f0020006e006100730074006100760065006e0069006100200070006f0075017e0069007400650020006e00610020007600790074007600e100720061006e0069006500200064006f006b0075006d0065006e0074006f0076002000410064006f006200650020005000440046002c0020006b0074006f007200e90020007300610020006e0061006a006c0065007001610069006500200068006f0064006900610020006e00610020006b00760061006c00690074006e00fa00200074006c0061010d00200061002000700072006500700072006500730073002e00200056007900740076006f00720065006e00e900200064006f006b0075006d0065006e007400790020005000440046002000620075006400650020006d006f017e006e00e90020006f00740076006f00720069016500200076002000700072006f006700720061006d006f006300680020004100630072006f00620061007400200061002000410064006f00620065002000520065006100640065007200200035002e0030002000610020006e006f0076016100ed00630068002e>
 /SLV <FEFF005400650020006e006100730074006100760069007400760065002000750070006f0072006100620069007400650020007a00610020007500730074007600610072006a0061006e006a006500200064006f006b0075006d0065006e0074006f0076002000410064006f006200650020005000440046002c0020006b006900200073006f0020006e0061006a007000720069006d00650072006e0065006a016100690020007a00610020006b0061006b006f0076006f00730074006e006f0020007400690073006b0061006e006a00650020007300200070007200690070007200610076006f0020006e00610020007400690073006b002e00200020005500730074007600610072006a0065006e006500200064006f006b0075006d0065006e0074006500200050004400460020006a00650020006d006f0067006f010d00650020006f0064007000720065007400690020007a0020004100630072006f00620061007400200069006e002000410064006f00620065002000520065006100640065007200200035002e003000200069006e0020006e006f00760065006a01610069006d002e>
 /SUO <FEFF004b00e40079007400e40020006e00e40069007400e4002000610073006500740075006b007300690061002c0020006b0075006e0020006c0075006f00740020006c00e400680069006e006e00e4002000760061006100740069007600610061006e0020007000610069006e006100740075006b00730065006e002000760061006c006d0069007300740065006c00750074007900f6006800f6006e00200073006f00700069007600690061002000410064006f0062006500200050004400460020002d0064006f006b0075006d0065006e007400740065006a0061002e0020004c0075006f0064007500740020005000440046002d0064006f006b0075006d0065006e00740069007400200076006f0069006400610061006e0020006100760061007400610020004100630072006f0062006100740069006c006c00610020006a0061002000410064006f00620065002000520065006100640065007200200035002e0030003a006c006c00610020006a006100200075007500640065006d006d0069006c006c0061002e>
 /SVE <FEFF0041006e007600e4006e00640020006400650020006800e4007200200069006e0073007400e4006c006c006e0069006e006700610072006e00610020006f006d002000640075002000760069006c006c00200073006b006100700061002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400200073006f006d002000e400720020006c00e4006d0070006c0069006700610020006600f60072002000700072006500700072006500730073002d007500740073006b00720069006600740020006d006500640020006800f600670020006b00760061006c0069007400650074002e002000200053006b006100700061006400650020005000440046002d0064006f006b0075006d0065006e00740020006b0061006e002000f600700070006e00610073002000690020004100630072006f0062006100740020006f00630068002000410064006f00620065002000520065006100640065007200200035002e00300020006f00630068002000730065006e006100720065002e>
 /TUR <FEFF005900fc006b00730065006b0020006b0061006c006900740065006c0069002000f6006e002000790061007a006401310072006d00610020006200610073006b013100730131006e006100200065006e0020006900790069002000750079006100620069006c006500630065006b002000410064006f006200650020005000440046002000620065006c00670065006c0065007200690020006f006c0075015f007400750072006d0061006b0020006900e70069006e00200062007500200061007900610072006c0061007201310020006b0075006c006c0061006e0131006e002e00200020004f006c0075015f0074007500720075006c0061006e0020005000440046002000620065006c00670065006c0065007200690020004100630072006f006200610074002000760065002000410064006f00620065002000520065006100640065007200200035002e003000200076006500200073006f006e0072006100730131006e00640061006b00690020007300fc007200fc006d006c00650072006c00650020006100e70131006c006100620069006c00690072002e>
 /UKR <FEFF04120438043a043e0440043804410442043e043204430439044204350020044604560020043f043004400430043c043504420440043800200434043b044f0020044104420432043e04400435043d043d044f00200434043e043a0443043c0435043d044204560432002000410064006f006200650020005000440046002c0020044f043a04560020043d04300439043a04400430044904350020043f045604340445043e0434044f0442044c00200434043b044f0020043204380441043e043a043e044f043a04560441043d043e0433043e0020043f0435044004350434043404400443043a043e0432043e0433043e0020043404400443043a0443002e00200020042104420432043e04400435043d045600200434043e043a0443043c0435043d0442043800200050004400460020043c043e0436043d04300020043204560434043a0440043804420438002004430020004100630072006f006200610074002004420430002000410064006f00620065002000520065006100640065007200200035002e0030002004300431043e0020043f04560437043d04560448043e04570020043204350440044104560457002e>
 /ENU (Use these settings to create Adobe PDF documents best suited for high-quality prepress printing. Created PDF documents can be opened with Acrobat and Adobe Reader 5.0 and later.)
 /DEU <FEFF004a006f0062006f007000740069006f006e007300200066006f00720020004100630072006f006200610074002000440069007300740069006c006c0065007200200038002000280038002e0032002e00310029000d00500072006f006400750063006500730020005000440046002000660069006c0065007300200077006800690063006800200061007200650020007500730065006400200066006f00720020006f006e006c0069006e0065002e000d0028006300290020003200300031003000200053007000720069006e006700650072002d005600650072006c0061006700200047006d006200480020000d000d0054006800650020006c00610074006500730074002000760065007200730069006f006e002000630061006e00200062006500200064006f0077006e006c006f0061006400650064002000610074002000680074007400700073003a002f002f0070006f007200740061006c002d0064006f0072006400720065006300680074002e0073007000720069006e006700650072002d00730062006d002e0063006f006d002f00500072006f00640075006300740069006f006e002f0046006c006f0077002f00740065006300680064006f0063002f00640065006600610075006c0074002e0061007300700078000d0054006800650072006500200079006f0075002000630061006e00200061006c0073006f002000660069006e0064002000610020007300750069007400610062006c006500200045006e0066006f0063007500730020005000440046002000500072006f00660069006c006500200066006f0072002000500069007400530074006f0070002000500072006f00660065007300730069006f006e0061006c00200030003800200061006e0064002000500069007400530074006f0070002000530065007200760065007200200030003800200066006f007200200070007200650066006c00690067006800740069006e006700200079006f007500720020005000440046002000660069006c006500730020006200650066006f007200650020006a006f00620020007300750062006d0069007300730069006f006e002e000d>
 >>
 /Namespace [
 (Adobe)
 (Common)
 (1.0)
]
 /OtherNamespaces [
 <<
 /AsReaderSpreads false
 /CropImagesToFrames true
 /ErrorControl /WarnAndContinue
 /FlattenerIgnoreSpreadOverrides false
 /IncludeGuidesGrids false
 /IncludeNonPrinting false
 /IncludeSlug false
 /Namespace [
 (Adobe)
 (InDesign)
 (4.0)
]
 /OmitPlacedBitmaps false
 /OmitPlacedEPS false
 /OmitPlacedPDF false
 /SimulateOverprint /Legacy
 >>
 <<
 /AddBleedMarks false
 /AddColorBars false
 /AddCropMarks false
 /AddPageInfo false
 /AddRegMarks false
 /ConvertColors /ConvertToCMYK
 /DestinationProfileName ()
 /DestinationProfileSelector /DocumentCMYK
 /Downsample16BitImages true
 /FlattenerPreset <<
 /PresetSelector /MediumResolution
 >>
 /FormElements false
 /GenerateStructure false
 /IncludeBookmarks false
 /IncludeHyperlinks false
 /IncludeInteractive false
 /IncludeLayers false
 /IncludeProfiles false
 /MultimediaHandling /UseObjectSettings
 /Namespace [
 (Adobe)
 (CreativeSuite)
 (2.0)
]
 /PDFXOutputIntentProfileSelector /DocumentCMYK
 /PreserveEditing true
 /UntaggedCMYKHandling /LeaveUntagged
 /UntaggedRGBHandling /UseDocumentProfile
 /UseDocumentBleed false
 >>
]
>> setdistillerparams
<<
 /HWResolution [2400 2400]
 /PageSize [595.276 841.890]
>> setpagedevice

