
ORDINALS, COMPUTATIONS, AND MODELS OF SET THEORY

PETER KOEPKE

Abstract. Ordinary computations can be characterised by register machines
working with natural numbers. We study ordinal register machines where the
registers can hold arbitrary ordinal numbers. The class of sets of ordinals which
are computable by such machines has strong closure properties and satisfies
the set theoretic axiom system SO. This implies that ordinal computability is
equivalent to Gödel’s model L of constructible sets. In this tutorial we shall
give a proof of this theorem, starting with brief reviews of ordinal theory and
standard register machines.

1. Introduction.

There are many equivalent machine models for defining the class of intuitively
computable sets. We define computations on ordinals in analogy to the unlimited
register machines (URM) presented in [2]. An URM has registers R0, R1, . . . which
can hold natural numbers , i.e., elements of the set ω = {0, 1, . . .}. A register
program consists of commands to increase or to reset a register. The program
may loop on condition of equality between two registers. A natural generalisation
from the perspective of transfinite ordinal theory is to extend such calculations to
the class Ord = {0, 1, . . . , ω, ω+ 1, . . .} of all ordinal numbers so that registers may
contain arbitrary ordinals. At limit ordinals one defines the program states and the
registers contents by appropriate limit operations which may be viewed as inferior
limits (lim inf).

This notion of ordinal (register) computability obviously extends standard reg-
ister computability. By the Church-Turing thesis many operations on natural
numbers are ordinal computable. The ordinal arithmetic operations (addition, mul-
tiplication, exponentiation) and Gödel’s pairing function G : Ord×Ord → Ord
are also ordinal computable.

Using the pairing function one can view each ordinal α as a first-order sentence
with constant symbols for ordinals < α. One can then define a recursive truth
predicate T ⊆ Ord by:

α ∈ T iff (α,<,G ∩ α3, T ∩ α) � α.

1

2 PETER KOEPKE

This recursion can be carried out on an ordinal register machine, using stacks which
contain finite decreasing sequences of ordinals. For ordinals µ and ν the predicate
T codes the set

T (µ, α) = {β < µ|T (G(α, β)) = 1}.

The class

S = {T (µ, α)|µ, α ∈ Ord}

is the class of sets of ordinals of a transitive proper class model of set theory. Since
the ordinal computations can be carried out in the ⊆-smallest such model, namely
Gödel’s model L of constructible sets , we obtain the main result characterising
ordinal computability:

Theorem 1.1. A set x ⊆ Ord is ordinal computable if and only if x ∈ L.

This theorem may be viewed as an analogue of the Church-Turing thesis:
ordinal computability defines a natural and absolute class of sets, and it is stable
with respect to technical variations in its definition. Register machines on ordinals
were first considered by Ryan Bissell-Siders [1]; the results proved in this article
were guided by the related theory of ordinal Turing machines [7] which generalises
the infinite-time Turing machines of [5].
There are several open questions and projects connected with ordinal computability:

− how can other notions of computability be lifted from natural numbers to
ordinals?

− how do recursion theoretic notions lift to ordinal machines, and what is
their set-theoretic significance?

− can ordinal machines be used for the fine-structural analysis of the con-
structible universe?

− can we generate larger models of set theory by some stronger notions of
ordinal computation?

Our tutorial on ordinal computations will be structured as follows:

− A review of the theory of ordinals.
− A short review of standard register machines.
− Definition of ordinal register machines.
− The theory SO of sets of ordinals.
− Interpreting ZFC within SO.
− A recursion theorem for ordinal computability.
− Computing a model of SO.
− Every constructible set of ordinals is ordinal computable.
− An application: the generalised continuum hypothesis in L.

ORDINALS, COMPUTATIONS, AND MODELS OF SET THEORY 3

2. Ordinal numbers

Set theory, naively or axiomatically, is a natural, strong and convenient theory
which can be used as a foundation for all of mathematics. I.e., the standard notions
can be defined naturally and their usual properties can be shown naively or from
the axioms.

Numbers , in particular natural and real numbers, are the most important math-
ematical notions. The real numbers can be obtained from the natural numbers in
the usual set theoretic way: natural numbers → rational number → Dedekind cuts
≡ real numbers. In set theory one considers an infinitary extension of the natural
numbers: Cantor’s ordinal numbers allow to count beyond the natural numbers
into the transfinite. We shall use a formalisation which is usually associated with
John von Neumann. We motivate the formalisation by introducing (some) nat-
ural numbers in a seemingly ad hoc way.

In a sense which can be made precise, sets can iteratively be generated from the
empty set ∅. We also base numbers on the empty set. Define recursively

0 = ∅

1 = {0}

2 = {0, 1}(2.1)

3 = {0, 1, 2}
...

n+ 1 = {0, 1, . . . , n}
...

Obviously, the n-th set n has exactly n elements and we have chosen adequate
representatives for the intuitively given “standard” numbers. We state some facts
about our numbers which will lead to a general definition of number.

Proposition 2.1. Let m,n be numbers as above. Then m ∈ n iff the corresponding
standard numbers satisfy m < n. So for the above numbers, ∈ is isomorphic to the
standard ordering < on natural numbers.

2.1. Definitions.

Definition 2.1. A set or class A is transitive, Trans(A), iff ∀u, v(u ∈ v∧v ∈ A→
u ∈ A).

Obviously:

Proposition 2.2. Let m be a number as in (2.1). Then

a) m is transitive;
b) every element of m is transitive.

4 PETER KOEPKE

This leads to

Definition 2.2. A set x is an ordinal number, Ord(x), if Trans(x)∧∀y ∈ xTrans(y).
Let

Ord = {x|x is an ordinal number}

be the class of all ordinals.

The class Ord contains the above natural numbers. We use small greek letters
α, β, γ, . . . as variables ranging over ordinals. We write α < β instead of α ∈ β

and α 6 β instead of α < β ∨ α = β. Under appropriate set-theoretic axioms the
class Ord is strongly well-ordered by the relation <. Let us recall the axiom of
foundation which asserts the existence of ∈-minimal elements of sets:

∀x(∃yy ∈ x→ ∃y(y ∈ x ∧ ¬∃z(z ∈ x ∧ z ∈ y))).

Theorem 2.3. a) The class Ord is transitive.
b) Ord is linearly ordered by <.
c) Ord is well-ordered by <, i.e.,

∀x ⊆ Ord(x 6= ∅ → ∃α ∈ x∀β < αβ 6∈ x).

Proof. a) Let x ∈ α ∈ Ord. Since α is an ordinal we have Trans(x). Consider
y ∈ x. Since α is transitive we have x ∈ α and so Trans(x). Thus ∀y ∈ xTrans(y)
and x ∈ Ord.

b) Let α, β, γ ∈ Ord and α < β < γ. Then α < γ by the transitivity of the
ordinal γ.

Let α ∈ Ord. Then α 6∈ α and so α ≮ α.
For the linearity of < assume that there are ordinals α, β such that

α ≮ β, α 6= β, and β ≮ α.

By the axiom of foundation we can assume that α is minimal with that property,
and that with respect to α the ordinal β is minimal with that property. We claim
that α = β.

Let ξ ∈ α. By the minimality of α we have ξ < β or ξ = β or β < ξ. Assume
ξ = β or β < ξ. Then β < α contradicting the minimal choice of α. Hence ξ ∈ β.

Conversely let ξ ∈ β. By the minimality of β we have ξ < α or ξ = α or α < ξ.
Assume ξ = α. Then α < β, contradicting the choice of α and β. Assume α < ξ.
Then again α < β, contradiction. Thus ξ ∈ α.

But α = β contradicts the choice of α and β.
c) follows directly from the axiom of foundation. �

There are further important structural properties of ordinals:

Exercise 1. a) For α, β ∈ Ord we have α 6 β iff α ⊆ β. b) If x ⊆ Ord is a set of ordinals
then

S

x ∈ Ord and
T

x ∈ Ord. c) For every α ∈ Ord the set α + 1 = α ∪ {α} is the
immediate successor of α with respect to <.

ORDINALS, COMPUTATIONS, AND MODELS OF SET THEORY 5

Definition 2.3. An ordinal α is a successor ordinal if it is of the form α = β + 1.
An ordinal α is a limit ordinal if α is not a successor ordinal and α 6= 0.

The axiom of infinity states that there exists a limit ordinal.

Definition 2.4. Let ω be the smallest limit ordinal. A set n is a natural number
if n < ω. So ω is the set of natural numbers.

The latter definition is justified by

Theorem 2.4. The structure (ω, 0,+1) satisfies the Peano axioms. In particular
the principle of complete induction holds:

∀X ⊆ ω(0 ∈ X ∧ ∀n(n ∈ X → n+ 1 ∈ X) → X = ω).

2.2. Induction and recursion. The natural numbers form an initial segment of
the ordinal numbers:

n ∈ ω → n ∈ Ord .

The most remarkable fact about ordinals is that the principles of induction and
recursion can be extended from the natural numbers to all the ordinals.

Theorem 2.5. Let ϕ(v, ~w) be an ∈-formula. Then

∀~w(∃α ∈ Ordϕ(α, ~w) → ∃α ∈ Ord(ϕ(α, ~w) ∧ ∀β < α¬ϕ(β, ~w))).

Proof. Assume ϕ(α, ~w). Let x = {β 6 α|ϕ(β, ~w)}. Then x 6= ∅. By the axiom of
foundation take an ∈-minimal element α′ ∈ x. Then ∀β < α′¬ϕ(β, ~w) and

ϕ(α′, ~w) ∧ ∀β < α′¬ϕ(β, ~w)). �

This theorem can be reformulated as an induction principle which looks more
like the familiar principle of complete induction. According to the various types of
ordinals one distinguishes the initial case 0, the successor case, and the limit case.

Theorem 2.6. Let ϕ(v, ~w) be an ∈-formula and assume that

− ϕ(0, ~w)
− ∀α ∈ Ord(ϕ(α, ~w) → ϕ(α+ 1, ~w))
− ∀α(α is a limit ordinal → (∀β < αϕ(β, ~w) → ϕ(α, ~w)))

Then ∀α ∈ Ordϕ(α, ~w).

The most important transfinite construction principle is construction by recur-
sion along the ordinals.

Theorem 2.7. Let G : V → V be a definable function. Then there is a unique
definable function F : Ord → V which for every α ∈ Ord satisfies the recursion
equation

F (α) = G(F ↾ α).

6 PETER KOEPKE

Proof. The function F may be defined as the union of all set-sized approximations
behaving similarly:

F =
⋃

{f |∃γ ∈ Ord(f : γ → V ∧ ∀α ∈ γf(α) = G(f ↾ α))}.

Using the axioms of replacement and union the existence of sufficiently many com-
patible approximations f can be shown by ordinal induction. �

The recursion rule G will usually be described separately for successor and limit
ordinals and the initial case 0:

Theorem 2.8. Let G0 ∈ V and let Gsucc : V → V and Glim : V → V be definable
functions. Then there is a unique definable function F : Ord → V such that

− F (0) = G0

− ∀α ∈ OrdF (α+ 1) = Gsucc(F (α))
− ∀α ∈ Ord(α is a limit ordinal → F (α) = Glim(F ↾ α)).

Exercise 2. Prove this form of the recursion theorem from the recursion theorem 2.7.

An example of a recursive construction is the von Neumann hierarchy (Vα|
α ∈ Ord) with

− V0 = ∅
− Vα+1 = P(Vα)
− Vλ =

⋃

α<λ Vα =
⋃

range((Vα|α < λ)).

Here P(.) denotes the power set operation which by the powerset axiom maps sets
to sets.

2.3. Ordinal arithmetic. The standard arithmetic operations have well-known
recursive definitions which can be extended to all the ordinals by transfinite recur-
sion.

Definition 2.5. The ordinal sum α+ β is defined by recursion on β ∈ Ord by

− α+ 0 = α

− α+ (β + 1) = (α+ β) + 1
− α+ λ =

⋃

β<λ(α+ β).

Definition 2.6. The ordinal product α · β is defined by recursion on β ∈ Ord by

− α · 0 = 0
− α · (β + 1) = (α · β) + α

− α · λ =
⋃

β<λ(α · β).

These operations obviously extend the arithmetic on natural numbers.

Exercise 3. Exhibit explicit recursion rules for + and · as in the recursion theorem 2.7.

ORDINALS, COMPUTATIONS, AND MODELS OF SET THEORY 7

Exercise 4. Prove the following arithmetic laws for ordinal arithmetic:

a) (α + β) + γ = α + (β + γ).
b) (α · β) · γ = α · (β · γ).
c) α · (β + γ) = α · β + α · γ.

Show that the operations are not commutative, and that the distributive law (α+β) ·γ =
α · γ + α · γ fails.

Exercise 5. Prove

a) ∀α∃βα + β = β.
b) ∀α∃βα · β = β.

The operations + and · are continuous at limit ordinals with respect to ordinal
limits :

Definition 2.7. Let (δi|i < λ) be a sequence of ordinals of limit length λ. Then

a) limi<λ δi =
⋃

i<λ δi is the limit of (δi|i < λ);
b) lim infi<λ δi = limi<λ min{δj |i 6 j < λ} is the inferior limit of (δi|i < λ).

Exercise 6. Define a topology on the class Ord such that limit ordinals are limit points
in the sense of the topology and such that the operations + and · are continuous in the
sense of the topology.

2.4. The Gödel pairing function.

Definition 2.8. Define a well-ordering ≺ on Ord×Ord by

(γ, δ) ≺ (γ′, δ′) iff max(γ, δ) < max(γ′, δ′) ∨

(max(γ, δ) = max(γ′, δ′) ∧ γ < γ′) ∨

(max(γ, δ) = max(γ′, δ′) ∧ γ = γ′ ∧ δ < δ′).

Exercise 7. Show that ≺ is a set-like well-ordering of Ord×Ord. Set-like means that

∀γ
′

, δ
′{(γ, δ)|(γ, δ) ≺ (γ′

, δ
′)} is a set.

Definition 2.9. Define a function G−1 : Ord → Ord×Ord recursively by

G−1(α) = the ≺ -minimal element of Ord×Ord\{G−1(β)|β < α}.

Theorem 2.9. G−1 : (Ord, <) → (Ord×Ord,≺) is an order-isomorphism.

Proof. G−1(α) is defined for every α ∈ Ord since ≺ is set-like and so

Ord×Ord \{G−1(β)|β < α} 6= ∅.

The definition of G−1(α) immediately implies that G−1 is injective. For the sur-
jectivity assume the contrary and let (γ′, δ′) be ≺-minimal such that (γ′, δ′) 6∈
range(G−1). {(γ, δ)|(γ, δ) ≺ (γ′, δ′)} is a set. By the replacement axiom choose an
ordinal α such that

∀(γ, δ) ≺ (γ′, δ′)∃β < αG−1(β) = (γ, δ).

8 PETER KOEPKE

But then the recursive definition of G−1 will imply that G−1(α) = (γ′, δ′). Contra-
diction.

The recursive definition also implies directly that

β < α↔ G−1(β) ≺ G−1(α). �

Exercise 8. Compute G−1(n) for n = 1, . . . , 6. What is G−1(ω)?

Definition 2.10. Let G be the inverse of the function G−1. G : Ord×Ord ↔ Ord
is called the Gödel pairing function for ordinals. Let G0 and G1 the components
of G−1, i.e.,

∀αG(G0(α), G1(α)) = α.

3. Register machines

There are many equivalent machine models for defining the class of intuitively
computable sets. We base our presentation on the unlimited register machine pre-
sented in [2].

3.1. Unlimited register machines - URMs.

Definition 3.1. An unlimited register machine URM has registers R0, R1, . . . which
can hold natural numbers. A register program consists of commands to increase or
to reset a register. The program may jump on condition of equality between two
registers.

An URM program is a finite list P = I0, I1, . . . , Is−1 of instructions each of
which may be of one of four kinds:

a) the zero instruction Z(n) changes the contents of Rn to 0, leaving all other
registers unaltered;

b) the successor instruction S(n) increases the natural number contained in Rn by
1, leaving all other registers unaltered;

c) the transfer instruction T (m,n) replaces the contents of Rn by the natural num-
ber contained in Rm, leaving all other registers unaltered;

d) the jump instruction J(m,n, q) is carried out within the program P as follows:
the contents rm and rn of the registers Rm and Rn are compared, but all the
registers are left unaltered; then, if Rm = Rn, the URM proceeds to the qth
instruction of P ; if Rm 6= Rn, the URM proceeds to the next instruction in P .

The instructions of a register program can be addressed by their indices which are
called program states. At each ordinal time t the machine will be in a configuration
consisting of a program state I(t) ∈ ω and the register contents which can be viewed
as a function R(t) : ω → ω. R(t)(n) is the content of the register Rn at time t. We
also write Rn(t) instead of R(t)(n).

ORDINALS, COMPUTATIONS, AND MODELS OF SET THEORY 9

Definition 3.2. Let P = I0, I1, . . . , Is−1 be a program. A triple

I : θ → ω,R : θ → (ωω)

is a (register) computation by P if the following hold:

a) θ 6 ω; θ is the length of the computation;
b) I(0) = 0; the machine starts in state 0;
c) If t < θ and I(t) 6∈ s = {0, 1, . . . , s− 1} then θ = t+ 1; the machine stops if the

machine state is not a program state of P ;
d) If t < θ and I(t) ∈ state(P) then t+1 < θ; the next configuration is determined

by the instruction II(t) :
i. if II(t) is the zero instruction Z(n) then let I(t + 1) = I(t) + 1 and define
R(t+ 1) : ω → Ord by

Rk(t+ 1) =

{

0, if k = n

Rk(t), if k 6= n

ii. if II(t) is the successor instruction S(n) then let I(t + 1) = I(t) + 1 and
define R(t+ 1) : ω → Ord by

Rk(t+ 1) =

{

Rk(t) + 1, if k = n

Rk(t), if k 6= n

iii. if II(t) is the transfer instruction T (m,n) then let I(t + 1) = I(t) + 1 and
define R(t+ 1) : ω → Ord by

Rk(t+ 1) =

{

Rm(t), if Rm(t) = Rn(t)
Rk(t), if Rm(t) 6= Rn(t)

iv. if II(t) is the jump instruction J(m,n, q) then let R(t+ 1) = R(t) and

I(t+ 1) =

{

q, if k = n

I(t) + 1, if k 6= n

The computation is obviously recursively determined by the initial register contents
R(0) and the program P . We call it the computation by P with imput R(0). If the
computation stops at length θ = β+1 < ω then R(β) are the final register contents.
In this case we say that P computes R(β)(0) from R(0) and write P : R(0) 7→
R(β)(0).

3.2. Algorithms. It can be shown that the unlimited register machine is equivalent
to the other standard models of computations like Turing machines. So a function
f : ω → ω is computable by the URM iff it is Turing computable. In view of our
later generalisations we present some arithmetic register programs:

10 PETER KOEPKE

Addition, computing gamma = alpha + beta:

0 alpha’:=0

1 beta’:=0

2 gamma:=0

3 if alpha=alpha’ then go to 7

4 alpha’:=alpha’+1

5 gamma:=gamma+1

6 go to 3

7 if beta=beta’ then STOP

8 beta’:=beta’+1

9 gamma:=gamma+1

10 go to 7

Exercise 9. Write the addition program in the form P = I0, I1, . . . , Is−1 as in Definition
3.1.

Observe that the function n 7→ n−̇1 is not a basic function of the URM. It can,
however, be programmed as follows:

Decrementation, computing beta = alpha 1:

0 alpha’:=0

1 beta:=0

2 if alpha=alpha’ then STOP

3 alpha’:=alpha’+1

4 if alpha=alpha’ then STOP

5 beta:=beta+1

6 go to 3

Multiplication, computing gamma = alpha * beta:

1 beta’:=0

2 gamma:=0

3 if beta=beta’ then STOP

4 beta’:=beta’+1

5 gamma:=gamma + alpha

6 go to 3

Exercise 10. Write a program for division with remainder.

We interpret the program line gamma:=gamma + alpha as a macro, i.e., the above
addition program has to be substituted for that line with reasonable modifications
of variables, registers and line numbers. Also transfer of arguments and values
between variables has to be arranged. This could, e.g., be achieved as follows:

ORDINALS, COMPUTATIONS, AND MODELS OF SET THEORY 11

Multiplication, computing gamma = alpha * beta:

1 beta’:=0

2 gamma:=0

3 if beta=beta’ then STOP

4 beta’=beta’+1

5 alpha’’:=0

6 beta’’:=0

7 gamma’:=0

8 gamma=alpha’’ then go to 12

9 alpha’’=alpha’’+1

10 gamma’=gamma’+1

11 go to 8

12 if alpha=beta’’ then go to 16

13 beta’’=beta’’+1

14 gamma’=gamma’+1

15 go to 12

16 gamma:=gamma’

17 go to 3

4. Ordinal computations

The URM is based on the operations x := 0 and x := x+ 1 on natural numbers.
An obvious generalisation from the perspective of transfinite ordinal theory is to
extend such calculations to the class Ord of all ordinal numbers an let registers
contain arbitrary ordinals. At limit ordinals one defines the program states and the
registers contents by appropriate limit operations which may be viewed as inferior
limits . Note that we shall use exactly the same programs for ordinal computations
as for computations with natural numbers.

This notion of ordinal (register) computability obviously extends standard reg-
ister computability. By the Church-Turing thesis many operations on natural
numbers are ordinal computable. The ordinal arithmetic operations (addition, mul-
tiplication, exponentiation) and Gödel’s pairing function G : Ord×Ord → Ord
are also ordinal computable.

4.1. Ordinal register machines - ORMs.

Definition 4.1. Let P = I0, I1, . . . , Is−1 be an URM program. A triple

I : θ → ω,R : θ → (ωOrd)

is an (ordinal register) computation by P if the following hold:

a) θ is a successor ordinal or θ = Ord; θ is the length of the computation;
b) I(0) = 0; the machine starts in state 0;

12 PETER KOEPKE

c) If t < θ and I(t) 6∈ s = {0, 1, . . . , s− 1} then θ = t+ 1; the machine stops if the
machine state is not a program state of P ;

d) If t < θ and I(t) ∈ state(P) then t+1 < θ; the next configuration is determined
by the instruction II(t) :

i. if II(t) is the zero instruction Z(n) then let I(t + 1) = I(t) + 1 and define
R(t+ 1) : ω → Ord by

Rk(t+ 1) =

{

0, if k = n

Rk(t), if k 6= n

ii. if II(t) is the successor instruction S(n) then let I(t + 1) = I(t) + 1 and
define R(t+ 1) : ω → Ord by

Rk(t+ 1) =

{

Rk(t) + 1, if k = n

Rk(t), if k 6= n

iii. if II(t) is the transfer instruction T (m,n) then let I(t + 1) = I(t) + 1 and
define R(t+ 1) : ω → Ord by

Rk(t+ 1) =

{

Rm(t), if k = n

Rk(t), if k 6= n

iv. if II(t) is the jump instruction J(m,n, q) then let R(t+ 1) = R(t) and

I(t+ 1) =

{

q, if Rm(t) = Rn(t)
I(t) + 1, if Rm(t) 6= Rn(t)

e) If t < θ is a limit ordinal, the machine constellation at t is determined by taking
inferior limits:

∀k ∈ ωRk(t) = lim inf
r→t

Rk(r);

I(t) = lim inf
r→t

I(r).

The computation is obviously determined recursively by the initial register contents
R(0) and the program P . We call it the ordinal computation by P with imput
R(0). If the computation stops, θ = β + 1 is a successor ordinal and R(β) is the
final register content. In this case we say that P computes R(β)(0) from R(0) and
write P : R(0) 7→ R(β)(0).

The definition of I(t) for limit t can be motivated as follows. Since a program is
finite its execution will lead to some (complex) looping structure involving loops,
subloops and so forth. This can be presented by pseudo code like:

ORDINALS, COMPUTATIONS, AND MODELS OF SET THEORY 13

...

−→ 17:begin loop

...

21: begin subloop

...

29: end subloop

...

32:end loop

...

Assume that for times r → t the loop (17 − 32) with its subloop (21 − 29) is
traversed cofinally often. Then at time t it is natural to put the machine at the
start of the “main loop”. Assuming that the lines of the program are enumerated
in increasing order this corresponds to the lim inf rule

I(t) = lim inf
r→t

S(r).

The interpretation of programs yields associated notions of computability.

Definition 4.2. An n-ary partial function F : Ordn ⇀ Ord is (ordinal reg-
ister) computable if there is a register program P such that for every n-tuple
(α0, . . . , αn−1) holds

P : (α0, . . . , αn−1, 0, 0, . . .) 7→ F (α0, . . . , αn−1).

Definition 4.3. A subset x ⊆ Ord is (ordinal register) computable if there is a
register program P and ordinals δ1, . . . , δn−1 such that for every α ∈ Ord holds

P : (α, δ1, . . . , δn−1, 0, 0, . . .) 7→ χx(α),

where χx is the characteristic function of x.

4.2. Ordinal algorithms. Since ordinal register machines are a straightforward
extension of standard register machines, all recursive functions can be computed by
an ordinal register machine. The basic operations on ordinal numbers are ordinal
register computable by the same URM programs that we used before:

Ordinal addition, computing gamma = alpha + beta:

0 alpha’:=0

1 beta’:=0

2 gamma:=0

3 if alpha=alpha’ then go to 7

4 alpha’:=alpha’+1

5 gamma:=gamma+1

6 go to 3

14 PETER KOEPKE

7 if beta=beta’ then STOP

8 beta’:=beta’+1

9 gamma:=gamma+1

10 go to 7

Observe that at limit times this algorithm, by the lim infrule, will nicely cycle back
to the beginnings of loops 3 - 6 or 7 - 10 resp. and thus it will implement the
recursion rule for addition at limit ordinals.

Ordinal decrement, computing beta = alpha 1:

0 alpha’:=0

1 beta:=0

2 if alpha=alpha’ then STOP

3 alpha’:=alpha’+1

4 if alpha=alpha’ then STOP

5 beta:=beta+1

6 go to 3

Note that by the lim inf rule, at limit times t, the register contents will be α′ =
β = t. The program computes the ordinal predecessor function

α−̇1 =

{

β, if α = β + 1
α, else

Ordinal computability is closed under compositions:

Theorem 4.1. Let f(v0, . . . , vn−1) and g0(~w), . . . , gn−1(~w) be computable functions
on the ordinals. Then the composition h(~w) = f(g0(~w), . . . , gn−1(~w)) is ordinal
register computable.

The ordinal exponentiation function α 7→ βα will be important for the sequel:

Ordinal exponentiation, computing gamma = beta ** alpha:

1 gamma:=1

2 alpha’:=0

3 if alpha=alpha’ then STOP

4 gamma=gamma * beta

5 alpha’=alpha’+1

6 go to 3

The Gödel pairing function is also ordinal computable:

Goedel pairing, computing gamma = G(alpha,beta):

0 alpha’:=0

1 beta’:=0

2 eta:=0

3 flag:=0

ORDINALS, COMPUTATIONS, AND MODELS OF SET THEORY 15

4 gamma:=0

5 if alpha=alpha’ and beta=beta’ then STOP

6 if alpha’=eta and and beta’=eta and flag=0 then

alpha’=0, flag:=1, go to 5 fi

7 if alpha’=eta and and beta’=eta and flag=1 then

eta:=eta+1, alpha’=eta, beta’=0, gamma:=gamma+1, go to 5 fi

8 if beta’<eta and flag=0 then

beta’:=beta’+1, gamma:=gamma+1, go to 5 fi

9 if alpha’<eta and flag=1 then

alpha’:=alpha’+1, gamma:=gamma+1, go to 5 fi

The inverse functions G0 and G1 satisfying

∀γγ = G(G0(γ), G1(γ))

are ordinal computable as well. To compute G0(γ) compute G(α, β) for α, β < γ

until you find α, β with G(α, β) = γ; then set G0(γ) = α. This is a special case of
the following inverse function theorem.

Theorem 4.2. Let the function f : Ordn → Ord be ordinal register computable
and surjective. Then there are ordinal register computable functions g0, . . . , gn−1 :
Ord → Ord such that

∀αf(g0(α), . . . , gn−1(α)) = α.

5. The theory SO of sets of ordinals

Ordinal Turing computations do not directly produce highly hierarchical sets
but ordinals and sets of ordinals. It is well-known that a model of Zermelo-

Fraenkel set theory with the axiom of choice (ZFC) is determined by its sets of
ordinals [6], Theorem 13.28. This motivates the formulation of a theory SO which
axiomatises the sets of ordinals in a model of ZFC. The theory SO is two-sorted
where the intended interpretations are ordinals and sets of ordinals. Let LSO be
the language

LSO := {On, SOn, <,=,∈, g}

where On and SOn are unary predicate symbols, <, =, and ∈ are binary predicate
symbols and g is a two-place function. The intended standard interpretation of g
is given by the Gödel pairing function G. To simplify notation, we use lower case
greek letters to range over elements of On and lower case roman letters to range
over elements of SOn.

Definition 5.1. The Theory SO is formulated in the first-order language LSO and
consists of the following list of axioms:

16 PETER KOEPKE

1. Well-ordering axiom (WO):
∀α, β, γ(¬α < α ∧ (α < β ∧ β < γ → α < γ) ∧
(α < β ∨ α = β ∨ β < α)) ∧
∀a(∃α(α ∈ a) → ∃α(α ∈ a ∧ ∀β(β < α→ ¬β ∈ a)));

2. Axiom of infinity (INF) (existence of a limit ordinal):
∃α(∃β(β < α) ∧ ∀β(β < α→ ∃γ(β < γ ∧ γ < α)));

3. Axiom of extensionality (EXT): ∀a, b(∀α(α ∈ a↔ α ∈ b) → a = b);
4. Initial segment axiom (INI): ∀α∃a∀β(β < α↔ β ∈ a);
5. Boundedness axiom (BOU): ∀a∃α∀β(β ∈ a→ β < α);
6. Pairing axiom (GPF) (Gödel Pairing Function):

∀α, β, γ(g(β, γ) ≤ α↔ ∀δ, ǫ((δ, ǫ) <∗ (β, γ) → g(δ, ǫ) < α)).
Here (α, β) <∗ (γ, δ) stands for
∃η, θ(η = max(α, β) ∧ θ = max(γ, δ) ∧ (η < θ ∨
(η = θ ∧ α < γ) ∨ (η = θ ∧ α = γ ∧ β < δ))),
where γ = max(α, β) abbreviates (α > β ∧ γ = α) ∨ (α ≤ β ∧ γ = β);

7. Surjectivity of pairing (SUR): ∀α∃β, γ(α = g(β, γ));
8. Axiom schema of separation (SEP): For all LSO-formulae φ(α, P1, . . . , Pn) pos-

tulate:
∀P1, . . . , Pn∀a∃b∀α(α ∈ b↔ α ∈ a ∧ φ(α, P1, . . . , Pn));

9. Axiom schema of replacement (REP): For all LSO-formulae φ(α, β, P1, . . . , Pn)
postulate:
∀P1, . . . , Pn(∀ξ, ζ1, ζ2(φ(ξ, ζ1, P1, . . . , Pn) ∧ φ(ξ, ζ2, P1, . . . , Pn) → ζ1 = ζ2) →
∀a∃b∀ζ(ζ ∈ b↔ ∃ξ ∈ aφ(ξ, ζ, P1, . . . , Pn)));

10. Powerset axiom (POW):
∀a∃b(∀z(∃α(α ∈ z) ∧ ∀α(α ∈ z → α ∈ a) → ∃ξ∀β(β ∈ z ↔ g(β, ξ) ∈ b))).

In a model of ZFC the class of sets of ordinals together with the standard relations
<, =, and ∈, and the Gödel pairing function G constitutes a model of SO. Note
that the powerset axiom of SO requires the axiom of choice since it stipulates the
existence of well-ordered powersets. Thus:

Theorem 5.1. The theory SO can be interpreted in the theory ZFC.

For the converse direction, which will be proved in the two subsequent sections,
we first indicate that all basic mathematical notions can be reasonably formalised
within the system SO. Beyond the specific requirements of the present paper, this
also shows that the theory SO might have some wider interest as a foundational
theory.

For the formalisation of mathematics within SO we make use of the familiar
class term notation A = {α|φ(α)} to denote classes of ordinals. If A = {α|φ(α)}
is a non-empty class of ordinals let min(A) denote the minimal element of A. The
existence of a unique minimum follows from the axioms (INI), (SEP) and (WO).

ORDINALS, COMPUTATIONS, AND MODELS OF SET THEORY 17

(BOU) ensures the existence of an upper bound for each set a, the least of which will
be noted lub(a). By (INI) the classes ια := {β|β < α} are sets. Using (SEP) and
(INI), one sees that the union and intersection of two sets are again sets. Finite sets
are denoted by {α0, α1, . . . , αn−1}. Their existence is implied by (INI) and (SEP).
We write POW(b, a) for b being a set satisfying (POW) for a; note that in SO the
set b is not uniquely determined by a. ω denotes the least element of the class
of limit numbers which by (INF) is not empty. Finally let 0 := min({α|On(α)}),
1 := lub({0}), etc.

The inverse functions G1, G2 of G are defined via the properties α = G1(β) ↔
∃γ(β = G(α, γ)) resp. α = G2(β) ↔ ∃γ(β = G(γ, α)). The axioms (GPF) and
(SUR) imply the well-known properties of the Gödel pairing function and its pro-
jections, such as bijectivity and monotonicity properties. To simplify notation, write
(α, β) := G(α, β). Every set can be regarded as a set of pairs a = {(α, β)|(α, β) ∈ a}
or more generally as a set of n-tuples. In this way n-ary relations and functions
on ordinals can be represented by sets. We define further notions connected with
relations and functions.

Definition 5.2. For sets or classes R,X, Y, f define the following notions in SO:

∅ := ι0

dom(R) := {α|∃β((α, β) ∈ R)}

ran(R) := {β|∃α((α, β) ∈ R)}

fun(f) := ∀α, β1, β2((α, β1) ∈ f ∧ (α, β2) ∈ f → β1 = β2)

f : X → Y := fun(f) ∧ dom(f) = X ∧ ran(f) ⊂ Y

α = f(β) := (α, β) ∈ f

αRβ := (α, β) ∈ R

X × Y := {γ|G1(γ) ∈ X ∧G2(γ) ∈ Y }

X ↾ Y := {(α, β) ∈ X |α ∈ Y }

The axioms of SO imply that these notions have their usual basic properties.
We can now prove transfinite induction and recursion in SO.

Theorem 5.2. (SO) Let φ(α,X1, . . . , Xn) be an LSO-formula. Then for all
X1, . . . , Xn,

∀α((∀β < αφ(β,X1, . . . , Xn)) → φ(α,X1, . . . , Xn))

implies

∀αφ(α,X1, . . . , Xn)

Proof. Otherwise, by (WO), there would be a minimal counterexample α, con-
tradicting the assumption. �

18 PETER KOEPKE

Theorem 5.3. (SO) Let R : On× SOn → On be a function defined by some
formula φ(α, f, β,X1, . . . , Xn). Then there exists a unique function F : On → On
defined by a formula ψ(α, β,X1, . . . , Xn) such that

(5.2) ∀α(F (α) = R(α, F ↾ ια))

Proof. This is proved similar to the recursion theorem in ZF: We define the no-
tion of approximation functions which are set-functions defined on proper initial
segments of Ord, satisfying (5.2) on their domain. Then we obtain F as the union
of all of these approximation functions. �

As in ZF this result can be generalised from the relation < to arbitrary set-like
well-founded relations.

Using Gödel-pairing one can also formalise ordered pairs of an ordinal α and a
set z by

(α, z) = {G(α, β)|β ∈ z}.

One could now develop further mathematical notions - numbers, spaces, first-order
syntax and semantics — in SO much the way as one does in standard set theory.

6. Assembling sets along wellfounded relations

In standard set theory a set x can be represented as a point in a wellfounded rela-
tion: consider the ∈-relation on the transitive closure TC({x}) with distinguished
element x ∈ TC({x}). By the Mostowski isomorphism theorem x is uniquely
determined by the pair (x,TC({x})) up to order isomorphism.

By the previous section, ordered pairs and wellfounded relations can be handled
within the theory SO. So assume SO for the following construction. We shall
eventually define a model of ZFC within SO.

Definition 6.1. An ordered pair x = (x,Rx) is a point if Rx is a wellfounded
relation on ordinals and x ∈ dom(Rx). Let P be the class of all points. Unless
specified otherwise we use Rx to denote the wellfounded relation of the point x.

Note that according to our previous considerations one can reasonably define the
class P in SO as well as in ZFC. In ZFC, (x,∈↾ TC({x})) is a point. Conversely,
again in ZFC, any point x = (x,Rx) can be interpreted as a standard set I(x):
Define recursively

Ix : dom(Rx) → V , by Ix(u) = {Ix(v)|v Rx u}.

Then let I(x) = Ix(x) be the interpretation of x. Note that for points x and y

Ix(u) = Iy(v)

iff {Ix(u′)|u′ Rx u} = {Ix(v′)|v′ Ry v}

iff (∀u′ Rx u∃v
′ Ry vIx(u′) = Iy(v′)) ∧ (∀v′ Ry v∃u

′ Rx uIx(u′) = Iy(v′)).

ORDINALS, COMPUTATIONS, AND MODELS OF SET THEORY 19

This means that the relation Ix(u) = Iy(v) in the variables u and v can be defined
recursively without actually forming the interpretations Ix(u) and Iy(v).

Hence this relation can be defined in SO.

Definition 6.2. Define a relation ≡ on points x = (x,Rx), y = (y,Ry) by induction
on the product wellorder Rx ×Ry:

(x,Rx) ≡ (y,Ry) iff ∀uRxx∃vRyy(u,Rx) ≡ (v,Ry)∧∀vRyy∃uRxx(u,Rx) ≡ (v,Ry).

Lemma 6.1. (SO) ≡ is an equivalence relation on P.

Proof. Reflexivity. Consider a point x = (x,Rx). We show by induction on Rx

that for all u ∈ dom(Rx) holds (u,Rx) ≡ (u,Rx). Assume that the claim holds for
all v Rx u. Consider some v Rx u. By the inductive assumption, (v,Rx) ≡ (v,Rx).
This implies

∀v Rx u∃w Rx u(v,Rx) ≡ (w,Rx).

By symmetry we also have

∀w Rx u∃v Rx u(v,Rx) ≡ (w,Rx).

Together these imply (u,Rx) ≡ (u,Rx).
Symmetry. Consider points x = (x,Rx) and y = (y,Ry). We show by induction on
the wellfounded relation Rx ×Ry that

(u,Rx) ≡ (v,Ry) iff (v,Ry) ≡ (u,Rx).

Assume that the claim holds for all (u′, v′) with u′ Rx u and v′ Ry v. Assume
that (u,Rx) ≡ (v,Ry). To show that (v,Ry) ≡ (u,Rx) consider v′ Ry v. By
assumption take u′Rx u such that (u′, Rx) ≡ (v′, Ry). By the inductive assumption
on symmetry, (v′, Ry) ≡ (u′, Rx). Hence

∀v′ Ry v∃u
′ Rx u(v

′, Ry) ≡ (u′, Rx).

Similarly
∀u′ Rx u∃v

′ Ry v(v
′, Ry) ≡ (u′, Rx)

and thus (v,Ry) ≡ (u,Rx). This shows

(u,Rx) ≡ (v,Ry) → (v,Ry) ≡ (u,Rx).

By the symmetry of the situation the implication from right to left also holds and

(u,Rx) ≡ (v,Ry) ↔ (v,Ry) ≡ (u,Rx).

In particular for x = (x,Rx) and y = (y,Ry)

x ≡ y ↔ y ≡ x.

Transitivity. Consider points x = (x,Rx), y = (y,Ry) and z = (z,Rz). We show
by induction on the wellfounded relation Rx ×Ry ×Rz that

(u,Rx) ≡ (v,Ry) ∧ (v,Ry) ≡ (w,Rz) → (u,Rx) ≡ (w,Rz).

20 PETER KOEPKE

Assume that the claim holds for all (u′, v′, w′) with u′ Rx u, v
′ Ry v and w′ Rz w.

Assume that

(u,Rx) ≡ (v,Ry) ∧ (v,Ry) ≡ (w,Rz).

To show that (u,Rx) ≡ (w,Rz) consider u′ Rx u. By (u,Rx) ≡ (v,Ry) take v′ Ry v

such that (u′, Rx) ≡ (v′, Ry). By (v,Ry) ≡ (w,Rz) take w′Rzw such that (v′, Ry) ≡
(w′, Rz). By the inductive assumption, (u′, Rx) ≡ (v′, Ry) and (v′, Ry) ≡ (w′, Rz)
imply that (u′, Rx) ≡ (w′, Rz). Thus

∀u′ Rx u∃w
′ Rz w(u′, Rx) ≡ (w′, Rz).

Similarly

∀w′ Rz w∃u
′ Rx u(u

′, Rx) ≡ (w′, Rz)

and thus (u,Rx) ≡ (w,Rz). In particular for x = (x,Rx), y = (y,Ry) and z =
(z,Rz)

x ≡ y ∧ y ≡ z → x ≡ z. �

We now define a membership relation for points.

Definition 6.3. Let x = (x,Rx) and y = (y,Ry) be points. Then set

x ◭ y iff ∃v Ry yx ≡ (v,Ry).

Lemma 6.2. (SO) The equivalence relation ≡ is a congruence relation with respect
to ◭, i.e.,

x ◭ y ∧ x ≡ x′ ∧ y ≡ y′ → x′ ◭ y′.

Proof. Let x ◭ y∧x ≡ x′∧y ≡ y′ → x′ ◭ y′. Take vRyy such that x ≡ (v,Ry). By
y ≡ y′ take v′Ry′y′ such that (v,Ry) ≡ (v′, Ry′). Since ≡ is an equivalence relation,
the equivalences x ≡ x′, x ≡ (v,Ry) and (v,Ry) ≡ (v′, Ry′) imply x′ ≡ (v′, Ry′).
Hence x′ ◭ y′. �

7. The class of points satisfies ZFC

We show that the class P of points with the relations ≡ and ◭ satisfies the
axioms ZFC of Zermelo-Fraenkel set theory with the axiom of choice. For the
existence axioms of ZFC we prove a comprehension lemma about combining points
into a single point.

Lemma 7.1. (SO) Let (xi|i ∈ A) be a set-sized sequence of points. Then there is
a point y = (y,Ry) such that for all points x holds

x ◭ y iff ∃i ∈ Ax ≡ xi.

ORDINALS, COMPUTATIONS, AND MODELS OF SET THEORY 21

Proof. Obviously we may substitute the xi’s by ≡-equivalent points x′i. We may
thus assume that the domains of the wellfounded relations Rxi

are pairwise disjoint.
Take some y 6∈

⋃

i∈A dom(Rxi
) and define the point y = (y,Ry) by

Ry =
⋃

i∈A

Rxi
∪ {(xi, y)|i ∈ A}.

Consider i ∈ A. If x ∈ dom(Rxi
) then the iterated Rxi

-predecessors of x are equal
to the iterated Ry-predecessors of x. Hence (x,Rxi

) ≡ (x,Ry).
Assume now that x ◭ y. Take v Ry y such that x ≡ (v,Ry). Take i ∈ A such

that v = xi. By the previous remark

x ≡ (v,Ry) = (xi, Ry) ≡ (xi, Rxi
) = xi.

Conversely consider i ∈ A and x ≡ xi. Then x ≡ xi = (xi, Rxi
) ≡ (xi, Ry) and

xi Ry y. This implies x ◭ y. �

We are now able to canonically interpret the theory ZFC within SO.

Theorem 7.2. (SO) P = (P,≡,◭) is a model of ZFC.

Proof. (1) The axiom of extensionality holds in P:

∀x∀y(∀z(z ◭ x↔ z ◭ y) → x ≡ y).

Proof . Consider points x and y such that ∀z(z ◭ x ↔ z ◭ y). Consider u Rx x.
Then (u,Rx) ◭ (x,Rx) = x. By assumption, (u,Rx) ◭ (y,Ry). By definition take
v Ry y such that (u,Rx) ≡ (v,Ry). Thus

∀u Rx x∃v Ry y(u,Rx) ≡ (v,Ry).

By exchanging x and y one also gets

∀v Ry y∃u Rx x(u,Rx) ≡ (v,Ry).

Hence x ≡ y. qed(1)

(2) The axiom of pairing holds in P:

∀x∀y∃z∀w(w ◭ z ↔ (w ≡ x ∨ w ≡ y)).

Proof . Consider points x = (x,Rx) and y = (y,Ry). By the comprehension lemma
7.1 there is a point z = (z,Rz) such that for all points w

w ◭ z ↔ (w ≡ x ∨w ≡ y). qed(2)

(3) The axiom of unions holds in P:

∀x∃y∀z(z ◭ y ↔ ∃w(w ◭ x ∧ z ◭ w)).

22 PETER KOEPKE

Proof . Consider a point x = (x,Rx). Let A = {i ∈ dom(Rx)|∃u ∈ dom(Rx)
iRx uRx x}. For i ∈ A define the point xi = (i, Rx). By the comprehension lemma
7.1 there is a point y = (y,Ry) such that for all points z

z ◭ y ↔ ∃i ∈ Az ≡ xi.

To show the axiom consider some z ◭ y. Take i ∈ A such that z ≡ xi. Take
u ∈ dom(Rx) such that iRxuRx x. Then z ≡ xi = (i, Rx) ◭ (u,Rx) ◭ (x,Rx) = x,
i.e., ∃w(z ◭ w ◭ x).

Conversely assume that ∃w(z ◭ w ◭ x) and take w such that z ◭ w ◭ x.
Take u Rx x such that w ≡ (u,Rx). Then z ◭ (u,Rx). Take i Rx u such that
z ≡ (i, Rx) = xi. Then z ◭ y. qed(3)

(4) The replacement schema holds in P, i.e., for every first-order formula ϕ(u, v)
in the language of ≡ and ◭ the following is true in P:

∀u, v, v′((ϕ(u, v) ∧ ϕ(u, v′)) → v ≡ v′) → ∀x∃y∀z(z ◭ y ↔ ∃u(u ◭ x ∧ ϕ(u, z))).

Proof . Note that the formula ϕ may contain further free parameters, which we do
not mention for the sake of simplicity. Assume that ∀u, v, v′((ϕ(u, v) ∧ ϕ(u, v′)) →
v ≡ v′) and let x = (x,Rx) be a point. Let A = {i|i Rx x}. For each i ∈ A we have
the point (i, Rx) ◭ (x,Rx) = x. Using replacement and choice in SO we can pick
for each i ∈ A a point zi = (zi, Rzi

) such that ϕ((i, Rx), zi) holds if such a point
exists. By the comprehension lemma 7.1 there is a point y = (y,Ry) such that for
all points z

z ◭ y ↔ ∃i ∈ Az ≡ zi.

To show the instance of the replacement schema under consideration, assume that
z ◭ y. Take i ∈ A such that z ≡ zi. Then (i, Rx) ◭ (x,Rx) = x, ϕ((i, Rx), zi) and
ϕ((i, Rx), z). Hence ∃u(u ◭ x ∧ ϕ(u, z)).

Conversely, assume that ∃u(u ◭ x ∧ ϕ(u, z)). Take u ◭ x such that ϕ(u, z).
Take i Rx x, i ∈ A such that u ≡ (i, Rx). Then ϕ((i, Rx), z). By definition of zi,
ϕ((i, Rx), zi). The functionality of the formula ϕ implies z ≡ zi. Hence ∃i ∈ Az ≡ zi

and z ◭ y. qed(4)
The replacement schema also implies the separation schema.

(5) The axiom of powersets holds in P:

∀x∃y∀z(z ◭ y ↔ ∀w(w ◭ z → w ◭ x)).

Proof . By the separation schema it suffices to show that

∀x∃y∀c(∀w(w ◭ c→ w ◭ x) → c ◭ y).

Consider a point x = (x,Rx). Let F = dom(Rx) ∪ ran(Rx) be the field of Rx. By
the powerset axiom of SO choose some set P such that Pow(P, F):

∀z(∃α(α ∈ z) ∧ ∀α(α ∈ z → α ∈ F) → ∃ξ∀β(β ∈ z ↔ (β, ξ) ∈ P)).

ORDINALS, COMPUTATIONS, AND MODELS OF SET THEORY 23

Choose two large ordinals δ and y such that

∀α ∈ Fα < δ and ∀ξ(ξ ∈ ran(P) → (δ, ξ) < y).

Define a point y = (y,Ry) by

Ry = Rx ∪ {(β, (δ, ξ))|(β, ξ) ∈ P} ∪ {((δ, ξ), y)|ξ ∈ ran(P)}.

To show the axiom consider some point c = (c, Rc) such that ∀w(w ◭ c→ w ◭ x).
Define a corresponding subset z of F by

z = {β ∈ F |∃vRcc(v,Rc) ≡ (β,Rx)}.

We may assume for simplicity that z 6= ∅. By the powerset axiom of SO choose
ξ ∈ ran(P) such that

∀β(β ∈ z ↔ (β, ξ) ∈ P).

We claim that ((δ, ξ), Ry) ≡ c and thus c ◭ y.
Consider β Ry (δ, ξ). By the definition of Rywe have (β, ξ) ∈ P and so β ∈ z.

By the definition of z choose vRcc such that (v,Rc) ≡ (β,Rx) ≡ (β,Ry).
Conversely, consider vRcc. Then (v,Rc) ◭ (c, Rc) = c. The subset property

implies (v,Rc) ◭ (x,Rx) = x. Take β Rx x such that (v,Rc) ≡ (β,Rx) ≡ (β,Ry).
By definition, β ∈ z, (β, ξ) ∈ P and β Ry (δ, x). qed(5)

(6) The axiom of choice holds in P:

∀x((∀y, z((y ◭ x ∧ z ◭ x) → (∃uu ◭ y ∧ (¬y ≡ z → ¬∃u(u ◭ y ∧ u ◭ z))))) →

∃w∀y(y ◭ x→ ∃u((u ◭ w ∧ u ◭ y) ∧ ∀v((v ◭ w ∧ v ◭ y) → u ≡ v)))).

Proof . Let x = (x,Rx) ∈ P be a point such that

∀y, z((y ◭ x ∧ z ◭ x) → (∃uu ◭ y ∧ (¬y ≡ z → ¬∃u(u ◭ y ∧ u ◭ z)))).

Choose an ordinal α ∈ dom(Rx) and define the point w = (α,Rw) by letting its
“elements” be least ordinals in the “elements” of x:

Rw = Rx∪{(ξ, α)|∃ζ(ξRxζRxx∧(∀ξ′ < ξ∀ζ′((ζ, Rx) ≡ (ζ′, Rx) → ¬(ξRxξ
′Rxζ))))}.

To show that w witnesses the axiom of choice for x consider a point y with y ◭ x.
We may assume that y is of the form y = (ζ, Rx) where ζ Rx x. By the assumption
on x there exists u ◭ y. Take some ξ such that (ξ, Rx) ≡ u. We may assume that
ζ and ξ with these properties are chosen so that ξ is minimal in the ordinals. Then

(7.3) ξ Rx ζ Rx x ∧ (∀ξ′ < ξ∀ζ′((ζ, Rx) ≡ (ζ′, Rx) → ¬(ξ Rx ξ
′ Rx ζ)))

and so ξ Rw α. Thus u ◭ w. To show the uniqueness of this u with u ◭ w ∧ u ◭ y

consider some v with v ◭ w ∧ v ◭ y. We may assume that v is of the form
v = (ξ′, Rw) with ξ′ Rw α. By the definition of Rw we choose some ζ′ such that

(7.4) ξ′ Rx ζ
′ Rx x ∧ (∀ξ′′ < ξ′∀ζ′′((ζ′, Rx) ≡ (ζ′′, Rx) → ¬(ξ′ Rx ξ

′′ Rx ζ
′))).

24 PETER KOEPKE

Now

v ◭ y ◭ x and v = (ξ′, Rw) ◭ (ζ′, Rw) ◭ (x,Rx) = x.

Since the “elements” of x are “pairwise disjoint”, we have y ≡ (ζ′, Rw). Since
y ≡ (ζ, Rx) the conditions (2) and (3) become equivalent and define the same
ordinal ξ = ξ′. Hence

u ≡ (ξ, Rx) ≡ (ξ′, Rw) ≡ v. qed(6)

(7) The foundation schema holds in P, i.e., for every first-order formula ϕ(u) in
the language of ≡ and ◭ the following is true in P:

∃uϕ(u) → ∃y(ϕ(y) ∧ ∀z(z ◭ y → ¬ϕ(z)).

Proof . Note that the formula ϕ may contain further free parameters, which we
do not mention for the sake of simplicity. Assume that ∃uϕ(u). Take a point
x = (x,Rx) such that ϕ(x). Since Rx is wellfounded one may take an Rx-minimal
y ∈ dom(Rx) such that ϕ((y,Rx)). Letting y also denote the point (y,Rx) then
ϕ(y). To prove the axiom, consider some point z ◭ y . Take v Rx y such that z ≡
(v,Rx). By the Rx-minimal choice of y we have ¬ϕ((v,Rx)). Hence ¬ϕ(z). qed(7)

(8) The axiom of infinity holds in P, i.e.,

∃x(∃yy ◭ x ∧ ∀y(y ◭ x→ ∃z(z ◭ x ∧ ∀u(u ◭ z ↔ u ◭ y ∨ u ≡ y))))

Proof . In SO let ω be the smallest limit ordinal. We show that

x = (ω,<↾ (ω + 1)2)

witnesses the axiom. Since (0, <↾ (ω + 1)2) ◭ (ω,<↾ (ω + 1)2) we have ∃yy ◭ x.
Consider some y ◭ x. We may assume that y = (n,<↾ (ω + 1)2) for some n < ω.
Set

z = (n+ 1, <↾ (ω + 1)2).

It is easy to check that

z ◭ x ∧ ∀u(u ◭ z ↔ u ◭ y ∨ u ≡ y). qed(8)

�

Theorem 7.3. In the set theoretical universe V consider a class S ⊆ {x|x ⊆ Ord}
such that S = (Ord,S, <,=,∈, G) is a model of the theory SO. Then there is a
unique inner model (M,∈) of ZFC such that S = {v ∈M |v ⊆ Ord}.

Proof. Define the model P = (P,≡,◭) from (Ord,S, <,=,∈, G) as above. Con-
sider a point x = (x,Rx) ∈ P. Then x is also an ordinal in the sense of V . In S,
apply the recursion theorem to the wellfounded relation Rx and obtain an order-
preserving map

σ : (dom(Rx), Rx) → (Ord, <).

ORDINALS, COMPUTATIONS, AND MODELS OF SET THEORY 25

Transfer the map σ to V by defining

σ̃ = {(α, β)|S � σ(α) = β} : dom(Rx) → Ord .

This map is order-preserving and witnesses that Rx is wellfounded in V . So (x,Rx)
is a point in the sense of V . In V , define the interpretation function I : P → V

recursively by

Ix : dom(Rx) → V , by Ix(u) = {Ix(v)|v Rx u}, and I(x) = Ix(x).

Set

M = {I(x)|x ∈ P}.
(1) M is transitive.
Proof . Consider y ∈ I(x) ∈ M . Choose v Rx x such that y = Ix(v). Then
(v,Rx) ∈ P and

y = Ix(v) = I((v,Rx)) ∈M. qed(1)

The above definitions imply:
(2) The function I : P → M is surjective and preserves ≡ and =, and ◭ and ∈,
resp.:

∀x, y ∈ P : ((x ≡ y ↔ I(x) = I(y)) ∧ (x ◭ y ↔ I(x) ∈ I(y))).

Hence
(3) M is a transitive ∈-model of the ZFC-axioms, i.e., M is an inner model.
(4) S = {v ∈M |v ⊆ Ord}.
Proof . Let v ∈ S. We build a point that will be interpreted as v. Choose an ordinal
α such that v ⊆ α. Define a wellfounded relation Rx on α+ 1 by

ξ Rx ζ iff (ξ < ζ < α or (ζ = α ∧ ξ ∈ v)).

Then x = (α,Rx) is a point. Let Ix(u) = {Ix(v)|v Rx u} be the recursive interpre-
tation function for x. For ζ < α we have Ix(ζ) = ζ since we have inductively

Ix(ζ) = {Ix(ξ)|ξ Rx ζ} = {ξ|ξ < ζ} = ζ.

And then

I(x) = Ix(α) = {Ix(ξ)|ξ Rx α} = {ξ|ξ ∈ v} = v.

Hence v = I(x) ∈M .
The previous argument also shows that one may canonically represent an ordinal

ξ by the point (ξ,<↾ (ξ + 1)2):

I((ξ,<↾ (ξ + 1)2)) = ξ.

For the converse inclusion consider some v ∈ M , v ⊆ α ∈ Ord. Choose a point
x ∈ P such that I(x) = v. Since S satisfies the separation schema,

v = {ξ < α|ξ ∈ v} = {ξ < α|S � (ξ,<↾ (ξ + 1)2) ◭ x} ∈ S. qed(4)

26 PETER KOEPKE

The model M is unique since it is determined by its sets of ordinals (see [6],
Theorem 13.28). �

8. An ordinal computable truth predicate

We shall later define a truth predicate whose recursive definition is of the form

F (α) =

{

1 iff ∃ν < αH(α, ν, F (ν)) = 1
0 else

We show that such recursions can be carried out within the collection of ordinal
register computable functions: if H is computable then the recursive function F

is computable. The computation will be based on a stack which can hold finite
decreasing sequences of ordinals and some other information.

8.1. 3-adic representations and ordinal stacks. We intend to use a stack that
can hold a (finite) sequence α0 > α1 > · · · > αn−2 > αn−1 of ordinals which
is strictly decreasing except possibly for the last two ordinals. This sequence of
ordinals can coded by the ordinal α = 3α0 +3α1 + · · ·+3αn−1 . We state some facts
of ordinal arithmetic and define computable functions for dealing with ordinals as
stacks.

Proposition 8.1. Let > 1 be a fixed basis ordinal. An equality

α = δα0 · ζ0 + δα1 · ζ1 + · · · + δαn−1 · ζn−1

with α0 > α1 > · · · > αn−1 and 0 < ζ0, ζ1, . . . , ζn−1 < δ is called a δ-adic represen-
tation of α. We claim that every α ∈ Ord possesses a unique δ-adic representation.

Proof. Assume the property for β < α. Since the ordinal exponentiation ν 7→ δν

is continuous and strictly monotone there is a maximal α0 6 α such that δα0 6 α.
Then

δα0+1 = δα0 · δ > α.

Since the ordinal multiplication ν 7→ δα0 · ν is continuous and strictly monotone
there is a largest ζ0, 0 < ζ0 < δ such that δα0 · ζ0 6 α. Then

δα0 · (ζ0 + 1) = δα0 · ζ0 + δα0 > α.

Since the ordinal addition ν 7→ δα0 · ζ0 + ν is an increasing enumeration of the
ordinals > δα0 · ζ0 there is β < δα0 6 α such that α = δα0 · ζ0 +β. By the inductive
assumption, β has a δ-adic representation β = δα1 · ζ1 + · · · + δαn−1 · ζn−1. Since
β < δα0 we have α1 < α0. Thus

α = δα0 · ζ0 + δα1 · ζ1 + · · · + δαn−1 · ζn−1

is a δ-adic representation of α.

ORDINALS, COMPUTATIONS, AND MODELS OF SET THEORY 27

We show uniqueness. Assume that also

α = δα′

0 · ζ′0 + δα′

1 · ζ′1 + · · · + δα′

r−1 · ζ′r−1

Then α ∈ [δα0 · ζ0, δα0 · (ζ0 + 1)) and α ∈ [δα′

0 · ζ′0, δ
α′

0 · (ζ′0 + 1)). By the pairwise
disjointness of intervals of this type, α0 = α′

0 and ζ0 = ζ′0. Furthermore

δα1 · ζ1 + · · · + δαn−1 · ζn−1 = δα′

1 · ζ′1 + · · · + δα′

r−1 · ζ′r−1 < δα0 · ζ0 6 α.

By the inductive assumption, (α1, . . . , αn−1) = (α′

1, . . . , α
′

r−1) and (ζ1, . . . , ζn−1) =
(ζ′1, . . . , ζ

′

n−1). Hence the two δ-adic representation of α agree. �

By the proposition, a decreasing stack α0 > α1 > · · · > αn−2 > αn−1 of ordinals
can be coded by one ordinal

α = 〈α0, α1, . . . , αn−2, αn−1〉 = 3α0 + 3α1 + · · · + 3αn−2 + 3αn−1.

We call the natural number n the length of the stack α . The final elements
αn−1, αn−2, . . . of this stack can be defined from α as follows:

αn−1 = the largest ξ such that there is ζ with α = 3ξ · ζ

αn−2 = the largest ξ such that there is ζ with α− 3αn−1 = 3ξ · ζ

...

The ordinals αn−1, αn−2 are obviously ordinal register computable by some pro-
grams last, llast resp., we agree that these functions return a special value
UNDEFINED if the stack is too short.

If the stack α is kept in a register stack then the lim inf behaviour of registers
implies the following crucial limit behaviour of stacks.

Proposition 8.2. Let t ∈ Ord be a limit time and t0 < t. For time τ ∈ [t0, t) let the
contents of the register stack be of the form ατ = 〈α0, . . . , αk−1 , ρ(τ), . . .〉 for fixed
α0, . . . , αk−1 and variable ρ(τ) 6 αk−1. Assume that the sequence (ρ(τ)|τ ∈ [t0, t))
is weakly monotonously increasing and that the length of stack is equal to k + 1
cofinally often below t. Then at limit time t the content of stack is of the form
αt = 〈α0, . . . , αk−1 , ρ〉 with ρ =

⋃

τ∈[t0,t) ρ(τ).

8.2. Stack recursion. Given an algorithm for the recursion function H we com-
pute F with a stack as considered above and a variable value which can hold a
single value of the function F : we let value = 2 stand for “undefined’. The inten-
tion of the following programP is to accept an input ordinal α on the singleton stack
α and stop with the output stack α and value= F (α). During the recursion the
program will call itself with non-empty stacks α = α0, α1, . . . , αn−1 and compute
the value F (αn−1). During the main loop of the program the bounded quantifier
∃ν < α ranges over all ν < α. The subloop evaluates the kernel H(α, ν, F (ν)) = 1
of the quantifier and returns the result for the further calculation.

28 PETER KOEPKE

value:=2 %% set value to undefined

MainLoop:

nu:=last(stack)

alpha:=llast(stack)

if nu = alpha then

1: do

remove_last_element_of(stack)

value:=0 %% set value equal to 0

goto SubLoop

end_do

else

2: do

stack:=stack + 1 %% push the ordinal 0 onto the stack

goto MainLoop

end_do

SubLoop:

nu:=last(stack)

alpha:=llast(stack)

if alpha = UNDEFINED then STOP

else

do

if H(alpha,nu,value)=1 then

3: do

remove_last_element_of(stack)

value:=1

goto SubLoop

end_do

else

4: do

stack:=stack + 2*(3**y) %% push y+1

value:=2 %% set value to undefined

goto MainLoop

end_do

end_do

The correctness of the program with respect to the above intention is established
by

Theorem 8.3. The above program P has the following properties

a) If P is in state MainLoop at time s with stack contents 〈α0, α1, . . . , αn−1〉
where n > 1 then it will get into state SubLoop at a later time t with the same

ORDINALS, COMPUTATIONS, AND MODELS OF SET THEORY 29

stack contents 〈α0, α1, α2, . . . , αn−1〉 and the register value holding the value
F (αn−1). Moreover in the time interval [s, t) the contents of stack will always
be at least as big as 〈α0, α1, . . . , αn−1〉.

b) Let P be in state MainLoop at time s with stack contents α0 > α1 > α2 >

· · · > αn−1 where n > 1. Define ᾱ =the minimal ordinal ν < αn−1 such that
H(αn−1, ν, F (ν)) = 1 if this exists and ᾱ = αn−1 else. Then there is a strictly
increasing sequence (ti|i 6 ᾱ) of times ti > t such that P is in state MainLoop at
time ti with stack contents 〈α0, α1, α2, . . . , αn−1, i〉, and in every time interval
τ ∈ [ti, ti+1) the stack contents are > 〈α0, α1, α2, . . . , αn−1, i〉.

c) If P is in state MainLoop with stack contents α then it will later stop with stack

content α and the register value holding the value F (α). Hence the function F

is ordinal register computable.

Proof. a) and b) are proved simultaneously by induction over the last element
αn−1 of the stack. Assume that P is in state MainLoop at time s with stack
contents 〈α0, α1, α2, . . . , αn−1〉 where n > 1 and that a) and b) hold for all stack
contents 〈β0, β1, . . . , βm−1〉 with βm−1 < αn−1. Define ᾱ as in b).

We first prove b) by defining an appropriate sequence (ti|i 6 ᾱ) by recursion
over i 6 ᾱ.
i = 0: inspection of P shows that the computation will move to state 2 and obtain
stack contents 〈α0, α1, α2, . . . , αn−1, 0〉 before immediately returning to MainLoop.
i = j+1 where j < ᾱ. By recursion, P is in state MainLoop at time tj with stack con-
tents 〈α0, α1, α2, . . . , αn−1, j〉. j < ᾱ 6 αn−1 so that by the simultaneous induction
a) holds for 〈α0, α1, α2, . . . , αn−1, j〉. So there will be a later time when P is in state
SubLoop with stack contents 〈α0, α1, α2, . . . , αn−1, j〉 and value= F (j). Also dur-
ing that computation the stack contents will always be > 〈α0, α1, α2, . . . , αn−1, j〉.
Inspection of the program shows that it will further computeH(αn−1, j, F (j)). This
value will be 6= 1 by definition of ᾱ. So the computation will move on to state 4

with stack contents 〈α0, α1, α2, . . . , αn−1, j + 1〉. At the subsequent time ti = tj+1

P is in state MainLoop with stack contents 〈α0, α1, α2, . . . , αn−1, i〉.
i is a limit ordinal. Then by the limit behaviour of the machine and in particular
by the above proposition, at time

⋃

{tj |j < i} the machine will be in state MainLoop
with stack contents.

Now we prove a).
Case 1 : ᾱ < αn−1. Then F (ᾱ) = 1. By b) P will get to state MainLoop with stack

contents 〈α0, α1, α2, . . . , αn−1, ᾱ〉. By the inductive hypothesis, P will then get to
state SubLoop with stack contents 〈α0, α1, α2, . . . , αn−1〉 and value set to F (ᾱ).
Then the program will compute H(αn−1, ᾱ, F (ᾱ)) = 1 and move into alternative 3.
The register value obtains the value F (αn−1) = 1 and the program moves to state
SubLoop with the last stack element removed: stack= 〈α0, α1, α2, . . . , αn−1〉, as
required.

30 PETER KOEPKE

Case 2 : ᾱ = α. Then F (ᾱ) = 0. By b), P will get to state MainLoop with stack
contents α0, α1, α2, . . . , αn−1, ᾱ = αn−1. Inspection of the program shows that it
will get into alternative 1, set stack:= 〈α0, α1, α2, . . . , αn−1〉, value= 0 and move
to SubLoop, which proves a) in this case.

Finally, c) follows readily from a) and inspection of the program. �

8.3. A recursive truth predicate. The gödel pairing function G allows to code
finite sequences α0, . . . , αn−1 of ordinals into single ordinals. The coding can be
made computable in the sense that usual operations on finite sequences like con-
catenation or substitution are computable as well. By these techniques one can
also code formal languages in a computable way.

We shall consider a language LR appropriate for first-order structures of the
form

(α,<,G,R)

where the Gödel function G is viewed as a ternary relation on α and R is a unary
relation on α. The terms of the language are variables vn for n < ω and constant
symbols cξ for ξ ∈ Ord; the symbol cξ will be interpreted as the ordinal ξ. The

language has atomic formulas t1 ≡ t2, t1 < t2, Ġ(t1, t2, t3) and Ṙ(t1). If ϕ and ψ

are (compound) formulas of the language and t is a term then

¬ϕ, (ϕ ∨ ψ), and ∃vn < tϕ

are also formulas; thus we are only working with bounded quantification. We
arrange the computable coding in a way that a bounded existential quantification
∃vn < cξϕ is coded by a larger ordinal than each of its instances ϕ

cζ

vn
with ζ < ξ:

ϕ
cζ

vn

< (∃vn < cξϕ).

An LR-formula is an LR-sentence if it does not have free variables. If ϕ is an
LT -sentence so that all constants symbols cξ in ϕ have indices ξ < α then the
satisfaction relation

(α,<,G,R) � ϕ

is defined as usual. Bounded sentences are absolute for sufficiently long initial
segments of the ordinals. If ϕ is a bounded sentence such that every constant
symbol cξ occuring in ϕ satisfies ξ < β < α then

(α,<,G,R) � ϕ iff (β,<,G,R) � ϕ.

The coding of formulas by ordinals ϕ will satisfy that ξ < ϕ for every constant
symbol cξ occuring in ϕ. So the meaning of a bounded sentence ϕ is given by

(ϕ,<,G,R) � ϕ.

ORDINALS, COMPUTATIONS, AND MODELS OF SET THEORY 31

This leads to the recursive definition of a bounded truth predicate T ⊆ Ord over the
ordinals

T (α) iff α is a bounded LT -sentence and (α,<,G, T ∩ α) � α.

We shall later see that T is a strong predicate which codes a model of set theory.
We show that the characteristic function χT of T can be defined according to the
recursion scheme

χT (α) =

{

1 iff ∃ν < αH(α, ν, χT (ν)) = 1
0 else

of section 5 and is thus ordinal register computable provided we can exhibit an
appropriate computable recursion function H :

H(α, ν, χ) = 1

iff α is an LT -sentence and
(

∃ξ, ζ < α(α = cξ ≡ cζ ∧ ξ = ζ)

or ∃ξ, ζ < α(α = cξ < cζ ∧ ξ < ζ)

or ∃ξ, ζ, η < α(α = Ġ(cξ, cζ , cη) ∧ η = G(ξ, ζ))

or ∃ξ < α(α = Ṙ(cξ) ∧ ν = ξ ∧ χ = 1)

or ∃ϕ < α(α = ¬ϕ ∧ ν = ϕ ∧ χ = 0)

or ∃ϕ, ψ < α(α = (ϕ ∨ ψ) ∧ (ν = ϕ ∨ ν = ψ) ∧ χ = 1)

or ∃n < ω∃ξ < α∃ϕ < α(α = ∃vn < cξϕ ∧ ∃ζ < ξν = ϕ
cζ

vn

∧ χ = 1)
)

.

Assuming that the syntactical operations are computable, H and thus the bounded
truth predicate T are computable.

9. Computing a model of set theory

The truth predicate T contains information about a large class of sets of ordinals.

Definition 9.1. For ordinals µ and α define

T (µ, α) = {β < µ|T (G(α, β)) = 1}.

Set

S = {T (µ, α)|µ, α ∈ Ord}.

Theorem 9.1. (Ord,S, <,=,∈, G) is a model of the theory SO.

Proof. The axioms (1)-(7) are obvious. The proofs of axiom schemas (8) and (9)
rest on a Levy-type reflection principle. For θ ∈ Ord define

Sθ = {T (µ, α)|µ, α ∈ θ}.

32 PETER KOEPKE

Then for any LSO-formula ϕ(v0, . . . , vn−1) and η ∈ Ord there is some limit ordinal
θ > η such that

∀ξ0, . . . , ξn−1 ∈ θ((Ord,S, <,=,∈, G) � ϕ[ξ0, . . . , ξn−1] iff

(θ,Sθ , <,=,∈, G) � ϕ[ξ0, . . . , ξn−1]).

Since all elements of Sθ can be defined from the truth function T and ordinals
< θ, the right-hand side can be evaluated in the structure (θ,<,G ∩ θ3, T) by an
LT -formula ϕ∗which can be recursively computed from ϕ. Hence

∀ξ0, . . . , ξn−1 ∈ θ((Ord,S, <,=,∈, G) � ϕ[ξ0, . . . , ξn−1] iff

(θ,<,G ∩ θ3, T) � ϕ∗[ξ0, . . . , ξn−1]).

So sets witnessing axioms (8) and (9) can be defined over (θ,<,G ∩ θ3, T) and are
thus elements of S.

The powerset axiom can be shown by a similar reflection argument. �

9.1. Ordinal computability corresponds to constructibility. Kurt Gödel

[4] defined the inner model L of constructible sets as the union of a hierarchy of
levels Lα:

L =
⋃

α∈Ord

Lα

where the hierarchy is defined by: L0 = ∅, Lδ =
⋃

α<δ Lα for limit ordinals δ, and
Lα+1 =the set of all sets which are first-order definable in the structure (Lα,∈).
The model L is the ⊆-smallest inner model of set theory. The standard reference
for the theory of the model L is the monograph [3].

The following main result provides a characterization of ordinal register com-
putability which does not depend on a specific machine model or coding of lan-
guage:

Theorem 9.2. A set x of ordinals is ordinal computable if and only if it is an
element of the constructible universe L.

Proof. Let x ⊆ Ord be ordinal computable by the program P from the ordinals
δ1, . . . , δn−1, so that for every α ∈ Ord:

P : (α, δ1, . . . , δn−1, 0, 0, . . .) 7→ χx(α).

By the simple nature of the computation procedure the same computation can be
carried out inside the inner model L, so that for every α ∈ Ord:

(L,∈) � P : (α, δ1, . . . , δn−1, 0, 0, . . .) 7→ χx(α).

Hence χx ∈ L and x ∈ L.

ORDINALS, COMPUTATIONS, AND MODELS OF SET THEORY 33

Conversely consider x ∈ L. Since (Ord,S, <,=,∈, G) is a model of the theory
SO there is an inner model M of set theory such that

S = {z ⊆ Ord |z ∈M}.

Since L is the ⊆-smallest inner model, L ⊆ M . Hence x ∈ M and x ∈ S. Let
x = T (µ, α). By the computability of the truth predicate, x is ordinal register
computable from the parameters µ and α. �

10. An application: the generalised continuum hypothesis in L

Ordinal computability allows to reprove some basic facts about the constructible
universe L. The analogue of the axiom of constructibility, V = L, is the statement
that every set of of ordinals is ordinal computable.

Theorem 10.1. The constructible model (L,∈) satisfies that every set of ordinals
is ordinal computable.

Proof. Let x ∈ L, x ⊆ Ord, let P be a program and δ1, . . . , δn−1 ∈ Ord such that
for every α ∈ Ord:

P : (α, δ1, . . . , δn−1, 0, 0, . . .) 7→ χx(α).

The same computation can be carried out inside the inner model L:

(L,∈) � P : (α, δ1, . . . , δn−1, 0, 0, . . .) 7→ χx(α).

So in L, x is ordinal computable. �

The following theorem is proved by a condensation argument for ordinal com-
putations which is a simple analogue of the usual condensation argument for the
constructible hierarchy.

Theorem 10.2. Assume that every set of ordinals is ordinal computable. Then:

a) Let κ > ω be an infinite ordinal and x ⊆ κ. Then there are ordinals α1, . . . ,

αn−1 < κ+ such that x is ordinal computable from the parameters α1, . . . , αn−1.
b) Let κ > ω be infinite. Then card(P(κ)) = κ+.
c) The generalised continuum hypothesis GCH holds.

Proof. a) Take a program P and α′

1, . . . , α
′

n−1 ∈ Ord such that for every α ∈ Ord:

P : (α, α′

1, . . . , α
′

n−1, 0, 0, . . .) 7→ χx(α).

Let θ be an upper bound for the lengths of these computations for α < κ. Take
a transitive ZF−-model (M,∈) such that α′

1, . . . , α
′

n−1, θ, κ, x ∈ M . Since ordinal
computations are absolute for models of set theory, for all α < κ:

(M,∈) � P : (α, α′

1, . . . , α
′

n−1, 0, 0, . . .) 7→ χx(α).

34 PETER KOEPKE

The downward Löwenheim-Skolem theorem and the Mostowski isomorphism
theorem yield an elementary embedding

π : (M̄,∈) → (M,∈)

such that M̄ is transitive, card(M̄) = κ and {α′

1, . . . , α
′

n−1, θ, κ, x}∪κ ⊆ π′′M̄ . Let

π(α1) = α′

1, . . . , π(α′

n−1) = αn−1. Then α1, . . . , αn−1 < κ+ since card(M̄) < κ+.

Observe that π(x) = x. Since π is elementary (M̄,∈) satisfies for α < κ that

(M̄,∈) � P : (α, α1, . . . , αn−1, 0, 0, . . .) 7→ χx(α).

By the absoluteness of ordinal computations between M̄ and V

P : (α, α1, . . . , αn−1, 0, 0, . . .) 7→ χx(α)

for α < κ. Thus x is ordinal computable from the parameters α1, . . . , αn−1 < κ+.
b) follows from a) since there are a countable many programs and κ+ many finite
sets of ordinals < κ+.
c) is immediate from b). �

References

[1] Ryan Bissell-Siders. Ordinal computers. Eprint at: arXiv:math.LO/9804076, 1998.
[2] Nigel J. Cutland. Computability: An introduction to Recursive Function Theory. Perspectives

in Mathematical Logic. Cambridge University Press, 1980.
[3] Keith Devlin. Constructibility. Perspectives in Mathematical Logic. Springer-Verlag, Berlin,

1984.
[4] Kurt Gödel. The Consistency of the Continuum Hypothesis, volume 3 of Ann. of Math. Studies.

Princeton University Press, Princeton, 1940.
[5] Joel David Hamkins and Andy Lewis. Infinite Time Turing Machines. J. Symbolic Logic,

65(2):567–604, 2000.
[6] Thomas Jech. Set Theory. The Third Millennium Edition. Springer Monographs in Mathe-

matics. Springer-Verlag, 2003.
[7] Peter Koepke. Turing computations on ordinals. Bull. Symbolic Logic, 11(3):377–397, 2005.

Universität Bonn, Mathematisches Institut, Beringstrasse 1, D-53115 Bonn, Germany

E-mail address: koepke@math.uni-bonn.de

