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1. Introduction

Ideas and methods of classical recursion theory have been lifted from the natural numbers to other kinds of mathematical
objects. Takeuti [14], Kreisel and Sacks [6], Kripke [7], and Platek [10] defined recursion theory on ordinals, making use of
the arithmetic and order-theoretic similarities between natural numbers and ordinal numbers. This work led to the concept
of admissible ordinals and to a-recursion theory where recursions are carried out on (the elements of) an admissible ordinal
«. The field of a-recursion theory was developed comprehensively by G. Sacks and his school since 1965. Sacks gave the
following characterization in his definitive monograph [11, p. 149]:

«a-recursion theory lifts classical recursion theory from w to an arbitrary X'y admissible ordinal «. Many of the classical
results lift to every o by means of recursive approximations and fine structure techniques.

The lifting is based on the observation that a set A C w is recursively enumerable iff it is definable by a X';-formula over
(Hy,, €), the set of all hereditarily finite sets. By analogy, a set A C « is said to be «-recursively enumerable iff it is £ (L), i.e.,
definable by a X>'{-formula, allowing parameters, over (L,, €) where L, is the «th level of Godel’s constructible hierarchy.
Consequently a set A C « is said to be a-recursive iff it is A{(Ly), i.e., if the set and its complement are «-recursively
enumerable. So a-recursion theory is closely connected to set theory, in particular to constructibility theory. Its methods
involve set-theoretic definability arguments up to the beginnings of Jensen’s fine structure theory of the constructible
hierarchy. Further information on the connection to set theory can be found in [1].

Besides definability and constructibility techniques, there has always been a strong “computational” attitude in «-
recursion theory as described by Sacks [11, p. 155] in the discussion of a ¥ { (L, )-definition (of some function f):

The definition of f can be thought of as a process. At stage § it is assumed that all activity at previous stages is
encapsulated in an «-finite object, s | . In general it will be necessary to search through L, for some existential
witness ... [emphases by the present authors].
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However, no machine model for admissible recursion theory was elaborated. Levy announced a generalization of Turing
machines working on regular cardinals in the abstract [8], but no further details were published. Other approaches to ordinal
recursion theory were based on recursion schemata (see Takeuti [ 14], Machover [9]).

In this article we show that «-recursion does indeed correspond naturally to computations by (abstract) machines:
recursive enumerability and recursiveness in admissible recursion theory is equivalent to enumerability and computability
by certain Turing machines working on ordinals. This was proved by the first author (Section 2) after a talk by Sy Friedman
on ordinal recursion theory at the Bonn International Workshop on Ordinal Computability (BIWOC) in January 2007. The
second author recast the proof of the Sacks-Simpson theorem using the computational paradigm instead of constructibility
theory. The crucial point involved was how the informally presented recursions in the argument of Sacks and Simpson [11,
12] (and a recursion method presented by Shore [13]) can be implemented by means of computational mechanisms of the
generalized Turing machines (see Section 4). We are very thankful to Russell Miller for his generous help with the discussion
of the priority arguments.

Ordinal computability is introduced here on the basis of a Turing machine model, but the theory is robust with respect to
various modifications. One could, e.g., use Turing machines with any finite number of tapes and read-write heads, change
the commands of the machine, or work with register machines instead of Turing machines.

2. Ordinal Turing machines and the constructible hierarchy

A standard Turing machine is based on the set w = {0, 1, ...} of natural numbers: it acts on a Turing tape of length w
within a discrete time axis which is also indexed by w. In [5], the first author defined ordinal Turing machines by replacing the
set w of natural numbers by the class Ord of ordinal numbers. In this article we generalize both standard and ordinal Turing
machines to «-Turing machines, or «-machines for short, where space and time are indexed by (the elements of) some fixed
limit ordinal @ or by « = 0o = Ord. We define -machines by an intuitive description of «-computations. The relationship
between ordinal Turing machines and the constructible model L was studied in [5]. We shall make use of those methods by
restricting them to «.

An o-machine possesses a tape of length « which consists of cells containing the symbols 0 or 1 where 0 is the default
symbol. So at every time t < « the tape can be formalized by a 0-1-sequence

T(t): o — 2, T(t) = (To(t), T1(t), ...).

A read-write head is moving on the tape, positioned at an ordinal H(t) < « at time t < «. The head starts at cell 0, i.e.,
H(0) = 0. The computation is steered by a (standard) Turing program which is a finite set P of numbered commands of the
two forms

s: i1f head=c then print c’, move right, and change to state s’
or
s: 1f head=c then print c’, move left, and change to state s’

where c, c’€ {0, 1} and s, s’ € w. At time t the machine is in some state S(t) € w, starting from state 0, i.e., S(0) = 0. A
computation of the machine is a sequence

(T(t), H(t), S(t))e<o

of machine configurations (T(t), H(t), S(t)) for t below some maximal # < « at which the computation stops. The
computation is defined by recursion on t < 6. The initial configuration is of the form (T (0), 0, 0).

At successor times t + 1 the configuration is defined from the configuration (T (t), H(t), S(t)) as follows. Let s= S(t), and
let c= Ty (t) be the symbol under the machine’s head.
Case 1. The program contains a command of the form

s: i1f head=c then print c’, move right, and change to state s’

Then the machine acts accordingly by setting

[Te(t),ifE < aand € # H(b)
Tet+1) = {cs’,otherwise
H(t+1) =H(t)+1
St+1) =s?

and proceeds to time t + 1 < «.
Case 2. Not Case 1 and the program contains a command of the form

s: i1f head=c then print c¢’, move left, and change to state s’
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Then set
) Te(0),if§ <aand & # H(t)
Te+1) = {c’,otherwise
__ JH(t) — 1,if H (t) is a successor ordinal
HEe+1) {0, otherwise
St+1) =s’

and proceed to time t + 1 < «. Note that if H(t) is a limit ordinal then the head position is reset to 0.
Case 3. Not Case 1 and not Case 2. Then the computation stops, i.e., 6 is set to the successor ordinal t + 1.
The configuration at limit times t < « is obtained as a natural limit of previous configurations, using lim inf-operations:

T(t)e = lim itnfT(s)g
S(t) =limi[nf5(s)
g

H({t) = liminf H(s).
s—£,5(s)=S(t)
So, if the contents T (s), of the & th cell of the tape stabilize before time t then at time t the &th cell contains that stable value;
otherwise T (t) is set to the default 0. The definitions of S(t) and H(t) can be motivated as follows. Since a Turing program is
finite, its execution will lead to some (complex) looping structure with loops, subloops and so forth which can be presented
by pseudo-code like:

17 :begin loop
21: begin subloop
29: end subloop
32:end loop
Assume that for times s — t the loop (17 — 32) with its subloop (21 — 29) is traversed cofinally often. At limit time ¢
it is natural to put the machine back to the beginning (17) of the “main loop”. Assuming that the lines of the program are
enumerated in increasing order, this corresponds to the lim inf rule S(t) = lim inf;_,; S(s). The natural head location H(t) is

then determined as the inferior limit of all those head locations when the program is at the start of the “main loop”.
A computation of the «-machine may be visualized by a “space-time” diagram like:

S pace «
0(1(2]|3(4]5|6|7]. wl..|l8<al..|..
0 1/1(0(1]0j0|11]. 1]. 0 0
1 Of1(0|1]0j0(1|1 1
T| 2 o(ojoj1({ofOo|L]|1 1
i 3 Jojojoj1|ofo|1|L 1
m| 4 JO|0[0|0|O(0O|1|1 1
e :
n 111 (1(1{0j1|0]|1 1
a|ln+l1 1|1 |1]1]1]1|0]1 1
w 01011]0]10]0)1]2)...]... |1
w+1§0|0|1|0|0]|0|1|1 0
g—1f1|0|0|1|1|L]|1|0 0
f<alS|T|O|P

A computation of an a-machine, head positions are indicated by shading.
The computation

(T(t), H(t), S(t))e<p

defined above is called the a-computation by P with input T (0). If the ¢-computation stops at some § < « then9 = ty + 1
is a successor ordinal and T(tp) is the final tape content. In this case we say that P computes T (to) from T(0) and write
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P : T(0) — T(tp). Note that at all times ¢t the head position H(t) is < t and that T(t) = (T(t) | t) U (T(0) | [t, @)). So the
«o-computation can be described by T(0) and the sequence

(T(@) 1 t,H(t), S(t))e<p-

We can define various notions of computability from this machine model. Information is entered and output on the one
working tape of the machine. Instead of introducing several machine tapes we separate various kinds of information on the
tape by dividing it up into four “subtapes”, using ordinal arithmetic modulo 4: ordinals = 0 (mod 4) are used to code the
“input” X C «, ordinals = 1 (mod 4) code the “output” Y C «, ordinals = 2 (mod 4) code extra “parameters” p C «, and
ordinals = 3 (mod 4) may contain an “oracle” O C «. Appropriate codings and decodings are given by the characteristic
function X|Y|p|O : « — 2, whereforé < o andi < 4

4.5 +i> 1iff(=0AEeX)V(i=1AEcY)V(i=2AEcp V(i=3AEcO).

We can use an @-machine to (effectively) enumerate all the pairs (P, p) where P is a Turing program and p C « a finite set
of ordinal parameters. Fix such an enumeration.

Definition 1. Let ¢ < o and denote by {¢} the eth pair (P, p) , consisting of a program P and parameters p.Let§ € o,B C «
and o < «. Consider (T(t), H(t), S(t))¢<p, the @-computation by P on input T(0) = {5}|%|p|B.

-{ e}g (8) | means that the computation halts in at most o-many stages, i.e. 6 < o.

- {€}B(8) | means that the computation halts, i.e. < a.

- {€}B(8) 1 means that the computation diverges, i.e.§ = a.

- We write {€}2(8) | =y iff {¢}5(8) | and P : {§}|0|p|B — X'|{y}|p|B for some X' C « and furthermore forallt < o N6
T(t) is of the form X;|Y;|p|B for some X;, Y; C «.

If B = () we write {¢} instead of {¢}5.
Definition 2. A partial function F : « — « is a-computable in (the oracle) B C « iffthereisane < « suchthatforall§ < a:

~ {€e}B(8) | iff § € dom(F)
- {€)}B(8) = F(8) for every § € dom(F).

In that case we say that {¢}? computes F and write {¢}® = F.

Aset A C « is w-computable in (the oracle) B iff its characteristic function x4 : @ — 2 is @-computable in B.AsetA C «o
is a-computably enumerable in (the oracle) B iff A = dom(F) for some partial function F : @ — 2 which is «-computable in
B.In case B = {J we simply write «-computable and «-computably enumerable.

We also write ordinal machine, ordinal computable, and ordinal computably enumerable instead of co-machine, co-
computable, and co-computably enumerable, resp.

These are the basic notions of «-computability theory, defined in close analogy to the notions of classical computability
or recursion theory. To study the relation of «-computability theory to «-recursion theory we link «-computability to
constructibility theory. Since an «-computation is defined by very simple recursion rules it can be carried out within the
levels Ls[-] of appropriate relativized constructible hierarchies.

Lemma 3. Let P be a program and assume that the initial tape content is the characteristic function of a set D C «: T(0) = xp.
Let (T(t), H(t), S(t)): ¢ be the a-computation by P with input T (0). Then:

(a) If 8 is a limit ordinal then Vv < § (T(t) [ t, H(t), S(t))teorv € Ls[D].

(b) If§ is a limit ordinal then (T(t) | t, H(t), S(t))¢egns is uniformly A, (Ls[D]).
(c) IfA C « is a-computably enumerable in the oracle B then it is X 1(L,[B]).
(d) IfA C « is a-computable in B then it is A1(Ly[B]).

(e) IfA C « is a-computably enumerable then it is X1(Ly,).

(f) IfA C « is a-computable then it is Aq(Ly).

Proof. We prove (a) and (b) by simultaneous induction on §. (a) holds readily for § = w since L,[D] = H,, is the set of all
hereditarily finite sets.
We assume the (a) holds at § and show that (b) holds at §. As remarked above,

(T() 1t H(t), S(O)ceons

is basically the o-computation by P with input T(0), restricted to & N §. It is defined by the recursive computation rules
by the program P with input T(0). The recursive rules can be defined by X,-formulas, and so by the recursion theorem for
ordinal recursion (T (t) | t, H(t), S(t))¢econs is A1-definable in the set-theoretic universe. The unbounded quantifiers in the
A1-representation range over initial segments of the recursive functions. By (a), these initial segments are elements of Ls[D]
and so (T(t) I t, H(t), S(t))repns is A1(Ls[D]).

Now assume that § is a limit ordinal such that (a) and (b) hold for all limit ordinals 8’ < 8. We show that (a) holds at §. This
is obvious if § is a limit of limit ordinals. Assume now that § = §’ 4w, where &’ is a limit ordinal. If & < &', (a) holds trivially at



314 P. Koepke, B. Seyfferth / Annals of Pure and Applied Logic 160 (2009) 310-318

8.Soassume 6 > §'.Then (T(t) | t, H(t), S(t)).s is uniformly A;(Ly[D]). The limit configuration (T(8") | t, H(§'), S(8"))
is definable by simple lim inf rules from (T (t) | t, H(t), S(t));<s. So it is also definable over Ly [D] and
(T(@) 1t H(t), S())e<s’ € Ly11[D].

For v € [&, ), the sequences (T(t) | t, H(t),S(t))reony are “finite variations” of (T(t) | t, H(t), S(t));<s and hence
(T(t) 1 t,H(t), S(t))resrw € Lsr+o[D], as required by (b).

Now (b) implies (¢), (c) implies (d), (c) implies (e), and (d) implies (f). O

To prove the converse of (¢) and (d), we represent the constructible hierarchy Ls[D], for D C Ord by an ordinal program.
According to [5], basic functions like the Gédel-pairing function are ordinal computable. This allows to code sequences of
ordinals and formulas as ordinals; elementary operations on sequences can be assumed to be ordinal computable.

To make L, [D] accessible to an «-Turing machine introduce a language with symbols (, ), {, }, |, €, =, A, =, V, 3, Band
variables vg, v1, .. .. Define (bounded) formulas and (bounded) terms by a common recursion on the lengths of words formed
from these symbols:

- the variables vy, vy, . .. are terms;

- ifsand t are terms then B(s),s = t and s € t are formulas;

- if ¢ and  are formulas then —¢, (¢ A ¥), Yv; € vj ¢ and Jv; € v; @ are formulas;
- if p is a formula then {v; € vj|¢} is a term.

For technical reasons we use tidy terms and formulas in which

- no bound variable occurs free,
- every free variable occurs exactly once.

An assignment is a finite sequence a : k — V; a(i) will be the interpretation of the variable v;. We write t[a] and ¢[a] for
the values of t and ¢ under the assignment a. Concerning the constructible hierarchy Ls[D], it can be shown by induction
on § that every element of Ls[D] is the interpretation t[(L,,[D], ..., Ly, ,[D])] of some tidy term t with an assignment
(Ly,[DY, ..., L,_,[D]) where yo, ..., ¥k—1 < 0.

We define the (bounded) truth function Wp : A — 2 for L[D] on the class

A= {(a, ¢)la € Ord=", ¢ is a tidy bounded formula};
Wp((yo, - -+ » Ye—1), @) = T1iff @[(L),[D], ..., Ly, _,[DD].
Relativizing the main technical result of [5] to the oracle D yields:
Lemma 4. The bounded truth function Wp for L[D] is ordinal computable in the oracle D by some Turing program Pyyh.

A close inspection of the program Py, shows that the computation takes place in exponential time, i.e., there is an
exponential expression p(&) such that for ((yg, ..., ¥k—1), ¢) € A the computation of the truth value W ((yo, - . ., Yk—1), ©)
stops before stage p(max(yy, . - ., ¥k—1)), where the exponential expression is evaluated in ordinal arithmetic. This proves:

Lemma 5. If the ordinal « > 0 is closed with respect to ordinal exponentiation then the bounded truth function Wp |
(AN (@=? x V)) is a-computable in the oracle D N «.

Lemma 6. Let « > 0 be closed with respect to ordinal exponentiation and let A C « be X 1(Ly[B]). Then A is a-computably
enumerable in the oracle B. If A C « is A1(L,[B]) then A is «-computable in the oracle B.

Proof. Consider a X1 (L,[B])-definition of A C «:
£ €A < Jy € LyB] LBl = ¢l§,y,dl
where ¢ is a bounded formulas. This is equivalent to
£ €A« 3B <alygBl E Iyplt,y,adl
and
E€A< 3B <a Wp((E,B,0),¢") =1

where ¢* is an appropriate tidy formula.

Now & € A is a-computably enumerable in B by the following “search procedure”: for y < « and for 8 < y let
the program Py, run on input ((§, 8, @), ¢*) for y steps. If the truth program stops with output 1, then stop, otherwise
continue.

For the second part, let A € o be A{(Ly[B]). Then A and « \ A are a-computably enumerable in B, and hence A is «-
computableinB. O

The results so far yield the following characterizations:
Theorem 7. Let the ordinal o be closed under ordinal exponentiation and A C «. Then

(a) Ais a-computable in Biff Aiis A1(Ly[B]).
(b) Ais a-computably enumerable in Biff Ais ¥ 1(Ly[B]).
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3. Admiissible recursion theory

Admissible ordinals were defined by Kripke [7] in order to generalize standard recursion theory to ordinals. One of the
many equivalent definitions is:

Definition 8. An ordinal « > w is admissible iff there is no total X (L,)-definable function f that maps an ordinal 8 < «
cofinally into «.

Note that every admissible ordinal is closed under ordinal exponentiation. By Theorem 7, we characterize admissibility
in terms of ordinal computability without any reference to the constructible hierarchy.

Theorem 9. An ordinal « closed under ordinal exponentiation is admissible iff there is no a-computable function g that maps
some B < « cofinally into «.

In case of an admissible ordinal «, the absence of computable functions cofinal in & enables us to make free use of nested
loops of lengths < « and finitely many working tapes with independent heads when describing algorithms for -machines.
Recall the fundamental definitions of admissible recursion theory (see [11, p. 154-155]):

Definition 10. Let o be admissible. Then

(a) xis a-finite iff x € L,.
(b) A C «is a-recursive iff Ais A1 (Ly).
(c) A C «is a-recursively enumerable («-r.e.) iff Ais X1(Ly).

Theorem 7 immediately gives the equivalences:
Theorem 11. Let « be admissible. Then

(a) A C ais a-recursive iff A is a-computable.
(b) A C ais a-r.e. iff A is a-computably enumerable.

The notion of «-finiteness can be characterized by means of «-computability in the following way:
Theorem 12. Let o be admissible. For A C « it is equivalent:

(a) Ais a-finite,
(b) Ais a-computable and bounded below «,
(c) Ais B-computable for some 8 < «.

Proof. (a) = (b) since o-finite implies «-computable and « is a limit ordinal.

(b) = (c).LetA € ¥y < « and let {e} = xa. Since « is admissible there exists an upper bound § < « on the length of the
computations {€}(§) for & < y.So A is max{§, y }-computable.

(c) = (a). We may assume that g is a limit ordinal. By Lemma 3 A has a A;-definition over Lg. S0A € Lgy1 C Ly. O

Identifying a function f with its graph {(¢, n) | f(¢) = n} (where (-, -) is the Gddel-pairing function), we have a natural
notion of a-finite functions on ordinals. Also, the cardinals within L, can now be characterized by «-machines.

Theorem 13. Let o be admissible and < «. Then

(a) L, = ‘B is a cardinal’ iff there isno § < B and no a-finiteg : & ﬂ B. We call B an a-cardinal.

(b) Ly = ‘B is aregular cardinal’ iff B is an a-cardinal and there isno y < B with an a-finiteh : y C—Of> B. In this case we say B
is an o-regular cardinal.

Definition 14. For a-finite A C « we denote by |A|, the a-cardinality of A, i.e. the least ordinal § < « with an «-finite
surj

g:6 — A

Admissible recursion theory uses methods from Jensen’s fine structure of the constructible hierarchy [4] as a partial
substitute for the strong closure properties of w. The central notion of fine structure theory is given by the projectum. The
following definition taken from [2] is equivalent to the original one.

Definition 15. For every ordinal « > w define its projectum
« . surj
o =min{p <o |3g (g B1le) AE: Lp — Ly}
Theorem 7 yields a characterization without reference to the constructible hierarchy.

Theorem 16. Let o be admissible. Then a* is the smallest ordinal such that there is an a-computable injection from « into o*.
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Lemma 17.
% . - - surj
o' =minfp <a|FEE L) AE:p— )}

Proof of Lemma 17. Let g be ¥1(L,) withg : L, = Ly. There existsa A{(Ly) h : « = L, [11, Proposition 1.8, p. 156].
Similarly, we can obtaina A, (La)—deﬁnablefl ) ﬂ L,.Defineg = h~logo h. This is Yi(ly)andg : p = «. Conversely,

let g be given as ¥1(L,) and with g : p N o.Theng =hogoh 1isE (L,) andg : L, Y L,. O

Proof of Theorem 16. Since « is admissible assume that we have a partial o-computable g : p - o. We define the «-

computable f : « Ll p as follows: Given input &, we check in stage o the first o-many steps of the computations of g(¢)
for ¢ < o. At some least stage we will find a least n with g(n) = & and set f(§) = n. If on the other hand we assume a

fa ﬂ) B, it suffices to define a partial @-computable g : N o: Set g(&) to the n with f () = £ and undefined else. O

Admissible recursion theory studies subsets of a with respect to certain reducibility relations. We define three
reducibility notions. The first two are standard in a-recursion theory (see [11, p. 162]), the third is the natural notion arising
from a-computability. Fix an admissible ordinal « for the rest of this section.

Definition 18. (a) A is weakly a-recursive in B, A <, B, iff there exists an a-recursively enumerable set R C L, such that
forally < «

y € AiffdH € B3I C o \B: (H,],y,1) €R
and
y ¢AiffdH € B3I Cwo \B: (H,],y,0) €R.
(b) Ais a-recursive in B, A <, B, iff there exist «-r.e. sets Ry, Ry C L, such that forall K € L,
K CAiffadH € B3 C o \B: (H,],K) € R
and
KCoa\Aiff3H € B3 Ca\B: (H,],K) € R;.
Definition 19. For subsets A, B C « define A <, B, A is a-computably reducible to B, iff A is «-computable in the oracle B.
By Theorem 7 this can be reformulated as:
Theorem 20. For A, B C a: A <, BiffA € A1(Ly[B)).

It is easy to see that A <, Bimplies A <., B. The relation <, is transitive, whereas <.y, and <, may fail to be transitive
(see [3]). Inspection of the definition of <y, shows:

Theorem 21. IfA is weakly «-recursive in B then A is «-computable in B.
Thus we have the following inclusions
Sa g SWCY g ﬁO{ .

The inclusions can in general not be reversed.

4. The Sacks-Simpson theorem with machines

The first major result in a-recursion theory was Sacks’ and Simpson’s proof of a positive answer to Post’s problem for
a-recursion:

Theorem 22 (Sacks-Simpson 1972). Let o be an admissible ordinal. Then there are two «-r.e. sets A € « and B C « such that
A Lwe Band B £y, A.

Post’s problem is usually seen as a test case for recursion theories. So we are interested whether or not some priority
argument can be implemented on our «-machines. More precisely, can we utilize the lim inf-rule in a way that the algorithm
behaves correctly at limit times, preserving all the necessary information? We will see that it is instrumental to store
information in different data structures (see (1) and (2) below).

We base our considerations on the presentations of the Sacks-Simpson theorem in [11,12]. There, the proof is divided in
two cases, depending on the closure properties of the admissible ordinal «. Each case is proved by describing an algorithm
that simultaneously enumerates the two sets A and B as required.
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The first case, o™ < «, uses a generalization of the classical Friedberg-Muchnik algorithm, but with requirements indexed
by «*. In the correctness proof, an analysis of the «-cardinality structure ensures that all injury sets are «-finite. Instead of
employing the complicated method of tame X';-maps as in [11,12], an adaptation of the method described by Shore in [13]
can be used to handle the case that «* = «, as briefly suggested in the non-trivial Exercise VIII.1.5 in [11]: The above
algorithm is modified by adding an additional set of negative requirements which keep the injury sets literally finite. The
closure of @ under partial X';-maps ensures the correctness despite the heavily restricted injury behavior.

The techniques to implement either of these algorithms on o-machines are the same, therefore we choose to restrict our
presentation to the algorithm for the case a* < «.

From now on we assume o* < «.

By Theorem 21, the Sacks-Simpson theorem can be proved by giving an algorithm that computably enumerates two sets
A and B, for which the goals A £, Band B A, A hold. Consider the following requirements:

reqy, : If € € ran(f) then {f 7' (€))% # xa
redy.,; : If € € ran(f) then {f ()} # xs

with a fixedmap f : o A o according to Theorem 16.
Along with the sets A and B the algorithm will give a witness for every req,. with € € ran(f), i.e., an ordinal w,, for which

@) (wae) = 0iff wye €A

and likewise a witness w1 for req,. ;.
At any given stage 0 < « of the algorithm we have the following data for every requirement req,, (making use of the
«a-computable Godel-pairing function (-, -) for coding):

(1) w9, is the candidate for the witness for req,, at stage o. Those candidate witnesses only increase over time, so we can
represent them on one tape in a way that at any given time o the tape contains a 1in cell (2¢, y) iff y < w9_. Instead
of the single ordinal w_, the complete initial segment of ordinals up to w3, is coded onto the tape.

(2) used?, is non-zero iff wj, € A and is set to the supremum over the cell indices used in a the computation responsible
for putting w9, into A or B. Those are stored on one tape whose (2¢, 8)th cell contains a 1 iff usedj, = B. We want

usedj, = 0 to code the information that w§, ¢ A. The variable used?, is represented as a single ordinal bit on the tape.

All of these are analogously defined for req,, . ; with the roles of A and B interchanged. A and B are constructed as their
characteristic functions on one tape each, A” resp. B’ denote the part constructed at the beginning of stage o. The candidate
witnesses w§ for reqg are chosen from the class Z; = {(6, §) | £ € Ord} so wj can only enter A or B as a witness for reqs.

In what follows, whenever a statement is made about req,,, its dual for req,, , ; is also assumed yet omitted for simplicity.
We say that req,, is not currently witnessed at stage o if wj, ¢ A”.req,, acts at stage o when w3, is added to A at stage o.
As long as wj, € A° we call reqy, currently witnessed. req,, is injured by req in stage o if wj_ € A% but w‘z’j] ¢ A°*1 and
reqs is the requirement acting in stage o.

The following Friedberg-Muchnik-type algorithm will check each requirement unboundedly often, but every
requirement will act only a-finitely many times [12].

Algorithm 1. The algorithm goes through «-many stages o and in each stage it might put an element into A or B to fulfill
one requirement (if so, we say that the respective requirement acts).

o = 0: Initialize wJ = (0, 0) and used) = 0.

o> o+1:leto = pu-o*+vwithv < o If w] does not have avalue, initialize w) = min{§ € Z, | § ¢ A7 UB? A& >
sup{used;‘, | ¥ < v}}and used] = 0. [This initialization happens exactly at stages < a*.]

Let WLOG v = 2e.

If wg, € A” then req,, is currently witnessed and no action is taken, i.e., set A°*! = A%, B°*! = B%, w{*! = wY and
used] ™! = usedy forall § < a*.

If wg, ¢ A then check whether {f~'(¢)}” (wg.) | = 0.

If this is not true then again no action is taken.

If {f~'(€)}¥" (wg,) |= 0 then req,, acts: set A" = A° U {wg }, B°*! = B, w3 = wy_. Let u be the supremum of

the indices of cells used in the computation of {f ! (e)}gg (wg,) {= 0and set used‘z’jl = u. For § < 2¢ keep wg’“ = wy,

used] ™! = usedS. Fora* > § > 2eand § < o:used]' =0, wiT = min{¢ €Z; | £ ¢ AT UB“T AE > wl AE > ub

Note that the description of the algorithm does not contain a limit step since the machine configuration at limit times is
completely determined by the lim inf-rules.
We need to check whether the variables contain their intended values also at limit stages:

Lemma 23. At the beginning of every stage o the following conditions hold for every § < a* resp. 2¢ < a*:

(a) w§ > supfused | y <4},
(b) Ifws, € Athen {f! (e)}ﬁa (wg,) 4= 0and useds, is the supremum over the indices of the cells used in this computation.
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Proof. If o is a successor ordinal, the lemma holds by the definition of w and used. If o is a limit consider a requirement
reqy,. If req,, acted at a stage T < o and no requirement req; with § < 2¢ acted at a stage p, T < p < o, then wj, = w9,
and (a) holds. In fact {f =" (€)}¥” (wg,) | = 0is the same computation as {f ~'(¢)}?" (w3,) | = O since the elements in B* \ B®
are all larger than the supremum of cell indices used in {f ! (e)}‘f (w3,) {= 0. Since used], = used, also (b) holds.

If, on the other hand, req,, was injured unboundedly often in o, then, by the lim inf-rule, usedj, = 0 and w,, has been
redefined unboundedly often in o. Since, unlike used,,, w,. is represented as an initial segment of ‘1’s on the tape, it does not
default to zero but takes its intended value at stage o'. By admissibility w9, is well defined, i.e. < «. So (a) holds inductively.
Since w9, ¢ A, (b)is trivially true in this case. O

Seeing that the data structures behave well at limit times, it is clear that this algorithm is similar to the ones from [12]
and [11] and therefore correctly solves Post’s problem for «-recursion theory in case that o™ < «.
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