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Using the core model K we determine better lower bounds for the consistency strength of 
some combinatorial principles: 

I. Assume that A is a Jonsson cardinal which is ‘accessible’ in the sense that at least one of 
(l)-(4) holds: (1) A is a successor cardinal; (2) A = oE and 6 <A ; (3) A is singular of uncountable 
cofinality; (4) A is a regular but not weakly hyper-Mahlo.Then Ot exists. 

II. For A = P+ a successor cardinal we consider the weak Chang Conjecture, WCC(A), which is 
a consequence of the Chang transfer property (A+, A) j (A, p). 

III. If A = p+ao,, then WCC(A) implies the existence of 0”. 
IV. We can determine the consistency strength of wCC(o,). 

We include a relatively simple definition of the core model which together with the results of 
Dodd and Jensen suffices for our proofs. 

O.Intmduction 

The inner model L of constructible sets has been frequently used to investigate 
the consistency strength of combinatorial principles. In our paper some of these 
methods are adapted to the core model K to obtain stronger results. 

The way in which we will apply the model K may be motivated by Kunen’s 
proof that the existence of a Jonsson cardinal implies the existence of O#. We 
sketch the argument (a detailed account is in Jech [ll, p. 3961): 

A cardinal K is called Jonsson if every first-order structure of cardinality K 

whose language is countable possesses a Jonsson substructure, i.e. a proper 
elementary substructure of the same cardinality. So let X be a Jonsson substruc- 
ture of (L,, E). By the condensation lemma for the La-hierarchy, X=L.,. The 
inverse of the isomorphism is a nontrivial elementary embedding rr : L, -+ L,. 
U = {x E ctz ( x E L and (Y E T(X)} is an ultrafilter on ‘$(a) n L where Q! is the first 
ordinal moved by 7~. A condensation argument shbws that the ultrapower 
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(“L nL)/U is well-founded. Hence there is a nontrivial elementary embedding 
ii: L + L, and by a theorem of Kunen, O# exists. 

The core model K was invented by Dodd and Jensen [6]. K is an ‘L-like’ inner 
model of set theory which satisfies many of the combinatorial properties of L. But 
compared with L, the core model admits ‘larger’ cardinals; for example there may 
be Ramsey cardinals in K. Dodd and Jensen obtain the following Covering 
Theorem for K which strengthens the Jensen Covering Theorem for L (see [6]): 

If there is no inner model with a measurable cardinal, then K covers V, i.e. for 
every set Xc On there is some YE K with Xs Y and card(Y) <card(X) + wl. 
The core model is also L-like in that it satisfies an analogue of Kunen’s theorem 
about elementary embeddings of L into L: 

If there is a nontrivial elementary map from K into K, then there is an inner 
model with a measurable cardinal. 

Hence, when Kunen’s argument about Jonsson cardinals can be carried over to 
K, it yields an inner model with a measurable cardinal. We are able to do this 
transfer for certain ‘accessible’ Jonsson cardinals and for a weak form of a 
generalized Chang Conjecture. Actually we can strengthen this. Having obtained 
an inner model with a measurable cardinal we can repeat Kunen’s argument with 
some inner model L[ U], U is a normal ultrafilter on a measurable cardinal (Y. We 
obtain a nontrivial elementary embedding ii: L[ U] + L[ U] with its critical point 
above (Y. This is equivalent to the existence of Ot, a set of GGdel numbers defined 
by Solovay (see [15, p. 1321). 

Our main theorems now are: 

Theorem A. Let A be a Jonsson cardinal such that at least one of (l)-(4) holds 

(1) A = P+, 
(2) A =o< and ,$<A, 
(3) w<cof(A)<A, 
(4) A is regular but not weakly hyper-Mahlo. 

Then 0’ exists. 

See Drake [lo] for a definition of weak hyper-Mahlo cardinals. 

Definition. Let A = p+ be a successor cardinal. The weak Chang Conjecture for 
A, WCC(A), is the assertion: Whenever ‘?l is a first-order structure with a countable 
language and A’ c 8, then there is (Y <A such that for all p <A there is X&l 
with Xnh ~a and otp(XnA’)>p. 

The weak Chang Conjecture for o1 was, in an equivalent combinatorial form, 
considered in Shelah [18, section 351. WCC(A) is a trivial consequence of the 
Chang two-cardinal property (A+, A) j (A, p) (see Chang-Keisler [3, p. 4501). 

Theorem B. Let A = p+202 and assume WCC(A). Then 0’ exists. 
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Corollary. If (q, 02) * (02, wl), then O+ exists. 

Many more corollaries can be drawn from Theorem B, also taking into account 
the various interdependences between the Chang properties (K, A) 3 (K’, A’), 

(see 31). 
We determine the consistency strength of wCC(o,) in terms of partition 

cardinals: 

Definition. (1) Let f: [S]+ + V, S s On. Assume that Xc S is an infinite 
homogeneous set for f. Then set: 

t&(X) = (Y” I %I, . . . , 7% E WY, < * * . < ?/n Af(R, . . . 7 %I) = Y”), n cm>. 

tp#) is called the type of X (with respect to f). 
A sequence (X, ( a -CT) is called homogeneous for f (of order 7) iff for 

(Y<@<T:&ES; otp(X,)=o(l+a); X, is homogeneous for f; and tp,(&)= 

tp,(X,). 
(2) Let w7=7, 7fO. 

(a) Set K 4 (-CT):- iff for all f:[~]‘” +A there is a homogeneous sequence 

(X,)a<~)forf. 
(b) K is called almost CT-Erdiis iff K is regular and K -+ (<T):~ for all h < K. 

This type of properties has been studied in Baumgartner-Galvin [2]. The 
property K --, (-G&W implies the existence of O# but is strictly weaker than 
K -+ (o,)~* (See Section 8). 

Theorem C. Let M be a countable transitive model of ZFC and let K be almost 
<wI-Erdijs in M. Then there is a generic extension N of M such that N!=wCC(oI). 

Theorem D. Assume wCC(oI). Let K = o2 and 7 =oF. Then K is almost <r- 
Erdiis in K. 

‘Accessible’ Jonsson cardinals have been considered before. It is easy to see 
that no o,, is Jonsson, (n <w). Under GCH no successor cardinal is Jonsson. 
Shelah [19] gives a generalisation of this. Theorem A(3) strengthens results of 
Mitchell and Silver. Mitchell [16] shows that a Jonsson cardinal is Ramsey in K. 
Thus a singular Jonsson cardinal is regular in K and by the Covering Theorem for 
K there is an inner model with a measurable cardinal. Even before the introduc- 
tion of K, Silver had constructed an inner model with a measurable from the 
assumption that o, is Jonsson and 2” <o, (see Kanamori-Magidor 11121). On the 
other hand one can obtain singular Jonsson cardinals: A singular limit of 
measurable cardinals is Jonsson; Prikry forcing produces a Jonsson cardinal of 
confinality w (Prikry [17J). 

Theorem B contrasts with results of Silver and the first author about the 
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consistency strength of the Chang Conjecture (02, wl) + (ol, wO). Silver con- 
structed a model for the Chang Conjecture by forcing starting from a model for 
K + (w,><~ (Kanamori-Magidor [12] exhibit an easier version of this, starting 
from a Ramsey cardinal). Donder has shown that if (02, wl) + (w,, wO) is true in 
the universe then, in K, K + (A)<” holds, where K = o2 and h = w1 [9]. An upper 
bound for the consistency strength of (wg, w2) + (w2, wi) is given by a huge 
cardinal: If the forcing in Kunen [14] is modified to yield an w,-saturated ideal on 
w2, then, in the extension, (w2, w2) + ( 02, o,).holds (see the remark at the end of 

[141). 
As one might expect, Theorems C and D are descendants of the aforemen- 

tioned results of Silver and Donder. 
We strongly suppose that with the introduction of generalised core models 

appropriate for inner models with several measurable cardinals the conclusion of 
Theorems A and B can be considerably strengthened. 

Kunen’s result on Jonsson cardinals rests heavily on the condensation proper- 
ties of the constructible hierarchy, and the main point in the proofs of Theorems 
A and B is to define a structure such that certain elementary substructures of it 
‘condense’ nicely. We want the condensation map to determine an ultrafilter on 
!$(a) tl K for some (Y. Hence the condensate has to contain ‘$(a) n K. Lemma 2.6. 
is the tool to show that the condensate contains enough sets. 

This paper is organized as follows: 
Section 1 gives a brief introduction into the core model. The main properties of 

K are stated without proof. We consider ‘iterable premice’, which allow us to 
define K in a rather elementary way. 

Section 2 develops the machinery for our condensation arguments with K.. 
In Section 3 we derive from the assumptions of Theorem A the existence of an 

inner model with a measurable cardinal less than the Jonsson cardinal considered. 
This is strengthened in Section 4 where we show: 

Theorem A2. If K is a Jonsson cardinal and some ordinal -=CK is measurable in an 
inner model, then Ot exists. 

Section 5 gives an equivalence of WCC(~) which is better suited to the proofs of 
Theorem B and C. The proof of Theorem B is, as the proof of Theorem A, split 
into two steps. 

Section 6 gets from WCC(~), h = pfsm2, that there is an inner model with a 
measurable <ht. In Section 7 we prove: 

Theorem B2. Assume WCC(~), h = p+, and that there is an inner model with a 

measurable cardinal <h+. Then Ot exists. 

Sections 8 and 9 contain the proofs of Theorems C and Theorem D. 
We presuppose an acquaintance with (relative) constructibility, basic knowledge 



On the consistency strength of ‘accessible’ Jonsson cardinals 237 

of iterated ultrapowers and of course, in Section 8, of the forcing method. 
Constructibility is done with the J, -hierarchy. 

We use standard set-theoretical notation throughout. 

1. The core model 

Dodd and Jensen [6] introduce the core model K in order to generalise the 
Jensen Covering Theorem for I,. 

1.1-1.6 state fundamental properties of K. 

1.1. K is transitive, On c K, and K b ZFC + V = K + GCH. 

K also satisfies various combinatorial principles which hold in I., like 0, q , . . . . 

Definition. A covers B iff VX s On, 

XEB~YEA (XGY andcard(Y)=card(X)+o,). 

1.2 (The Covering Theorem for K). If there is no inner model with a measurable 
cardinal, then K covers V. 

1.3 (The Covering Theorem for K, extended). Assume Ot does not exist. Then one 
of (l)-(3) holds : 

(1) K covers V. 

(2) L[U] covers V, for some U, such that 

L[ LJ]b “ U is a normal ultrafilter on some ordinal”. 

(3) L[U, C] covers V, for some U, C, such that 

L[ U]F“U is a normal ultrafilter on some ordinal” 

and C is a Prikry-sequence for U over L[U]. 
(A normal ultrafilter is always understood to be non-trivial.) 

1.4. Let n-1 K -+ M be elementary and let M be transitive. Then M = K. 

1.5. Let rr: K + K be nontrivial and elementary. Let (Y be the first ordinal moved by 
T. Then there is an inner model with a measurable cardinal p, such that 

PGWI if (Y <wI, and p<a+ if a 26.~. 

Remark. Since this result is not explicitly proved in the published papers we 
sketch a proof of Claim 1.5 referring mainly to the proof of Lemma 16.21 in [S]. 
We may assume that +rr is an ultrapower by U. We need the following fact (see [7, 
Lemma 2.31) 

(1) If cf((a+)K)>W, then (Y is measurable in an inner model. 
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So we may assume that (a’)” <a+. But then, if T is w,-iterable, we get the 
conclusion as in [5]. So we may assume that T is not p-iterable (p < ol) as in the 
main case of [5]. Let Ni, i <p, be defined as in that proof. A condensation 
argument shows that 1Ni ( <a+. Let Ci, C be defined as in [5] replacing T by On. 
The proof shows 

(2) (a) C is closed, sup(Cfla+) = (Y+. 
(b) Let y be a limit point of C and cf(y) > w. Then y is measurable in an 

inner model. 
So the conclusion of Claim 1.5 follows immediately. 

1.6. Assume L[U]l=“U is a Norman uhrafiker on K”. Then p(K) fl K = 

V(K) n L[ U]. This implies V, f-m = V, n L[U], and further that K = nicrn (L[ U])i, 
where (L[U])i is the i-th iterated ultrapower of L[U]. 

1.6 indicates that the size of the core model depends on the large cardinal 
situation of the universe. By 1.6, K does not allow measurable cardinals. But the 
‘low part’ of K agrees with the ‘low part’ of L[ U] : V, flK = V, rl I,[ U]. Thus one 
may think of the core model being an approximation to measurability from below. 
This is reflected in the definition of K that we will use. K will be the union of L 
together with the ‘low parts’ of certain ‘L[U]-like’ structures which are called 
‘iterable premice’. A premouse is a structure M = J,” constructed from a filter U 

over a cardinal K such that, in M, U is a normal ultrafilter on K. M is called 
iterable if the iterated ultrapowers of M by U are all well-founded. 

The core model may be obtained in several different ways. Dodd and Jensen 
define K as the inner model constructible from all ‘mice’. Even the definition of 

mouse involves finestructure notions. A mouse possesses a particular, 
finestructure-preserving ‘mouse-iteration’, which is adequate for the finestructure 
investigations of K, leading up to the covering theorem. 

Dodd and Jensen show that in ZF- the original definition of K is equivalent to 
the one given here. Our definition is not at all suited to prove 1.1-1.6, but it 
suffices for our proofs. 

Definition. A structure M = J,” is a premouse at K, iff 

M k“U is a normal ultrafilter on K > 0”. 

Note that the ‘measurable’ K of M is regular in M. 

Let M = J,” be a fixed premouse at K. 

Detinition. The ultrapower I\;r of M is defined by 

f-g iff {U<K)f(I’)=g(V))Eu V, gEKMnM), 

J:={g I g-f) CfEKMnM), 

(I\;rl:=@IfEkM.M}, 

fc g :iff {Z’<K ( f(V)E g(v)}E u, 

fez 0 :iff {U<K ( f(P>E U}E u, 

ti=(plf~, c‘, 0). 
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Since M satisfies &-separation and the Axiom of Choice, we can prove a 
Iks-theorem for &-formulae: 

1.7. Lemma. Let #I be 2, in the language for M, and fl, . . . , f,, E “A.4 fl M. Then 

~~66, . . . , frill if! {Z’<K 1 M~ddfi(v>, . . . > fn(u>DE u. 

Definition. For x E M set c,: = (x 1 v < K). Define rrM: M + I\;r by ~,,,r(x) = c,. 

1.8. Lemma. rM: M<,&f. 

1.9. Lemma. rr&M is 5 -cofinal in I$ i.e. Vx E &lay E MxS am. 

Proof. Let x =fE ii?. Set y = range(f) E M. {U<K If(v)Ey}=K, hence 

fkf(Y). 0 

1.10 Lemma. 7~1~: M-+1\;1. 

Proof. Let 4 be z1, and xi,. . . , q, EM. Assume %fHx +[~&xr), . . . , T&C,,)]. 

By 1.9, there is X~E M such that l\;ilGlx E rrM(x,,) 4[7~~(xJ, _ . . , ~~(x,,)]. By 1.8, 
M!=3x E x,, +[xl, . . . , ix,,]. q 

If ti is well-founded, identify I\;r with its transitive collapse. 

1.11. Lemma. Assume 2\;r is well-founded, hence transitive. Then 
(1) I\;r = J,” for some 13, and &l is a premouse at I? = TV. 

(2) ?-rM: M-+,&f, 7~~ r K = id, 2 = ?T~(K) > K. 

(3) V,nM=V,ntiand rrTMr(V,nM)=id. 
(4) f’= TM(f)(K), for f E “Mrl M. 
(5) @(K)nkf=q(K)nI\;r. 

(6) XE~(K)nM~(XEUc*KE7TM(X)). 

Proof._(I) follows from 1.9, 1.10, and the absoluteness of building functions for 
the Sy-hierarchy. (2), (4), (5), (6) are standard for ultrapowers with normal 
ultrafilters. 

(3) We show by induction on 7) < K : 

(*I m(x) = q + ((x E Mt* x E I\;r> and (x E M + am = x)). 

Let q < K and assume (*) holds for 6 < 7). Let m(x) = q and x E M. rn is uniformly 
&-definable over structures of the form Ji and over the universe (see [6], Lemma 
2.21). So Mkrn(x) = q, &fkrn(rM(x)) = q, by (2), and rn(rrM(x>> = r). 

rk(x) = {Y E V, I Y E rk(x)} = {Y E V, nG I Y E am} 

={yEV,nM]yE %4(x)] = {Y E V, f)M I TM(Y) E %f(x)] 

={yEVJ-lM(yEX}=X. 

Also x = TV E ti. 
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Conversely let x = f’E &I, m(x) = q. Then 

x={YlYEX}={YEMl7TIM(Y)EX} 

={YEMI{v<K 1 YEfb’)}EU) 

Koepke 

= YE u f(v)I{ V(K) yEf(V)}E u}EM. 0 
Y<K 

Definition. A premouse M is q-iterable (I, <m) iff there is a system 

(M, nii, Ki, Ui)iGj<q such that for i~j<q: 
(1) M,=M. 

(2) Mi is a premouse at ~~ with measure Ui. 
(3) ~ij : Mi ~2, Mj, ~ii = id 1 Mi. 

(4) The system 7rij commutes. 
(5) i+l<q+Mitl=tii, Ti,i+l = T&.&. 

(6) k < v, Limb) + (Mk, rik ) is the transitive direct limit of (Mi, ?-rij)isj<k. 

If this system exists it is uniquely determined and is called the q-iteration of M. 

If M is w-iterable, we just call M iteruble and we call the w-iteration of M the 
iteration of M. 

Iterating Lemma 1.11 we obtain: 

1.12. Let M be q-iterable and let (Mi, vij, K~, Ui)isj<,, be the q-iteration of M. Then 

for i<j<q: 

(1) T~~:M~+M~, nij r ~~ =id, ~T~~(K~)=K~>K~. 

(2) VK,nMi = VKinMj and rrij r(V,;nMi)=id. 

(3) @(Ki)niq =!#(K,>nh$ 

(4) XE~(Ki)nMi-,(XEUit,KiE~~j(X)). 

(5) {K~ ( i < ~1) is closed in supi,, ~~ as a set of ordinals, and {K~ 1 i <q} is COfind 

in every cardinal 0 such that card(M) < 8 G v. 
(6) k<q, Lim(k)+(xEUkti3i<k{Kj IiSj<k}sx). 
(7) Let 8 be a regular cardinal such that card(M) < 0 <q. Then M = .lF for some 

f3, where F is the closed unbounded jilter on 8. 

1.12(7) allows us to ‘compare’ iterable premice: 

1.13. Lemma. Let M, N be iterable premice and 0 a regular cardinal > card(M), 
card(N). Then either Me EN, or Me = Ne or N, E Me. 

The structure of the iterates is present in the original premouse to a certain 
extent: 

1.14. Lemma. Let (Mi, ‘rrij, Ki, Ui)i~j<ll be the q-iteration of M. Then for j =C q : 

(1) Mj = {roj(f )(Ki,, . . . 9 Ki,))n<w,f:Kgn~M~,il<.‘.<i~<j}. 

(2) For 4 a &,-formula in the language for MO, x E MO, and iI < * . . -C i, <j: 



On the consistency strength of ‘accessible’ Jonsson cardinals 241 

.IL ,r 
Mj F~Lrroj(X), Ki,, . . . ) Ki,] in 

3XE u,nM, vq,. . . ,&EX (x1-c. * ‘<& +M,k4[x,x,, . . .) XJ). 

(3) {Ki 1 i <j} i.9 U Set Of .I$,-indiscernibles for (Mj, (Toj(X) 1 X E MO)). 

(1) and (2) are proved by simultaneous induction on j -C q. (3) is an immediate 
consequence of (2). 

1.14(l) and (3) yield a criterion for iterability: 

1.15. Lemma. If M is q-iterable, then it is iterable. 

This implies the following absoluteness property: 

1.16. Lemma. Let ZF-- be the system ZF without the power-set and the replace- 
ment axiom. Let A be a transitive model of ZF-- and q c A. Then an iterable 

premouse in A is an iterable premouse in the universe. 

Proof. Let n =A non, rl aw,. Let ME A be an iterable premouse in A. ZF-- is 
strong enough to show that the iteration of M in A is the n-iteration of M in V. 

Thus, by 1.15, M is m-iterable. 0 

Remark. Note that the argument above depends on our specific definition of 
iterability. Since ZF-- is a very weak set theory many definitions which are 
equivalent in ZF are not equivalent in ZF--. 

1.17. Lemma. Let a:fi-+,M, where M is an q-iterable premouse and I6i is 
transitive. Then fi is a premouse and q-iterable. 

This is [6, Lemma 3.241. One obtains the iteration maps for ti canonically 
from cr and the iteration maps for M. 

Definition. For M a premouse at K set lp(M) : = M II V,. lp(M) is called the low 
part of M. 

Note that lp(M) is a class in M which is uniformly definable for all such M. By 
1.12(2), lp(M) is preserved under iterations of M. 

De&ition. The core model K is the class 

K:=LUl_l{lp(M)]M is an iterable premouse}. 

In ZF-, this definition yields the core model defined by Dodd and Jensen. So 
K I= “ V = K”, where “ V = K” refers to our definition of K. 
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2. Condensation 

Definition. For A a cardinal in K set Kh : = Hf = the set of sets hereditarily of 
cardinality <A in K. 

Recall that ZF-- was ZF without the power-set and replacement axiom. 

2.1. Lemma. Let h be an uncountable cardinal in K. Then Kh k”V = K” and 

K* k ZF--. 

Proof. Work in K. Let x E rC,. x E lp(M) for some iterable premouse M. Let X be 
the smallest substructure of A4 such that TC({x}) s X. Let U: A?= X<M, where %Z 
is transitive. a is an iterable premouse by 1.17, and x alp. card(a)< A and 
for all i <A also card(Mi) < A. Thus &!f E K,, tii E Kh (i <A), and the A-iteration of 
&? is the iteration of n;i in the sense of K*. So Kh k “x E K”. •l 

2.2. Lemma. K !=card(K,) = A, since KFGCH. 

2.3. Lemma. Let A swl be a cardinal and assume there is no inner model with a 
measurable cardinal <A. Then Kk covers V,. 

Proof. If Of exists, then some countable ordinal is measurable in an inner model. 
So Ot does not exist, and by the extended Covering Theorem, V is covered either 
by K, or some L[U], or some L[U, C], as in 1.3. The measurable of that L[U] is 
2X. For (Y <A: ‘$(a) n K = ‘$(a) n L[ U] = ‘$(a) n L[ U, C], and hence Kk covers 

v,. 0 

2.4. Lemma. Let A be an uncountable cardinal and let Kk cover V,. Then 
(1) If p<A is a singular cardinal, then p is singular in Kh and (P’)~ = p+. 
(2) Let p be regular, o2 5 p <A, (Y E (p, p’), and cof(a) < p. Then (Y is singular in 

Kh. 

Proof. (1) Let p<A be a singular cardinal. Let X be a cofinal subset of p, 
card(X) < p. Because Kh covers V,, there is YE K,, XC Y G p and card(Y) = 
card(X) fw, < p. Y is cofinal in p and otp(Y) < p. Hence Ki !=“p is singular”. 

Assume that .$ = (p’)” < pf. Then cof(&) < p. Let X be a cofinal subset of 5, 
card(X) < p. There is YE Kh such that Xs Y c 5 and card(Y) = card(X) + w1 < p. 
Hence Kh k “5 = pt is singular”. Contradiction! 

(2) Let p<A be regular, w25p<a <p+, and cof(a)<p. Let X be a cofinal 
subset of (Y, card(X) < p. There is YE Kh, Xc Y G (Y and card(Y) = card(X) + 01< 
p. Hence (Y is singular in K*. 0 

2.5. Lemma. Let A be a transitive model of ZF~-- + V = K, and let o1 G A. Let A 
be a cardinal z=A n On. Then A 5 Ki, 
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Proof. Let x E A. If x E L, then x E LA E Kk. So assume x $ L. There is ME A such 
that, in A, M is an iterable premouse and x E lp(M). Let q = M non< X. 

A kcard(TC(x)) < card(M) <q. 

Take f E A such that f: q + TC(x) is surjective. Again using that A k V = K, there 
is NEA such that, in A, N is an iterable premouse and x, TC(x), f~lp(N). By 
1.16, N is an iterable premouse. Hence TC(x), x, f E K, and cardK (TC(x)) s q < h. 
SOXEK~ q 

The following lemma is the tool which allows us to imitate condensation 
properties of L. 

2.6. Lemma. Let A be a transitive model of ZF--+ V = K, and let w1 E A. Let 

M = J,” be an iterable premouse at K, and assume that K is singular in A. Then 

lp(M) G A. 

Proof. There is f E A such that f: y -+ K is cofinal and y < K. Let (Mi, rij) be the 
iteration of M. 

Claim. f $ L. 

Proof. Assume f E L_,. Then f E L, GM,, and, by 1.12(3), f E M. But, in M, K is 

regular. Contradiction! q l(Claim) 
Since A k V = K, there is NE A, such that 

A l=“N is an iterable premouse and f E lp(N)“. 

By Lemma 1.16, N is an iterable premouse and f Elp(N). Let (Ni, pij) be the 
iteration of N, and let 8 be a sufficiently large regular cardinal. f E N, by 1.12(2). 
f&Me as in the proof of the Claim. Then 1.13 implies Me E NO, and so 

lp(M)=V,fIM=V,nM,cV,fTN,=V,fTNcA. Cl 

The following lemma brings this method into a form which we will use in the 
investigation of ‘accessible’ Jonsson cardinals. 

2.7. Lemma. Let A be a transitive model of ZFPP + V = K, and let X = A n On be 

a cardinal. Assume that for every C and every y <A with the property, that C is 

closed unbounded in every cardinal p E (y, X], there exists K E C which is singular in 

A. Then A = Kh. 

Proof. By 2.5, A E K,, and we must show Kh E A. Of course Jk GA. So let 
x E K,, x 6 L. By 2.1, there is an iterable premouse ME Ki such that x E lp(M), 
card(M)<h. Let (Mi, Tij, Ki, Ui) be the iteration of M. {ui ( i <h} is closed cofinal 
in every cardinal P E (card(M), X]. By our hypothesis there is i <A such that Ki is 
singular in A. By 2.6, lp(Mi) E A, and SO x elp(Mi) G A. 0 
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2.8. Lemma. Let U be an ultrajilter on ‘$(a> n K and let h be a cardinal such that 
h>a and Aaw,. Assume that the ultrapower (“K n K)lU is not well-founded. 
Then there are fO, fI, . . . E Kh such that, for i <w: 

Proof. There are g,, g,, . . .e”KflK such that, for i<o, {~<a 1 g,+r(v)Egi(v)}E 
U. Take a cardinal CL with {gi 1 i < W} G K,. By 2.2, there is a function h E K which 
maps p onto K,. Let M be an iterable premouse with h alp. Take X<M 
such that aU{gi 1 i<o}U{h}cX and card(X)=card(a)<h. Let a:l\;i=X~M, 
where fi is transitive. Set fi = aP1(gi), (i CW), 6 = a-‘(h), Al. = a-‘(u) <h. iI? is an 
iterable premouse by 1.17, and so fiy 6 E K (i < w). TCcf,) c range(&), thus fi E Kh 
for i-Co. Note that ora=id. For i<w: 

iuca I fi+l(“>Efi(u)~={u<a I gi+l(“>E giC”>lE lJ* 0 

2.9. Lemma. Let h be a cardinal SW:! and let rr:K, -+ Kk be elementary with 
critical point a. Then there is an elementary map ii: K + K with critical point a. 

Proof. Set U: = {x G (Y ( x E K and (Y E r(x)}. U is a normal ultrafilter on ‘$(a) fl 
K. 

(1) (“K r3 K)/ U is well-founded. 

Proof. Assume not. According to 2.8, there are fo, fi, . . . E Kk such that, for i <o, 

{u<o I fi+l(v)Efi(v)lE U. Then 

a E rTT({“‘<a I fi+l(v>Efi(v)}={v<~TT((Y) I mti+l(v>E nti)(v)). 

So, for i Co, n(J+l)(o) E ~7Tcfi)((Y), an infinite descending E -chain. 
Contradiction! q ( 1) 

Identify (“K fl K)/ U with its transitive collapse M. The canonical embedding 
from K into (“K rl K)/ U is a map ii : KxM with critical point a.. By 1.4, 
M=K. Iii 

2.10. Lemma. Let h be a cardinal aw,, and let rr: Kh -+ K, be a nontrivial 
elementary embedding. Then there is an inner model with a measurable cardinal 
<A. 

Proof. rr must move some ordinal since it moves the rank of some x E Kk. By 2.9, 
there is an elementary map ii : K + K with critical point <h. By 1.5, there is an 
inner model with a measurable cardinal <h. 0 
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3. An her model witb a measurable cardinal 

Theorem Al. Assume A is a Jonsson cardinal, and at least one of the following 

holds : 

(1) x = P+, 
(2) A =o< and t<h, 
(3) o<cof A <A, 
(4) A is regular but not weakly hyper-Mahlo. 

Then there is an inner model with a measurable cardinal <A. 

The following proof is analogous to Kunen’s argument presented in the outset. 
In order to build the structure to which the Jonsson property will be applied, we 
have to assume that K,, covers V,. By 2.3 this holds if there is no inner model 
with a measurable cardinal <A. Thus we proceed by contradiction. 

Proof of Theorem Al. Let A be as above but assume that there is no inner 
model with a measurable cardinal <A. Then Kh covers V, (2.3). By 2.10 we get a 
contradiction if we prove: 

Claim. There is a nontrivial elementary embedding 7~: K* + I&. 
The rest of this paragraph is devoted to the proof of this Claim. Note that 

xaw 0. To demonstrate the main idea we consider the case (l), A = P+, separately 
although it is a subcase of (2). 

Case 1: A = p+. 
Case 1.1.: p is singular. By 2.4(l), (p’)” = P+= A, and 

(1) tla E (p, A) K* !=“a! is singular”. 

Let X be a Jonsson substructure of K,,, i.e. X<K,, card(X)= A, X#K,,. Let 
rr: A =X<K,, A transitive. Of course, rr is not the identity. It suffices to show 
A = Kh. We use criterion 2.7. A is a transitive model of ZF--+ V= K, and 
AnOn=A. Let C be closed unbounded in A. Take ~~Cn(p,h). ~(K)E(P,A), 
and by (l), Kh b “T(K) is singular”. Hence A k“K is singular”. 0 (Case 1.1) 

Case 1.2: p is regular. By 2.4(2), 

(2) Va E (p, A) (cof(cz) # p -+ Kh I= “a is singular”). 

Choose g: p x A + A such that for all (Y <A with cof(a) = p the function p ti 
g(p, cx) maps p monotone cofinally into (Y. Let X be a Jonsson substructure of 
(K,, g, p), where p is considered to be a constant. Let rr:(A, g, jQ=X<(K,, g, p), 
A transitive. It suffices to show A = Kh, and we use 2.7: 

AkZF--+V=K and AnOn=A. 

Let C be closed unbounded in A. Take K E C n(& A) such that cof(K) # cof(p). We 
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can do this: since A a o2 there exists at least two different cofinalities <A. 

(A, g, fi)l=“the function p w g(p, K) does not map fi 
monotone cofinally into K”. 

By the elementarity of n, the function p H g(@, T(K)) does not map p monotone 
cofinally into 7r(~). By construction, cof(%-(K)) # p, and T(K)E (p, h). By (2), 
Kk k “T(K) is singular”, and so A !=“K is singular”. q (Case 1.2) 

Case 2: h=w, and .$<A. 
Define c:h+A by c(h)=card(h). Take g:Axh+h such that if arcA and 

cof(a) = card(a), then the function p-g@, a) maps card(a) monotone cofinally 
into (Y. Let X be a Jonsson substructure of (I&, g, c). Let GT: (A, g, C)=X< 

(& g, c>, and A transitive. It suffices to show A = Kk. We use 2.7: 
Al=ZF--+V=K and AnOn=A. Let CGA, y<A such that C is closed cofinal 
in every cardinal p E (7, A]. The set Z:= {a! <A ( C(a) = a} is a closed subset of A 
of ordertype ~5. Take a regular cardinal CL, such that wi < k, y < p, .$ < + and 
p G A : If A is a successor cardinal we can take w = A ; if A is a limit cardinal, take 
p = the first regular cardinal >w,, y, & Z is bounded below CL. Let 8 = 
max(Z rl F). Then m(6) is a cardinal. 

Case 2.1: ~(0) is singular. Take K E (0, p) fl C. C(K) = 0, hence card(rr(rc)) = 
r(0), and rr(0) < T(K) <(rr(e))‘s A. By 2.4(l), (rr(e>)+ = (rr(@>>‘“. Then 
K,, ~“T(K) is singular”, and A !=“K is singular”. 0 (Case 2.1) 

Case 2.2: ~(6) is regular. Take K E (0, p) fl C such that cof(K) # cof(0). Since 
p 3w2, this is possible. C(K) = 8, so an E (T(O), (?-r(6))+>. 

(A, g, c)k“the function fi I+ g(p, K) does not map 8 = C(K) 

monotone cofinally into K”. 

So p I--+ g(p, T(K)) does not map ~(6) montone cofinally into T(K). By the choice 
of g:cof(r(rc))# r(0). By 2.4(2): K,!=“T(K) is singular”. Hence AF“K is 
singular”. Cl (Case 2.2) 

Case 3: o<cof(A)<A. 
There is DE A which is closed cofinal in A, and every K ED is a singular 

cardinal. 
(3) (Kh, D)L“D is closed unbounded in the ordinals”. 

Let X be a Jonsson substructure of (Kh, 0). Let rr: (A, D) =X<(K,, D), A 
transitive. It suffices to show A = K,, and we use 2.7: A l=ZF-- + V = K, and 
A tl On = A. Let C be closed unbounded in A. By (3), D is closed unbounded in A. 
Take K G C n a. T(K) ED. By 2.4(l), K, k “r(K) is singular”, and so A K“K is 
singular”. q (Case 3) 

Case 4: A is regular but not weakly hyper-Mahlo. 
By Case 2 we may assume that A = w,, hence A is weakly inaccessible. For the 
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moment, adjoin some distinguished set -1 as new least element to the ordinals. 

For (Y E On define its (weak) Mahlo degree M(a) E [-1, (~1 by 

M(a) 2 0 iff (Y is weakly inaccessible, 
M(a)>@ iff for all r</3 the set {6<a 1 M(6)>?} 

is stationary in (Y, (p > 0). 

Drake [lo, p. 1161, calls an ordinal (Y with M(a) 3p 20 weakly Mahlo of kind 0. 

(Y is weakly inaccesssible iff M(a) ~-0. a is weakly Mahlo iffDefM(cz) 2 1. cy is 
weakly hyper-Mahlo it&M(a) = (Y. Hence 0 GM(h) <A. 

For every a E On with 0 G M(a) <a pick a closed unbounded set 0, E (Y such 

that: y E 0, + y is a limit cardinal and M(y)< M(a). Define D c A X A by 

(Y,a)ED++YED,. 
Let X be a Jonsson substructure of (K,,, D, Dh, M p A). (We can of course 

assume that -1 is some element of KA like {{O}}.) 
Let r: (A, 0, fi,, Ii?)=X-c(K,, D, DA, M r h), A transitive. It suffices to show 

that A = Kh and we use 2.7 A i= ZF-- + V = K and A rl On = A. By the elementar- 

ity of 5r we get: 
(4) & is closed unbounded in A. 

For a!<A set Is,:={y<(~ 1 (y,a)~D}. 

(5) Assume 0 <M(a) < (Y <A. Then 0, is closed unbounded in (Y, and if 
y ED,, then M(r><Q(a) and ~(7) is a limit cardinal. 

Let C be closed unbounded in A. Do the following construction until it breaks 

down: (Y ,, : = A, p,, := M(A) < A. If (Y,, & are constructed, put a,,, : = the up,+,-st 
element of C rl o,, and &,+r : = A?~(cI,,+~). 

Obviously, a1 and p1 exist. Because ~(a~) E DA, PI = @al) s M(m(a,))< 

M(A) = &. Hence 
(6) cof(a,) = ~p,+1>q3,+1. 
(7) Assume that s, 6, are constructed (n 3 l), cof(a,,)>~8n+l, and a(~,,) >O. 

Then s+~, Pntl exist, and cof(s+l) > o@,+,+~. Also &,+, < 0,. 
Proof Because s, = M(cr,) 20, ii, is closed unbounded in a,,. cof(cr,)> 

up,+1 3 wl. Then C fl 0, is closed unbounded in s, and we find (Y,,+~ : = the 
Wp,+l-st element of C flD_. By (5), &+i = A?(a,+l) <&f(s) = p,, and so 

cof(%I+,) = q3,+1'q3,+,+1- 0 (7) 
Because the /3, form a decreasing sequence of ordinals, the construction must 

stop. By (7), it only breaks down if 0, = -1. So there are a,, & with p, = 
M(S)=-1, nal. Set K =a,,. K ~cflD,_~. M(K)=-1 implies M(~(K))=-1. 
So T(K) is a singular limit cardinal <A, and by 2.4 (l), Kh k“,(K) is singular”. 

Then A i=“K is singular”. 0 

4. Proof of Theorem A2 

To obtain Theorem A from Theorem Al it is enough to prove: 
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Theorem A2. Let A be a Jonsson cardinal and assume there is an inner model 

with a measurable cardinal <A. Then 0’ exists. 

Proof. Let lr_~ <h be the smallest ordinal measurable in an inner model. Let U be 
a filter on I_L such that UE L[U] and L[Ujk“U is a normal ultrafilter on p”. Set 
y: = card(p). Let f: y + /_L be surjective. Take g: w: + w1 such that for 5 E (0, w,), 
g”(w X(5}) = 5. (This function demonstrates that q is not a Jonsson cardinal.) 

Let X be a Jonsson substructure of (Jy, f, g). Let rr:(Jy, f, g)=X<(Jy, f, g). 

Set 6 = r-‘(p). 

(1) J,“k“u is a normal ultrafilter on E”. 

A condensation argument shows that ‘$(F) n L[ u] c_ J,“. So 

(2) L[U]k“U is a normal ultrafilter on IJi”. 

By the minimality of p: 

(3) r* = F. 

(4) pnx=f,b. 
Proof. Case 1: p<q. Then p =ploEX 

Case 2: p =q. 

/I = ?--yq) = {Tr -l(c) ( 5Exnt.dl)=W1. 
Hence Xnw, is cofinal in ol, and 

~l=U{f;11;~xu~l}=U{g~~(~x{5})lt~xn~1}~x. 

Case 3: F > wl. Assume that p rl X# EL. Then, since p = f”?, y n X# y. Let (Y 
be the critical point of IT. cw < y. Let K, be the term 

{x 1 x E L v3-y, f, M (M is an iterable premouseA f: %TC({x}), 

A Y, f, W(x)) E lp(M))). 

(a) Kh = (I&)“: 

Proof. By 1.6, Kc L[ U]. Hence Kh c I-II~‘~’ = Jy. 

(E) Let x E K,,. If x EL, then obviously x E (K,)Ji. Otherwise there are y, f E Kx 

such that f: y%TC({x}), and TC({x}) E Kh. Because KA != V= K, there is 

ME Kh such that M is an iterable premouse and y, f, TC({x}) E lp(M). Since 
Kk E Jy, x E (K,)Jy. 

(3) Let x E (K*)“y. If x EL, then obviously x E K,,. Otherwise there are y, f, ME 

J,” such that Jyk“M is an iterable premouse and f: yxTC({x}) and 
y, f, TC({x}) E lp(M)“. By absoluteness, in particular by 1.16, “* * -” holds in the 
universe. Hence x, TC({x}), f E K, and x E HF = Kh. q (a) 

Analogously: 

(b) K, = (K,)J? 
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Since Kh is definable in J,” and Jy, by the same term, 

(c) rrrK,:K,<K, with critical point (Y. 

By 2.9, there is an elementary embedding ii : K -+ K with critical point (Y. 

By 1.5, there is an inner model with a measurable cardinal <p: if y = or, 1.5 
yields an inner model with a measurable <y < CL, and if y 2 w2, 1.5 yields an inner 
model with a measurable <y <p. This contradicts the minimality of k. 0 (4) 

(5) 7r 1 (CL + 1) = id. 

(6) v= U. 

Proof. 

v={xEJhUIXE~}={XEJ~I~(X) 

=XE U}= Ur-lJ~. 

Then Jy=JF and U= UnJF= U. 0 (6) 

(7) 7F: JY-0:: with some critical point (Y > F. 

Set D: = {x E (Y ( x E L[ U] and (Y E m(x)}. D is an ultrafilter on %(cr) n L[ U]. 

(8) (“I,[ U] rl L[ U])/D is well-founded. 

Proof. Assume not. Then as in the proof of 2.8 we can show that there are 

fO>fi,. . .EJhU such that {~<a Ifi+l(v)~fi(v)}~D for i<o. Then as in 2.9, 
~Cf~+r)(a)~ n($)(a) for i CO. Contradiction! 0 (8) 

Hence the canonical embedding from L[ U] into (“L[U] n L[ U])/D yields an 
elementary map ii: L[ U] + L[U] with critical point (Y > p. So Ot exists. 0 

5. The weak Chang Conjecture 

In this paragraph we give two equivalences of wCC(p’). One, wCC*(p+), will 
be used in the proofs of Theorems B and D; wCC*(p’) is an apparent strengthen- 
ing of wCC(p’) which does not seem interesting in itself. The other equivalence, 
5.1(3), is a statement about the ranks of functions which was also considered by 
Shelah [18]. The equivalence between wCC(p’) and 5.1(2) has already been 
proved by Galvin (see [18], Section 351). 

Definition. Let A = pf be successor cardinal. Let WCC*(~) be the assertion: For 
every transitive structure ‘?I = (A, E, . . .) such that the language of ?I is countable 
and h+cAcH,+, and for every 5 <A there exists an elementary map n: % * % 
with the properties: 

(1) $# is transitive. 
(2) There is LY ~(5, h) such that r rc~ =id and I = h. (So (Y is the critical 

point of 7~.) 
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(3) For every f3 <A there exists an elementary map rr’ :%3+‘% such that % is 
transitive, ‘%48, nTTI 18 = rr, and 93 n On > p. 

So WCC*(A) is similar to WCC(A) but WCC*(A) demands that the various 
substructures of % required by WCC(A) grow nicely out of one elementary 
substructure of 9, namely out of rr”%. Also the critical point of T can be 
arbitrarily high below A. 

Delinition. Let A be a regular uncountable cardinal. For f, g: A -+ A define: f <* g 

iff {v<A 1 f(v) < g(v)1 contains a closed unbounded subset of A. <* is a well- 
founded partial order. For f: A + A define the rank of f, Ilf]\, by 

Ml = sup-Ml + 1 I g <*f> E On. 

Theorem 5.1. Let A = p+ be a successor cardinal. Then the following are 
equivalent: 

(1) WCC(A), 
(2) Vf: A +A Ilfll<A+, 
(3) WCC*(A). 

Proof. (1) + (2). Assume there is f: A + A with Ilf 1) = A+. It is well known that 
there is a sequence (fi ( i <A+) of functions from A into A such that i <j < A+ + 
fi <*fi <*f. For i <j < A+ there are closed unbounded sets Cii, Q E A such that 
VEC~~ +A(u)<f;.(~) and VEQ +fi(v)<f(u). We code the fi, Cij,Di into rela- 
tions on A+: Let 

C={(V,i,j)Ii<jandvEGj}, 

D = {(V, i) [ Y E Di}. 

Apply WCC(A) to the structure 9l = (A’, E, f, F, C, 0). So there is (Y CA such that 
for all p <A there is X4 with XI-I A E (Y and otp(X) > /3. Let p = 
sup[f(v) 1 v<o}<A, and take X-N with Xnh E (Y, otp(X)> p. Let ~5 = 
sup(X17 A) G (Y. Since X-&l, we have that for i, j E X, i <j: C, and Di are cofinal 
in &, and so E E C, and E E Q. Then i H fi(&) is an order preserving map from X 
into f(E). But this is impossible since otp(X)> 6 &f(E). 

(2)+(3). Let ‘%=(A, E,. . .) be a transitive structure with a countable lan- 
guage and At G A G HA+. We may also assume that card(A) = A+; let h: A+ -+ A. 
For every r <A+ take a surjective map fi: A + T. Put these maps together in 
F: A x A’--, A+, f(& 7) = fT(E). We may as well assume that h, F are already 
functions of 8, i.e. 5?l= (A, E, h, F, . . .). 

The following system of structures and embeddings is modelled after the one in 
Ketonen [13]. Let 

E:={r <A+ ( h”7 is transitive and h”7-3 

and (h”7) fl On = T}. 
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E is closed unbounded in A+. (Note that A c I&+.> For r E E set V = ‘?I 1 (h”r). 

For TEE let 

C,:={c~<h ((h~f’Ja)4’ and (ho~‘c~)nOn=cll}. 

Every such C, is closed unbounded in A. Set am = %I’ 1 (h 0 f!a), (7 E E, (Y E CT). 

(4 Let a,7EE,aEC,,nC,, anduE%:. 
Then VI: = $3: n!P. 

Proof. Let x E %?I:. x = h of,(,$) for some ,$ <cy. x is definable in ‘3 from the 
parameters 5 and (+. 5, (+ ~‘8: and ?I~<%. Hence x E?~L. Conversely, let x E 
!X~n’V. x=h(q) for some q<a. 5?l:tZl,$<A q=fm([>, and since 9l:nA=a 
there is E<(Y with q =f,(e>. Then x = h ~f_(.$)E%!l~. •i (a) 

In the situation of (a), ?I: is an E-initial segment of 87,, since au is transitive. 
For r E E, a E CT, let rr: : ~~=l?l~47 4X, where @m is transitive. By the remark 

following the proof of (a), we get immediately: 

(b) Let a,7cE,acC,nC,, andaE?lz. 

Then rrz r %z = rrz and BE< ‘?I:. 

Of course, card(@J = card(a) < A. So for every r E E we can define a function 
g:A-+A by 

g(o) = 
{ 

QnOn, if aEC,, 

0, else. 

(c) If u, TEE,(+<-r, then &<*:. 

Proof. (+ = h 0 f,(v) for some v < A. C: = (C, tl C,) - (I, + 1) is closed unbounded 
in A. (Y E C implies that u ~8:. Then, by (a), g_(a) = otp(!?I: n On) < 
0tp(%:n On) = g&). q (c) 

(4 For every g : A + A there is T E E such that 
{a! E C, ) g(a) < g(a)} is stationary in A. 

Proof. If not, then TEE -+ &T G* g. Then, by (c), )lg]I Z-A+. Contradicting our 
hypothesis (2). q (d) 

Now fix UEE. Define g:C,+(A+l) by 

g(a)=sup{a:nOnI(I!EC, andag%?l:}<A. 

(e) g(a) = A for cofinally many (Y <A. 

Proof. Assume not. By (d), there is r E E, a<~, such that 
s:={~Ec,nc, (g(a)<&(a)) is stationary in A. Take (Y E S such that (+ E ‘$I;. 
Then &(cx) = @a rl On== g(a) < g&x). Contradiction! q (e) 

NOW let 5 < A be given; we check WCC*(A) for ‘%?I and 5. By (e), take Q! > 6 such 
that g(a) = A. We show that the elementary map rr:: ‘8:+-‘i?i satisfies WCC*(A). Of 
coursen.l(Y=idand~(cy)=A.IfP<Aisgiventhen,sinceg(cy)=A,wefindTEE 
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with (Y E C, and o E $?l: such that @_ n On > 6. rr: : %:--+a is elementary, and by 
(b), ,na 1 a: = m:, %:<pa. 

(3) + (1) is trivial. q 

6. Proof of Theorem Bl 

Theorem Bl. Let A =p+3w2 be a successor cardinal and assume WCC(A). Then 

there is an inner model with a measurable cardinal <A+. 

Proof. Assume not. Then, by 2.3, Kh+ covers V,+. Take G: A x A+ + At such that 
if 7 <A+ and cof(r) = A, then the function .$ H G(& 7) maps A monotone cofinally 
into T. Let %Y : = (Kh+, G). By 2.4(2), 

T E (A, A+) -+ ?I i= “e H G(& r) does not map A monotone 
cofinally into -9 7 is singular”. 

Let (*) = (*), be the property: For every (<A there is an elementary map 
rr:K+ Kx+ such that: 

(1) K is transitive. 
(2) There is a! E (5, A) such that rr r a! = id and T((Y) = A. 
(3) For every iterable premouse M with card(M)< A there is an elementary 

map n’ : K’ + Kk+ such that K< K’, 7~ = T’ r K, and lp(M) c K’. 
Claim. (*)* holds. 
Proof. Let [ <A and apply WCC*(A) to (K,+, G) and 5. So there is an elemen- 

tary embedding r: (I?, G) + (K,,+, G) such that (l)-(3) in the definition of 

WCC*(A) hold. 
Let (Y E (5, A) be the critical point of r. Let M be an iterable premouse with 

card(M) <A. For i <a let Mi at Ki be the i-th iterate of M. Without loss of 
generality assume that K,, E (a, A). fit /3 = K,~. Since A a w2 we have p c A. Apply 
(3) of the definition of WCC*(A) with this fi : There is rr’ : (K’, G’) + (K,+, G) such 
that 

(I?, G)<(K’, G’), T=~T’~I? and K’nOn>p. 

Choose either E = K,, &f = M, or ii = K,~, I\;i= ib& making sure that 

cof(G) # cof(f.x). Then 

(K’, G’)L “.$ H G’(& Z) does not map Q! 
monotone cofinally into r7”. 

(Kit, G)k“[ H G([, r’(c)) does not map A montone 
cofinally into 5-r’(K)“. 

~‘(6) E (A, A+) and so (Kh+, G)!=“r’(Z) is singular”. Then (K’, G’)k“r7 is singular” 
and by 2.6, lp(M) s lp(l\;l) c K’. 0 (Claim) 

Theorem Bl follows immediately from: 

Lemma 6.1. (a),, A >w, implies that there is an inner model with a measurable 
cardinal < A. 
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Note that this does not mean that we can yet strengthen the conclusion of 
Theorem Bl to “there is an inner model with a measurable <A”, since in the 
proof of (*) we needed that K,,+ covers VA+. The proof of Lemma 6.1 is similar to 

the proof of Ketonen’s theorem that a non-regular ultrafilter over w1 implies the 
existence of O#. (See e.g. Jech [ll, p. 4891.) 

Proof of Lemma 6.1. If A is inaccessible in K, put .$ = 0. Otherwise let 5 be the 
cardinal in K such that h = (5+)K. Apply (*) = (*), to the structure Kh+ and 5. Let 
n-: K -+ KA+ be an elementary map satisfying (l)-(3) of (*). Let (Y E (5, h) be the 
critical point of rr. 

(a) h is inaccessible in K. 

Proof. Otherwise h = (5’)“. Let M be an iterable premouse with card(M) <A 
such that lp(M) contains a surjective map f: E -+ (Y. By (*) there is an elementary 
map rr’ : K’ + Kk+ such that K’ is transitive, K<K’, T = 7~’ 1 I?, and f E lp(M) c K’. 

But then n’(f) is a map from 5 onto h, contrary to A being a cardinal. q (a) 

(b) KEK. 

Proof. Let x E i?. If x EL rl z = (L)“, then x E K. So assume x$ (L)“. Since 
I?l= V= K, there is ME I? such that 

I?k “M is an iterable premouse and x E lp(M)“. 

K,,+ I= “r(M) is an iterable premouse”, and by 1.16, T(M) is an iterable premouse in 
the universe. rr r M: M +- m(M) is an elementary map. By 1.17, M is an iterable 
premouse. Hence x E K. q (b) 

(c) sp(cx)flKEK. 

Proof. By (a) there exists an iterable premouse M with card(M) <h such that 
!$_?(a) tl KE lp(M). By (*> there is an elementary rr’:K’+ Kh+ such that K’ is 
transitive, I?<K’, m = d 1 I? and @(a) fl KE lp(M) E K’. As in (b) we have 
K’ G K. ‘$(a) n K = (‘$(cx))~‘, and K’k “‘$(a) exists”. Then I?!= “‘$(a) exists”, 

(‘@(a))K’ = (‘R~))“, and ‘$(a) fT K = (‘@(a))” E I?. 0 (c) 

It follows from (c) that U:={x E (Y 1 x E K and a! E T(X)} is an ultrafilter on 

(d) (“K n K)/U is well-founded. 

Proof. Assume not. By 2.8 there are fo, fi, . . . EK* such that for i <CO: 
{u<a ) fi+l(v)E fi(V)}E U. Let M be an iterable premouse such that fo, fi, . . . E 
lp(M) and card(M)<h. By (*), there is T’:K’ + Kh+ such that K’ is transitive, 
K<K’, rr = n-’ r g, and lp(M) E K’. For i <o: 

(YET(T((vE(Y I fi+l(v)Efi(v)))={v<h I +Cf+l)(v)ET’Cfi)(V)}. 

So d(fo>(a) 3 dCfi>(a> 3 - * * Contradiction! Cl (d) 
The canonical embedding from K into (“K cl K)/U yields an elementary map 

ii: K + K with critical point (Y (see 1.4). By 1.5, there is an inner model with a 
measurable cardinal <A. q 
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We remark that for A = or the proof of Lemma 6.1 goes through unchanged 
with the exception of the last sentence. Hence 1.5 yields that there is an inner 
model with a measurable cardinal <A = or. 

Lemma 6.2. If (*)_, holds, then there is an inner model with a measurable cardinal 
%_)I. 

This will be used in the next section. 

7. Proof of Theorem B 

To prove Theorem B, it is now, by Section 6, enough to show: 

Theorem B2. Assume A = p+ is a successor cardinal and WCC(A) holds. Assume 
further that there is an inner model with a measurable cardinal <A+. Then Ot 

exists. 

Proof. Let p be the smallest ordinal which is measurable in an inner model. Take 
U such that L[ U] I= “ U is a normal ultrafilter on k” and U E L[ U]. 

(a) (~+)LCul<A+. 

Proof. Assume (CL ) + Lcul = A+. By 1.6, !&.L) n K = ‘@(p) n L[ U], and so (~++)~[~l= 
(P+)~ = A+. Hence 

(i) T E (k, A+) + &+k“r is singular”. 
(ii) (*)h, as defined in Section 6, holds. 

Proof. Let e < A. We apply WCC*(A) to K,+ and 6. Let 7~: K + KA+ be an 
elementary map satisfying (l)-(3) of WCC*(A). Let (Y E (& A) be the critical point 
of r. Let r_L = +r-l(p). We show (3) of (*)* :Let M be an iterable premouse with 
card(M)< A. Let K be the measurable of M. Without loss of generality assume 
that fi < K <A. By (3) of WCC*(A) there is r’ : K’ -+ K*+ such that K’ is transitive, 
+rr = rr’ 1 K, and K’ rl On > K. K,+ k“p_ is the greatest cardinal”. Hence ,‘,“I, is 
the greatest cardinal”, and K’~“K is singular”. By 2.6, lp(M)cK’. 0 (ii) 

By Lemma 6.1 and Lemma 6.2 there is an inner model with a measurable 
cardinal <A. Hence p = A. 

Apply WCC(A) to the structure Kh+: There is (Y <A such for all @ <A there is 
X<K,+ with Xn A c a! and otp(Xtl A+) > p. Choose p = (cw+)~. Since or. is 
measurable in L[U] it is inaccessible in K; hence 0 <A. There is X<K,+ with 
X fl A E (Y and otp(Xn A+) > p. Let rr: K=X-xK,+, where K is transitive. 
r-r(A) <a and K fl On > p. The proof of (b) in the proof of Lemma 6.1 goes 
through word by word, and so I? G K. Since fi is regular in K, K I= “p is regular”. 
So Kh+ i= “7~(/3) is regular”, and A <r(p) < A’. This contradicts (i) above. Cl (a) 

By (a), UE Lh+[U]. Pick 6 <A such that t> CL, if F <A, and such that 5 > q if 



On the consistency strength of ‘accessible’ Jonsson cardinals 255 

Lh+[ U]b “A = q+ and q is a cardinal”. Apply WCC*(A) to I-.,+[a and 5: There is 
an elementary embedding rr: A + I-.*+[ U] such that (l)-(3) of WCC*(A) hold. Let 
(Y E (& A) be the critical point of 7~. The condensation lemma for relative construc- 

tibility shows that A = &,[o] for some 8, where u = Yl(LT). 

(b) F<A. 

Proof. Assume p > A. Let @ = r-l(p). @ < CL, and by the minimality of 
p : L[ CT] k “ U is not a normal ultrafilter on CL”. A condensation argument for the 
L,[u]-hierarchy shows that already for some p <A: Lp[ D]k“U is not a normal 
ultrafilter on fi”. By (3) of WCC*(A) there is an elementary map 7~‘: A’+ Lh+[U] 

such that A’ is transitive, L,[a-cA’, T = n’ r L,[ u] and A’ n On> p. Another 
condensation argument shows that A’ = L,J n] for some 8’ > p. Since 8’ > p, 
L,,[ V] I= “ V is not a normal ultrafilter on F”. m’ is elementary, and Lh+[ U]k “U is 
not a normal ultrafilter on p”. Contradiction! 0 (b) 

By(b), a>[>~. So E=p and rrrp=idrp. Moreover L,[u]=L,[U]. 

(c) h is inaccessible in L[U]. 

Proof. Assume not. There is 77 such that q is a cardinal in L[Uj and A = (q+)Lcvl. 
Since rl <(Y <A, L[ u]k “a is singular.” Take 0 <A such that Lp[ U]k “a is 
singular”. By (3) of WCC*(A) there is an elementary map r’ : I+.[ U] + L,+[U] 

such that Le[U]<LJUj, T = dr L,[U] and 6’>@. L,JUjk“a is singular”, and 
since n’ is elementary, L,+[U]k“h is singular”. Contradiction! q (c) 

(d) W+-WUI6W]. 

Proof. By (c), ‘@(a) n L[U]E L,[Uj for some p <A. By (3) of WCC*(A) there is 
d:L,[U]+ L*+[U] with Le[U]-cLet[Uj and @(a> n L[ U] E LOVE U]. But then 
rp(~)nLWl~L,Cu]. q (4 

Let D = {x E cz 1 x E L[U] and a! E n(x)}. By (d), D is an ultrafilter on ‘$(a) n 
mJ1. 

(e) (“L[ U] fl L[ U-J/D is well-founded. 

Proof. Assume not. Then there is a sequence fO, fi. . . . , which is descending in 
(“L[Ul n L[ Uj>lD. Using condensation arguments similar to those in the proof of 
2.8, we may assume that fo,fi, . . . E LB[U] for some p <A. By (3) of WCC*(A), 
there is an elementary embedding nTT) : LJU] + L*+[U] such that Le[Uj<Lej[Uj, 

~=drL,[Uj, and 0’>p. fo,fi, . . .EL&Uj. {~<a ~fi+l(v)Efi(v)}ED, for i-Co. 
so 

aEd{v<a I fi+l(v)Ei(v)H= av<a Ifi+lb>Efi(v)H 

= 1~ <A I ~‘G+d(v) E ~‘C$)(v)l, 
for i Co. In other words . . * E d(fi)(a) E r’cfJ(a). Contradiction! Cl (e) 

Now the canonical embedding of L[Uj into its ultrapower by D yields a 
nontrivial elementary embedding of L[ u] into L[ u] with critical point >F. So Ot 
exists. 0 
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8. Proof of Theorem C 

We first give another definition concerning the partition relation defined in the 
introduction. 

Definition. Let WT = T, rf 0. K is called <r-Erd6s iff for all regressive functions 
f: [Clew -+ K, C club in K, there is a homogeneous sequence (X, ) a < 7). 

It is well known that for limit ordinals (Y the least K which satisfies K + (a);* is 
a!-Erdiis. On the other hand Baumgartner and Galvin have shown (see [2]) that 
the least K which satisfies K + (<q)>” is singular. A straightforward generaliza- 
tion of their argument shows, that the least K which is almost <ol-Erdos is not 
Mahlo. But it is easy to see that every <r-Erdiis cardinal is Mahlo. 

Silver proved the consistency of Chang’s conjecture starting with an wi-Erdbs 
cardinal. A rather straightforward adaption of his method gives the consistency of 
wCC(w,) starting with a <or-Erdbs cardinal. For the sharper result presented 
below we have to be slightly more careful. 

We first mention two simple facts. 

Fact 1. Let K be almost <r-Erdiis. Then K is strongly inaccessible. 

Fact 2. For 0 < v < w2 let g, map w1 onto v and let g, = Q. Define fy : w1 + ml by 

fV(a) = otp(g’:cY). Let f: w1 + On. Then 

llfll~ w2 iff for all v<02: f,<*f. 

A proof of Fact 2 can be found in [l]. 

Theorem C. Let M be a countable transitive model of ZFC and let K be almost 

<o,-Erdiis in M. Then there is a generic extension N of M such that NkwCC(w,). 

Proof. By standard methods one can show that K remains almost <r-Erd6s 

(7 = 0”;“) in any generic extension obtained by a set of conditions Q s.t. IQ\ < K. SO 

we may assume w.1.o.g. that MA,, is true in M. We work in M from now on. Let 
P be the Silver collapse for making K to w2. So the elements of P are functions 
p:A + K St. 

(i> AG~~XK,P(~,B)<P, 

(3 I# I%~, P> E dam P)I s WI, 

(iii) sup(a I %%a, S) E dam PI < ~1, 

and we have p<q iff p’>q. 
For BE K set 

P(B)={pEPIdompco,xB}. 
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Clearly P is o,-closed and it is known that P satisfies the K-&C. We show that 
wCC(oJ is forced to be true. We verify the equivalent version given in Theorem 

5.1(2). 
So it suffices to show: 

Claim. Let p I!-“f: w1 + K and \]f\\ 2 K”. Then there is some ,$<w, and q <p 
such that q R-f(&) 2 oi. 

Let G = (g, ( V < K) be the ‘canonical’ generic sequence of collapsing maps 
adjoined by P. Since P satisfies the K-a.c. there is some P<K such that 
~EM[G r p]. We may assume that p eP(p), too. 

Now define fV: w1 -+ o1 by f”(a) = otp&!cx). So we have fy E M[g,]. 
In M define h,: w1 x P - o1 by h”(a, q) = otp(q(P, V) 1 p < a}. We clearly have 

Applying Fact 2 we get 

(2) pI1Vv (02 f” <*fi 

We now strengthen this to 

(3) pit-VV <w:! M[G 1 p U{z#” <*f. 

Proof. Assume not. So let G be P-generic over M such that p E G and the 
statement is false in M[G]. Let f,, f denote the G-interpretation of fV, J! So there 
is some I, < o2 s.t. 

is stationary in M[G r pU{u}]. Set A =pU{u}. So we have M[G]= 
M[G 1 A][GI’K -A]. By the product theorem G 1 K -A is P(K - A)-generic over 
M1 = M[G r A]. But P(K -A) is o,-closed in M,, since M and M, have the same 
w-sequences from P(K -A). So by a well-known fact E remains stationary in 
M,[G 1 K -A] = M[G]. This contradicts (2). 0 (3) 

So there is a sequence (C,, ( v < K) such that 6, E M[G 1 p U {v)] and 

(4) p II-VV <w2 (6” club in o1 and Va ~‘Cif,(cx) if(o)). 

Hence we especially have 

(5) Let V<K and cy <oi. Set 
D={qEP(pU{v}))3y>(YqIt_yE~~}. 
Then D is dense in P(p U {v}) below p. 

Now define a relation R c P X q X K by 

(q,a,v)ER iff qltcued,,. 

Choose some A E K s.t. V, = L,[A] and let 8 = @.,[A], E, A, {p, p}, P, R). Note 
that 8 has definable Skolem functions. Since K is almost <w,-Erdos we im- 
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mediately get 

(6) There is a sequence (I, 1 a <q> such that 

(i) I, _c K -p, otp 1, = o(1 +cu), 
(ii) for all (Y, p <or H, n(P(p)Uw,)=E& n(P(p) Uw,) where H, = 

the Skolem hull of I, in VI 

An easy argument shows that we also may assume w.1.o.g. that 

(iii) for all a! < p < w1 1, n I@ = @. 

Now set Q,=H,n{qEP(pUI,)(q~p} and Q=QQonP(p). Note that Q= 
Q, n P(p) for all (Y <or by (6) (iii). Let Q be the closure of lJ,<,, Q, under finite 
unions of compatible elements. We clearly have 

(7) Let D G Q, be predense in Q,. Then D is predense in Q. 

A simple A-system argument yields 

(8) Q satisfies the countable antichain condition. 

Now let 5 = or n Ho. So 5 < q and we have t = o1 rl H, for all (Y < o1 by (6) (ii). 
Obviously, we have 

(9) For all qEQ dOmqz(XK. 

Now let 5 = sup,, &, where &, <e. For n < w and r E I, set 

Dh~)={q~Qal$~E-tn sltrEeT> 

It follows from (5) that 

(10) Let n <w, r E I,. Then D(n, T) is dense in Q, (hence predense in Q by 

(7)). 

For T, T E I,, 7 <T, set D(?, 7) = {q E Q, ( 3~ q(y, T) = 7). Clearly, D(7, T) is dense 
in Q,, hence predense in Q. Now let 

By MA1 there is some filter G c Q which meets all DE %T Eventually, we set 
q = lJ G. Then q E P, since (41 < w1 and dom q c 5 X K by (9). We now show that q 
satisfies our crucial claim. Clearly, q sp. So it suffices to show: 

(11) 4 ll-f(0 3 01. 

Proof. Let T E I, for some (Y co,. Since G meets D(n, T) for all n <w we get by 
(4) that q It-4 E CT. So by the other part of (4) we only have to show that for all 
8 <w, there is some r E l-l,<,, I, such that qll-fT(,$)2& So let 6<0,. Let 
6 <cx <:ol and choose T E I,, such that otp(l, n T) 2 8. Since (? meets all the 
D(7, T) (7 E Ia r3 T) we have h,(& q) 2 6. But then q ll-fT(5> 3 6 by (1). Cl 
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9. Proof of Theorem D 

The fundamental result about the relationship between partition cardinals and 
K is Jensen’s indiscernibles lemma (see [9]). To state this we first need a 
definition. 

Definition. (a) Let ‘% = @,,[A], E, A, . .,.)whereAs~ andset%a=%rLa[A]for 

p < K. 1 c K is a good set of indiscernibles for !?L (or good for a) iff for all y E 1: 

(GU a,~%, 
(G2) I- y is a set of indiscernibles for (a, (E)*<,,). 

(b) Let ti=(L,[A], E,A,&, . . ., B,)whereAC~ andB,~L,[A].Then‘?Jis 

amenable iff Bi f~ x E L,[A] for all x E L,[A] and i S n. 

Jensen’s hliscemiiles Lemma. Let ‘II. be amenable such that ‘21 k V = K. Let I be 

good for 8 such that cf(otp(l))> w. Then there is I’ E K such that I’ is good for 2I 

and lc_I’. 

Actually, in [9] slightly stronger assumptions about ‘3 are made. Namely it is 
stated that !?l= (K,, . . .>. But the proof given there shows that only $?LF V= K is 
needed. As an easy consequence we get that for cf(T)>W1 every <T-Erdds 
cardinal is <r-Erdos in K. But the interesting case for us is T = wl. Here Jensen 
helped us by showing: Let K be <w,-Erdos. Set r = 07. Then K is <r-Erdos in K. 

Of course, by the remarks made in the last section this does not immediately 
give the analogous result for almost <oI-ErdSs cardinals. But the proof below 
shows that it is true. 

Theorem D. Assume wCC(oI). Let K = w2 and r = WY. Then K is almost <r- 

Erdiis in K. 

Proof. We distinguish two cases. 
Case 1: ( *)w, holds. 

Set p = ol. By Lemma 6.2 there is an inner model with a measurable cardinal 
sp. But then every cardinal bigger than (p’)” is measurable in an inner model. 
But the arguments of Section 6, implicitly contain a proof that K is inaccessible in 
K (since wCC(o,) holds). So K is measurable in an inner model. Hence K is even 
Ramsey in K. 0 (Case 1) 

Case 2: (*>,_ does not hold. 

We first show: 
Claim 1: Let g E K such that g: [K]<“’ + q where r) <K. Then there exists a 

sequence (X, ( a <q) (in V) which is homogeneous for g. 
Proof. Let [Co1 such that (*)_, fails for 5. Let % = (K,, E, g, {q}). By Theorem 
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5.1, wCC*(o,) holds. So there is some elementary map cr: a + ‘8 such that 
(i) @ is transitive (and countable). 
(ii) There is a! E (5, wr) such that a((~) = ol, u 1 cx = id r (Y. 
(iii) For every /3 <or there exists an elementary map aa : Be + 2l such that ‘8a 

is transitive, %-&a, aa 1% = o, and ‘86 rl On > B. 
Let a(f) = q and ‘$a = (B,, E, g,, {ii}) for p <or. Since (*)o, fails for 5, there is 

some countable iterable premouse A4 such that lp(M) $8, for all p < wr. Clearly 
we may assume w.1.o.g. that A4 is a premouse at a r>j. Now let 

(M, rij> Yiyi, qJiirj<w, be the or-iteration of M, hence or =sup{yi ) i <w}. For 
i <ol set gi = g,, r [ri]‘“. We first show: 

(1) gi EMi. 

Proof. Set y = yi, g = gi, &!I = I& 6 = a?. By considering 6 we see that g E %%T and 
s7 k V = K. Hence there is some NE gT such that g E lp(N) and ‘8T k “N is an 
iterable premouse”. Applying 6 again we see that N is really iterable. So by the 
results in Section 1 we only have to show that N,, G @,,. But this is clear since 
otherwise we would get Ii&,, E N,,, hence lp(M) E NE By. 0 (1) 

Now by 1.14(l) for each j < or there are some xi E M, and i;i E {n ) i < j}‘” such 
that gj = ~~~(x~)(iji). By Fodor there is some stationary E c w1 such that for all 
j E E (xi, &) is constant, say (x, fi). NOW set Cj = {ri ( i <j, yi >max c}. By 1.14(3) 
we get 

(2) There is a sequence (&, ) n CO), 8, < fj, such that Vj E E Vn -=c 
0 gy[Cj]” ={Sn}* 

Now set Yj = aqjCj and 8, = a($,). Note that by (iii) S,, = ~a(&,,> for all /‘3 <wl. 
Hence ( Yj ) j E E) essentially gives us Claim 1. Cl (Claim 1) 

We now show that K is almost <r-Erdiis in K. Clearly K is regular in K. NOW 
let f E K such that f: [K]<~ + h where A < K is regular in K. We have to show that 
there is a sequence (X, ) a < T) c K which is homogeneous. Consider the amena- 
ble structure 8 = (K,, E, D, f) where D E K is such that K, = L,[D] for all 
K-cardinals p < K. By Claim 1 we get: 

(3) There is a sequence (I, 1 a <q) such that otp&,) = o(1 +a) and 
(i) I, is a set of indiscernibles for a, 

(ii) if 7 E [Ia]]“, s’ E [I@]“, 6 <X, then 

I?Ik4(& ?)-4(fi, 8) for all formulae 4. 

Now choose the sequence (I, ( a <co,) such that min I, is minimal for sequences 
with the above properties. Then standard indiscernibility arguments show that we 
also have 

(iii) I, - y is a set of indiscernibles for ($?I, (t)*+), 

(iv) y E I, + y is inaccessible in a. 

The sequence (I, ( a <ol) is clearly homogeneous for f. So let a = tp&). It 



On the consistency strength of ‘accessible’ .7onsson cardinals 261 

suffices to show: 

(4) aEK. 

To see this, we apply a well-known argument due to Silver. Namely, there is a 

sequence (R, ) CY < 7 = 07) E K such that the statement “f has a homogeneous set 

X of order type (Y such that tp&X) = u” is equivalent to “%. is well-founded”. 

So it remains to prove (4). For this let 2Ym be the Skolem hull of A U I, in I?l and 

let %a = %‘a fl I&D], where pcl = sup I,. Then let ?ra : S&-I, %a where %a is 

transitive. As a consequence of (3) (i)-(iv) we get: 

(5) (a) cy <p + 5-:I, is an initial segment of ‘rr& 

(b) &@G&L2&. 
- - 

So let a = (I?, E, D, f) = IJn<o, gb, and I= IJ,,,, T& Then we get: 

(c) % is amenable, %hV=K, otp(T) = WI, 

and f is a good set of indiscernibles for %. 

So we can apply Jensen’s indiscernibles lemma. Hence there is some I’ E K such 

that I’ 3 F and I’ is good for 8. So we have tp#‘) E K. But since 7~~ 1 h = id 1 A we 

have a = tp,(I,) = tpf(r) = @(I’). q 
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