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1 Introduction

Cantor’s ordinals extend the standard natural numbers
�

into the transfinite:
0, 1, 2, 3, . . . , n, n+ 1, . . .

is continued by
ω, ω + 1, . . . , ω + n, . . . , ω + ω = ω · 2, ω + ω + 1 = ω · 2 + 1, . . .
ω · ω = ω2, . . . , ω3, . . . , ωω, . . . , ωω

2

, . . . , . . .

ωω
ωω

. .
.

, . . . , α, α+ 1, . . . . . .
ℵ1,ℵ1 + 1, . . . ,ℵ2, . . . ,ℵ3, . . . ,ℵω, . . . . . . . . .

Whereas natural numbers are either 0 or successors , by the axiom of infinity
there are limit ordinals like ω, ω+ω, . . . , ω ·ω, . . .. The induction and recursion
laws for ordinals extend the corresponding laws for natural numbers by limit
laws, where the letter λ is used to denote limit ordinals.

A(0)
A(n)→ A(n+ 1)

∀nA(n)
is extended to

A(0)
A(α)→ A(α+ 1)
∀α < λA(α) → A(λ)

∀αA(α)

The recursion law

F (0) = a0

F (n+ 1) = G(F (n), n)
is extended to

F (0) = a0

F (α+ 1) = G(F (α), α)
F (λ) = G(F � α)

One can now go through various mathematical theories based on natural num-
bers and try to extend them to ordinals (Ordinalize! ). This contribution to
BIWOC indicates how computability on the natural numbers may be ordinal-
ized.
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2 Ordinal recursive functions

Arithmetic becomes ordinal arithmetic with the operations

α+ 0 = α
α+ (β + 1) = (α+ β) + 1

α+ λ =
⋃

β<λ

(α+ β)

and
α · 0 = 0
α · (β + 1) = (α · β) + α

α · λ =
⋃

β<λ

(α · β)

Problem 1 What can be defined in the structure (Ord, <,+, ·, . . . , 0, 1)?

Ordinal arithmetic suggests the following family of ordinal functions:

Definition 1 The ordinal recursive functions form the smallest collection R of
functions F : Ordi → Ord such that

− the constant functions are in R

− the projection functions are in R

− the successor function α 7→ α+ 1 is in R

− the indicator function I< : Ord2 → {0, 1}, I(α, β) = 1 iff α < β

− R is closed under functional composition

− R is closed under the following recursion schema, defining
F from G0, Gsucc, Glim:

F (0, ~p) = G0(~p)
F (α+ 1, ~p) = Gsucc(F (α), α, ~p)
F (λ, ~p) =

⋃
α<λGlim(F (α), α, λ)

Example 1 The following functions are ordinal recursive:

− ordinal arithmetic

− propositional logic (true∼ 1, false∼ 0):

(A ∧ B)(~x) = A(~x) ·B(~x),¬A(~x) = I<(A(~x), 1)

− bounded quantification:

∃ν < αA(ν, ~x) =
⋃

ν<α

A(ν, ~x)
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− max(α, β) = α · I<(β, α) + β · ¬I<(β, α)

− the indicator function for equality I=(α, β) = (¬I<(α, β)) ∧ (¬I<(β, α))

− if F : Ord → Ord is ordinal recursive and strictly monotone and other
conditions hold then F−1 is ordinal recursive.

− the sum S(α) (“= 2 + 4 + . . .+ ν · 2 + . . . for ν < α”) of even ordinals by
the recursion

S(0) = 0, S(α+ 1) = S(α) + α · 2, S(λ) =
⋃

α<λ

S(α)

− define the Gödel pairing 〈., .〉 : Ord2 ↔ Ord by

〈α, β〉 = S(max(α, β)) + I<(α, β) · α+ ¬I<(α, β) · (α+ β)

− the projections 〈α, β〉 7→ α and 〈α, β〉 7→ β are ordinal recursive

− via Gödel pairing and unpairing, ordinals may be seen as finite sequences
of ordinals, or as sequences of symbols

3 An ordinal language

Let the language LT be appropriate for first-order structures of the type

(α,<,G,R)

where the Gödel pairing function G is viewed as a ternary relation on α and
R is a unary relation on α. So the language consists of

− terms vn and constants cξ for ξ ∈ Ord; cξ will be interpreted as ξ;

− atomic formulas t1 ≡ t2, t1 < t2, Ġ(t1, t2, t3) and Ṙ(t1);

− formulas ¬ϕ, (ϕ ∨ ψ), ∃vn < tϕ.

Note that all formulas of LT are bounded. We assume an ordinal computable
Gödelization such that for ζ < ξ:

ϕ
cζ
vn

< (∃vn < cξϕ).

Define the satisfaction relation (Ord, <,G,R) |= ϕ for sentences ϕ as usual.
Since ϕ is bounded,

(Ord, <,G,R) |= ϕ iff (ϕ,<,G,R) |= ϕ.
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Definition 2 Define the bounded truth predicate T ⊆ Ord by

T (α) iff α is a bounded LT -sentence and (α,<,G, T ∩ α) � α.

In short
T (α) iff (α, T ∩ α) � α.

Theorem 1 The truth predicate T is ordinal recursive.

Proof The characteristic function χT can be defined by

χT (α) =

{
1 iff ∃ν < αH(α, ν, χT (ν)) = 1
0 else

with

H(α, ν, χ) = 1 iff α is an LT -sentence and

∃ξ, ζ < α(α = cξ ≡ cζ ∧ ξ = ζ)

or ∃ξ, ζ < α(α = cξ < cζ ∧ ξ < ζ)

or ∃ξ, ζ, η < α(α = Ġ(cξ, cζ , cη) ∧ η = G(ξ, ζ))

or ∃ξ < α(α = Ṙ(cξ) ∧ ν = ξ ∧ χ = 1)

or ∃ϕ < α(α = ¬ϕ ∧ ν = ϕ ∧ χ = 0)

or ∃ϕ, ψ < α(α = (ϕ ∨ ψ) ∧ (ν = ϕ ∨ ν = ψ) ∧ χ = 1)

or ∃n < ω∃ξ < α∃ϕ < α(α = ∃vn < cξϕ ∧ ∃ζ < ξν = ϕ
cζ
vn
∧ χ = 1).

χT (α) =

{
1 iff ∃ν < αH(α, ν, χT (ν)) = 1
0 else

is equivalent to

χT (α) =
⋃

ν<α

H(α, ν, χT (ν))

and thus χT is ordinal recursive. �

4 Constructibility

Definition 3 The constructible model L was defined by Gödel:

L0 = ∅
Lα+1 = Def(Lα) = the set of first-order definable subsets of (Lα,∈)

Lλ =
⋃

α<λ

Lα

L =
⋃

α∈Ord

Lα
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L is the ⊆-minimal inner model of the Zermelo-Fraenkel axioms ZFC.
The bounded truth predicate T is just as strong as the constructible model:

Theorem 2 For ordinals µ and α define “sections” of the truth predicate by

X(µ, α) = {β < µ|T (G(α, β))}.

Set S = {X(µ, α)|µ, α ∈ Ord}. Then S = {x ⊆ Ord |x ∈ L}.

Proof (Sketch for ⊇) Show that (Ord,S, <,=,∈, G) satisfies a natural theory
of sets of ordinals; mathematics can be done in (Ord,S, <,=,∈, G); define a
version of Gödel’s L inside (Ord,S, <,=,∈, G); thus every constructible set of
ordinals is an element of S. �

Thus ordinal recursive functions lead to an ordinal recursion theory where
ordinal recursive sets are the constructible sets.

Problem 2 Is there a reasonable recursion theory for the ordinal recursive classes
with respect to ordinal recursive reducibility? Is that reducibility equivalent to ∆1

1

reducibility over L?

5 Ordinal programming languages

The essential recursion

χT (α) =

{
1 iff ∃ν < αH(α, ν, χT (ν)) = 1
0 else

can be described in a recursive pseudo language like

define T(alpha) by

input alpha

let nu=0

while nu<alpha

if H(alpha,nu,T(nu))=1 return 1

nu=nu+1

return 0

Problem 3 Can one generalize other programming languages or language constructs
to the ordinals?

6 Ordinal machines

6.1 Ordinal stack machines

Recursive programs on ordinals as above can be interpreted on machines with
finite descending ordinal stacks

α0(t) > α1(t) > . . . > αl(t)−1(t).
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The machines works in ordinal time t with the following behaviour at limit
ordinals λ:

− if (α0(t), . . . , αl−1(t)) is eventually konstant before time λ then set

(α0(λ), . . . , αl−1(λ)) = (α0(t), . . . , αl−1(t))

for sufficiently high t < λ. Also let l be maximal with that property.

− if lim inf t→λ αl(t) is defined, set l(λ) = l + 1 and αl(λ) = lim inft→λ αl(t)

− if lim inf t→λ αl(t) is undefined, set l(λ) = l

6.2 Ordinal Turing machines

− use standard Turing programs

− employ lim inf-rules as limit rules for tape contents and state

− The truth predicate T can be calculated by an ordinal Turing machine,
writing T successively on one of the tapes.

− Thus: a set of ordinals is ordinal Turing computable iff it is constructible.

6.3 Ordinal register machines

− use standard register programs, i.e., goto programs

− employ lim inf-rules for register contents and state

− An ordinal stack can be simulated by an ordinal register machine.

− Thus: a set of ordinals is ordinal register computable iff it is constructible.

6.4 Nondeterministic computations

A class C of sets of ordinals is nondeterministically ordinal computable if there is
an ordinal Turing machineM with ordinal parameters such that for x ⊆ Ord

x ∈ C iff ∃yM accepts (x, y)

Problem 4 What is the class

N = {x ⊆ Ord |{x} is non-deterministically ordinal computable}?
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7 An application: fine structure for the con-
structible model

Apart from leading to satisfying models of infinitary computation, ordinal com-
putability also starts to have applications in other fields. We indicate how
the Jensen fine structure of the constructible hierarchy may be reconstructed
within ordinal computability. We base our approach on Silver machines.

Definition 4 Consider M = (Ord, <,M), M : Ord<ω ⇀ Ord. For α ∈ Ord
let

Mα = (α,<,M ∩ α<ω);

for a set X ⊆ α let Mα[X ] be the substructure of Mα generated by X. M is a
Silver machine iff it satisfies

− Condensation: for α ∈ Ord and X ⊆ α there is a unique β such that
Mβ ∼= Mα[X ];

− Finiteness property: for α ∈ Ord there is a finite set z ⊆ α such that for
all X ⊆ α+ 1

Mα+1[X ] ⊆Mα[(X ∩ α) ∪ z] ∪ {α};

− Collapsing property: if the limit ordinal β is singular in L then there is
α < β and a finite set p ⊆ Ord such that M [α ∪ p] ∩ β is cofinal in β.

Jack Silver defined Silver machines within the constructible model L and
used them to give simple proofs of the combinatorial principles � and Morass.
We can naturally define a Silver machine from the bounded truth predicate T .

Definition 5 Consider the structure (Ord, <, T ). Define a Skolem function
by

h(α) =

{
β, if α = ∃vn < cξϕ and β is minimal s. th. (α,<,G, T ) |= ϕ

cβ
vn

0, else

Let G1, G2 be the inverses of the Gödel pairing function. Code h,G1, G2 into
a machine function M by

M(0, α) = h(α),M(1, α) = G1(α),M(2, α) = G2(α).

Theorem 3 M = (Ord, <,M) as defined in the previous definition is a Silver
machine.

Proof (Sketch)
Condensation: For α ∈ Ord and X ⊆ α there is a unique β such that Mβ ∼=
Mα[X ].
Proof by induction on α: Let Y = Mα+1[X ]. By inductive assumption: π :
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Y ∩ α ∼= Mβ. If α 6∈ Y , then Y = Y ∩ α ∼= Mβ . If α ∈ Y , then Y ∼= Mβ+1; for
this one mainly has to show that

π(h(α)) = h(β).

Finiteness : Observe that Mα+1[X ] ⊆Mα[(X∩α)∪{h(α), G1(α), G2(α)}]∪{α}
and so z = {h(α), G1(α), G2(α)} may be taken as the desired finite set.
Collapsing : If the limit ordinal β is singular in L then there is α < β and a
finite set p ⊆ Ord such that M [α ∪ p] ∩ β is cofinal in β.
This holds because every constructible set of ordinals including a singularizing
cofinal set for β can be decoded from T with the help of h. �

Problem 5 Can one construe fine structural constructions like the definition of �-
sequences as computations of ordinal machines?
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