
Minimality Considerations for Ordinal

Computers Modeling Constructibility

Peter Koepke, Ryan Siders ∗

Mathematisches Institut, Universität Bonn, Germany

Department of Mathematics and Statistics, University of Helsinki, Finland

Abstract

We describe a simple model of ordinal computation which can compute truth in the
constructible universe. We try to use well-structured programs and direct limits of
states at limit times whenever possible. This may make it easier to define a model of
ordinal computation within other systems of hypercomputation, especially systems
inspired by physical models.

We write a program to compute truth in the constructible universe on an ordinal
register machine. We prove that the number of registers in a well-structured uni-
versal ordinal register machine is always ≥ 4, greater than the minimum number of
registers in a well-structured universal finite-time natural number-storing register
machine, but that it can always be kept finite. We conjecture that this number is
four. We compare the efficiency of our program which computes the constructible
sets to a similar program for an ordinal Turing machine.

Key words: hypercomputation, well-structured programming, set theory,
constructibility, ordinal arithmetic, abstract computability

1 Computation at a limit time – continuity and loops are enough.

Let an ordinal computer be a register machine in the sense of [8], storing
ordinals and running for ordinal time. Abstract computation, which puts non-
integer register values into the registers of a computer, was pursued in [2] and
recently in [9]. Ordinal runtimes were described in [1] and [4] and [5], among
others. In [6] we related that model of computation to set theoretic notions
including the recursive truth predicate and the theory of sets of ordinals. This

∗ Corresponding author, email: ryan.bissell-siders@helsinki.fi

Preprint submitted to Elsevier 22 September 2007

paper presents ordinal computation from a machine-focused point of view, and
considers the structure of algorithms, direct limits, and complexity.

The active command line cannot be a continuous function of time at a limit
time, and some registers will not be continuous at limit times. Legal programs,
whose if-switches are monotonic or are recently computed from monotonically
increasing variables, compute their results without any assumption – beyond
continuity – on how register values behave at limit times. Well-structured
programs (written as loops of loops as in [3]) compute their results without
any assumption on how the command control behaves at a limit time, other
than that control does not pass out of a loop until the loop’s condition is
met. We define ordinal register machines to include illegal and illstructured
program, and in Claim 7 we present their “wellstructured,” ”legal” version
definition and prove, by the end of this section, that these two definitions are
equivalent.

Definition 1 An ordinal register machine contains a finite number of reg-
isters, each of which can store an ordinal. A program is a numbered list of
commands, each of which has one of the following three forms:

• Zero(x) : Erases the content of register x, leaving 0.
• x ++ : Increments the value of register x.
• if x = y goto i else j : switches line control.

The value of a register x must be a continuous function of time, over any
interval of time in which the command Zero(x) is not executed. In addition,
the state (register values and active command) obeys the following rules at
limit times:

(1) If the command Zero(x) is executed at each time t ∈ T , then the value
of register x at time supT is zero.

(2) At a limit time λ, command passes to the minimum of the commands
which have been active cofinally often before λ.

The last rule is the same as in [5]. In [4], the active command is stored in
binary memory; each bit becomes the lim-sup of its previous values at a limit
time. On such a machine, we can code the active command so that it becomes
the lim-sup or the lim-inf of the commands active previously. However, for
well-structured programs, we can replace all requirements, beyond continuity,
on how registers behave at limit times by the requirement that any repeating
loop should begin again, at a limit time, by first checking the conditional, and
then executing the loop again, and so on.

Definition 2 A program is well-structured if ... goto ... switches are only
used to model the following two commands:

2

• if x = y (loop).
• for x to y (loop) where the command Zero(x) is not among the instruc-

tions in the loop, or
• while x ≤ y (loop), where the command Zero(x) is not in the loop, and

where it is provable that x will be incremented at least once during the loop.

The loop for x to z (L) is defined in terms of goto as 1. if x > z goto

2; L; x++; if x ≤ z goto 1; 2.

The command for x from 0 to z (L) is Zero(x); for x to z (L).

The command while x ≤ y (L) is defined from goto as 1. if x > z goto

2; L; if x ≤ z goto 1; 2.... That x++ will be executed at least once dur-
ing the loop L, and that Zero(x) is not allowed to appear within L assures
that x will grow monotonically, and therefore it will eventually reach or exceed
the loop bound.

The loop while x = 0 (L), in which x does not necessarily increment during
L, is not considered wellstructured programming. Since x need not increment,
the loop could be repeated forever, unlike loops which halt at the fixed points
of the normal functions computed by wellstructured programs. while(x = 0)
(L) is defined from goto as 1. if x > 0 goto 2; L; if x = 0 goto 1;

2... where L does not necessarily increment x.

The well-structured programs form the smallest set of programs containing
the basic commands Zero(x) and x ++ of definition 1 for all register values
of x and y, and closed under concatenation and repeating any sequence of
wellstructured programs within a wellstructured loop.

A for loop increments its index during each loop, and halts when x = z. To
make this act like traditional for loops, we say that the loop is executed one
more time once x = z is reached. The for loop must be programmed on the
ordinal register machine so that the conditional is checked first.

On the other hand, a program which increments x and then checks whether
x = y, and halts if so, and then increments y, and repeats those three steps,
will never halt, unless at some limit time, control passes to “if x = y” or
“y++” rather than to “x++.” For instance, if the condition on the loop is
f(x, y, z) < g(x,w), then at the end of the loop, we compute u = f(x, y, z)
and v = G(x,w), and the minimum instruction in the loop is to compare
whether u < v. When u = v, the loop ends, after executing one more time.

However, checking the conditions which could terminate a loop, immediately
on reaching any limit times, leads to:

Lemma 3 Well-structured programs halt.

3

Proof: By induction on loops, considered as subprograms for which the lemma
is proved. During the execution of the loop for x to y (loop), the register
values are all bounded by c+ time, for any c which bounds the initial values
of the registers. The absolute number of timesteps used, limited by the length
of the program and the register values, is a normal function of the loop index,
register x, and so at fixed points of this function, the value of x is time.
Therefore, on or before the first such fixed point, the condition x ≥ z is met.
�

Any register which is not erased for a long time, like the index of a loop,
becomes frequently equal to the value of absolute time. On the other hand,

Lemma 4 If registers {xi : i < ω} are erased cofinally often before limit time
λ, then at some time ≤ λ, all the registers are simultaneously zero.

Proof: Let π0 and π1 be functions from ω to ω, such that (π0, π1) enumerates
ω×ω. Let t0 < λ. If tn−1 has been defined, then let tn be the next time after tn−1

when register xπ0(n) is erased. For each i, sup{tn : n < ω} = sup{tn : n < ω
and π0(n) = i}, so at that time, register i contains the value zero. �

During the execution of a loop, some registers will be erased and others (at
least the indices of the loop) will never be erased, from which we define

Definition 5 Within a loop, call register x scratch if the command Zero(x)
occurs; if not, monotone if the command x++ occurs; and constant otherwise.

In programs presented in this paper, we will use the symbols MON or SCR to
define a variable to be monotone or scratch in this sense.

We want to make the following program illegal:

• for i from 0 to ω (Zero(x); x++);
• if x = 0 (Zero(y))

because it tests the limit of a noncontinuous register value. We want to call
x a scratch variable and prevent a variable which, like x, has been erased
infinitely often from appearing in the conditional of an if-switch until after it
has been erased again. Suppose f and g are normal functions of two variables,
that can be computed without using the commands Zero(x) or Zero(y). The
following program should be legal:

• for i from 0 to ω (x = f(x, y); y = g(x, y));
• Zero(v);
• for i from 0 to y (for u from 0 to v (v++));
• if v = f(x, x) (Zero(z))

4

We might abbreviate the last two lines as if 2y = f(x, x) (Zero(z);). In
case v were larger than 2y, we had to erase v before we could increase it
monotonically to v = 2y. This should be legal because y is monotone and v
depends only on y.

Definition 6 If a program contains the following:

• a loop A which contains the command Zero(x); let X be the first com-
mand in the loop A (writing the program using increment, goto, and zero

commands, X appears as the earliest command),
• a path B from the command X to the command Y ,
• Y performs a switch on the variable x, and
• in the path B the command Zero(x) doesn’t occur,

then the the program is illegal. 1

An illegal program can test the limit of a discontinuous variable. This is be-
cause the program could loop infinitely often through the loop A, each time
possibly zeroing x, and then switch on the value of x. The switch would then
notice whether x is zero after being zero’d (and perhaps increased) infinitely
often. We want to write programs independent of the limiting behavior of
scratch variables, i.e., independent of condition 1 in definition 1. Using this
notion, we can say formally that a scratch variable is not legal in an if condi-
tional immediately after it has been incremented and erased infinitely often,
but that immediately after it has been erased one more time, it becomes legal
for use in an if conditional. Now we have replaced both conditions 1 and 2
of definition 1 with restrictions on how programs are written, so it turns out
that those conditions are not necessary to the proper working of an infinitary
machine.

Claim 7 The class of computable functions remains the same if, in definition
1, we require the program to have the form while(x = 0) loop, where loop is
a wellstructured program obeying the following two programming techniques:

• Explicitly empty all scratch registers at the beginning of the loop.
• Registers used in a switch or the conditional of a loop should depend in a

wellfounded way on monotone registers.

The assumptions we need on how a state behaves at a limit time can be relaxed
from conditions 1 and 2 in definition 1 to:

(1) at a limit time, a wellstructured program evaluates the (unique) active
loop, and determines whether to continue looping, and

1 We thank the anonymous referee for suggesting this definition, which simplifes
and corrects an earlier definition of illegal programming.

5

(2) monotone register values pass continuously to their limits (i.e., don’t
jump) at limit times.

Wellstructured programs always halt, since they compute normal functions
and halt when the loop bound is reached by the loop index. Nonwellfounded
programs can certainly perform unbounded search. Hence, the while loop in
the statement of this claim is necessary.

During the rest of this section, we will prove the claim as a generalization of
the theorem in [3] reducing all branching programs to loops. That theorem
applies only to finite-time computers storing ordinals. However, the theorem
still applies if we make the signature (the set of functions and predicates that
can be performed instantaneously in a particular model of computation, as in
[9] page 322.) include ordinal arithmetic and Gödel pairing.

A finite-time ordinal-storing register machine with only the successor in its
signature (an ORM operating for finite time has the successor and Zero in
its signature) cannot do arithmetic on its memory elements. The functions of
addition, of finding the predecessor of a successor, etc., all take infinite time.
However, it is clear that an ordinal register machine can perform these opera-
tions of arithmetic, since ordinal addition is iterated succession, multiplication
is iterated addition, and exponentiation is iterated multiplication (see details
before Lemma 12). Further, the Gödel pairing function, sending (α, β) to the
order type of (α × β,<g), where <g is the ordering that first compares max-
ima, then compares lexicographical order (more details in [6], section 2) is also
clearly computable by an ordinal register machine that enumerates α × β in
the desired order and increments G(α, β) with each step.

Definition 8 Let G be the pairing function taking (a, b) to the order type
of pairs (c, d) <g (a, b), where (c, d) <g (a, b) iff max(c, d) < max(a, b), or
max(c, d) = max(a, b) and c < a, or max(c, d) = max(a, b) and c = a and
d < b.

It is clear how to program the preceding definitions, so ordinal register ma-
chines surely compute the signature Σ = (Ord, 0, 1,+,×, exp, G,G−1). Ordi-
nal computers performing finite sequences of operations in that signature form
the set of While-computable functions over Σ, defined in [9] page 323. That
is equivalent to any other reasonable notion of what a finite-time computer
could compute, with ordinals in storage and oracles for the functions in Σ.

Definition 9 Call a finite-time register machine storing ordinals and able to
compute the functions in signature Σ in one step an abstract ordinal computer.

Since the signature Σ can code sequences of ordinals as a single ordinal, and
since ordinals contain the natural numbers, many natural notions of abstract
computability agree over the ordinals, including the interesting machine mod-

6

els described in section 8 of [9].

Proof (of claim 7): Suppose a model of ordinal computation is proposed, so
that on input x it produces output y iff φ(x, y, α0...αn) holds, where φ is a ∆1

concept of set theory. For instance, φ might say that there is a computation
that starts with x (and the parameters), proceeds according to ∆0 rules (where
ψ(x, y) is ∆0 if all quantification is bounded to x and y) and ends with a
designated output register holding the value y. Then φ has a Σ1 representation.
If any computation which starts with x and proceeds legally must end with y,
then the model has a ∆1 description. For instance, any reasonable variation
on our definition of ordinal computer has a ∆1 description. We mean to show
that all of these can be modeled on our computer. To determine the truth of
φ, we search through L to find either an example that proves φ in its Σ1 form,
or a counterexample that disproves φ in its Π1 form. The while loop in the
claim 7 can perform this search, if the following lemma holds.�

Lemma 10 Wellstructured programs can determine the truth of any ∆0 sen-
tence, with constant symbols referring to ordinals, of ZFC.

Proof: Fix an enumeration of formulas with ordinal parameters to prove this
lemma by induction. The abstract ordinal computers in definition 9 are Church-
Turing complete, so they can compute syntactic operations on formulas, in
their codes as ordinals (we will mention this again in definition 16). For in-
stance, we can make the description of φ be shallowly accessible in the ordinal
coding of φ and its parameters α1...αn as G(nφ, G(α0, G(...))), where nφ is
the Gödel number of the formula. We can choose that the operations ¬,∧,∨
increase the Gödel number of a formula, so that to prove the lemma by induc-
tion, we only have to deal with formulas ∃z < xψ or ∀z < xψ. The program
corresponding to φ has an outer loop for z from 0 to x loop, where the
loop pushes z into the stack of variables, and then runs the program corre-
sponding to ψ to determines whether ψ holds for that particular value of z.
�

2 A Universal Ordinal Register Machine Program

In this section we write a universal program. This improves on Lemma 9
which found a wellstructured program to decide each bounded formula φ.
The universal L-program reads a code for φ and its parameters as input, and
determines the truth of φ in time at most ordinal-exponential in the size of
those parameters. To be precise about the size of the parameters, the reader
may wish to check that G(nφ, G(α0, G(α1, ...))) is ≤ the first ordinal of the
form ωωα

which is larger than all of the αi.

7

Lemma 11 G(γ, γ) = γ iff γ is a ×-closed ordinal.

Proof: Exercise. Hint (only if) Prove G(α × β, α × β) > α × β unless α or
β is 1, by finding a large ordinal product contained in the order type of <g

in definition 8. Hint (if) Prove by induction that if α-many Cantor-Bendixon
derivatives (which “derivative” eliminates all the successor elements) reduce
γ to a finite set, then α × 2 + 1-many Cantor-Bendixon derivatives reduce
G(γ, γ) to the empty set. As a result, every element of |G(ωωα

, ωωα
), <g | is

eliminated by < ωα-many derivatives. �

Proof (only if): We prove G(α×β, α×β) ≥ α2×(−1+β) (by −1+β we mean
the ordinal which is β if β is infinite, and β − 1 if β is finite... it is obtained
during our proof as a set isomorphic to β, but missing its first element, hence
we write it in this way). Label the elements of α× β as {(a, b) : a ∈ α; b ∈ β}.
The ordering on the ordinal α× β is <l, the reverse lexicographical ordering:
(a, b) <l (a′, b′) if b < b′ or b = b′ and a < a′. Now for each b ∈ β, b not maximal
in β,G(α×β, α×β) gives Sb := {((a, b), (a′, b+1) : a, a′ ∈ α} its lexicographical
order because the pair ((a, b), (a′, b + 1)) achieves its maximum on its second
element. G orders Sb as α × α, there are at least −1 + β many sets Sb, and
G orders the sets Sb in the same order as β orders the pairs (b, b + 1). Proof
(if): The ×-closed ordinals are the ordinals ωα for various α. We proceed by
induction on α. If α is a successor, then G(ωα, ωα) =

∑
n<ω G(ωα−1×n, ωα−1×

n). Taking Cantor-Bendixon derivatives (passing from a set to the set of its
limit points) of that order type α many times leaves the emptyset, so the
order type is ≤ ωα. If α is a limit ordinal, G(ωα, ωα) ≤ ∑

β<αG(ωβ, ωβ) since
that sum simply repeats some intervals in the construction of G(ωα, ωα). But
if c ∈ γ is a successor and b ∈ β is a successor, then (c, b) is a successor in
G(γ, β), and, more generally, if c is not in the ε-th Cantor-Bendixon derivative
of γ, and b is not in the δ-th Cantor-Bendixon derivative of β, then (c, b) is
not in the max(ε, δ)-th derivative of G(γ, β). Hence, G(α, α) ≤ ωα. �

We will define Push and Pop on an ordinal register called Stack which stores
the decreasing sequence of ordinals β > β1 . . . βn−1 ≥ βn, where the last
two values are allowed to be equal only if βn is a limit. The elements of
this sequence code formulas. The formula coded by β1 is being considered,
to determine whether it witnesses the truth of β. Each βi+1 was found while
searching for a witness to the truth of βi, so the sequence is decreasing.

Definition 12 We code a finite, monotonically decreasing sequence of ordi-
nals β > β1 . . . βn−1 ≥ βn, where βn−1 ≥ βn occurs only if βn is a limit,
as Stack = 2β+1 +

∑
i=1...n−1 2βi+1 + 2βn if βn is a limit, and as Stack =

2β+1 +
∑

i=1...n−1 2βi+1 + 2βn+1 if βn is not a limit.

We include βi on the stack as 2βi+1 so that the stack has as its least term the
value 2λ, for λ is a limit ordinal, if and only if that term has been reached as

8

the limit of considering all finite sequences of ordinals < λ. That is, whenever
we Push an element βi onto the stack, the intended exponent is a successor.
A final exponent which is a limit only occurs “magically” at a limit time, and
indicates that our infinitely-long attempt to prove the formula coded λ is true
has failed. So, we conclude λ is false, and go on.

Recall that ordinal multiplication and exponentiation are defined to be con-
tinuous in their second term: α × (β + 1) = α × β + α, and for X a set of
ordinals, α× supX = sup{α× x : x ∈ X}. (Lemma 14 about Push uses this)
2β+1 = 2β × 2 and for X a set of ordinals, 2sup X = sup{2x : x ∈ X}. On
the other hand, 2β is isomorphic to the set of finite descending sequences of
ordinals less that β, ordered lexicographically:

Lemma 13 (βi : i < n) 7→ ∑
i<n 2βi is an isomorphism between the set of

finite, descending sequences of ordinals all less than β, and 2β.

Proof: We construct the inverse: Given an ordinal α < β, let β0 be the supre-
mum of those γ such that 2γ ≤ α. Ordinal exponentiation is continuous, so
2β0 ≤ α < β. If α 6= 2β0 , let α1 be such that α = 2β0 + α1. Let β1 = sup{γ :
2γ ≤ α1}. Again, α1 ≥ 2β1 . If β1 ≥ β0, then α ≥ 2β0 + 2β1 ≥ 2β0+1, contradict-
ing the definition of β0. So β1 < β. So continue, to find β0 > β1 > ... > βn,
such that αn = 2βn . The sequence is finite since β is a wellorder. So the
sequence of exponents of α is a finite sequence of ordinals, all < β. Since
{γ : 2γ ≤ ∑

i<n 2βi} = {γ : γ ≤ β0}, we have inverted the summation of a
decreasing sequence of ordinals. �

Definition 14 The program Push(Stack, β) is the following routine:

MON Stack;

SCR i, γ = 0, δ;

for δ from 0 to Stack (

for (i from 0 to 2β+1) (γ++);

if (γ > Stack) (for Stack to γ; halt)

)

Lemma 15 Push(Stack, βi) increases the Stack to the next full multiple of
2βi+1.

Proof: So Push sets Stack equal to 2β+1 × δ, for δ the least ordinal for which
2β+1 × δ > Stack. �

9

Recall how we read the register Stack from definition 12. If β was on the
stack (Stack = σ + 2β+1 + τ), then Push increases τ to 2β+1, leaving Stack

= σ+2β+2). I.e., the least element on the stack is changed from β to β+1. If β
was not on the stack (Stack = σ+ τ, σ = 2βi+2× δ, for some δ, and τ < 2β+1),
then Push increases τ to 2βi+1, leaving (Stack = σ + 2β+1). Pushing β onto a
stack erases all stack values less than β.

From Stack =
∑

2αi we will want to read the least exponent αi which is ≥
a certain threshold. We set a “small stack” to be τ =

∑
i>j 2αi , represent the

stack as σ + 2ε + τ , and check whether ε = αi is > than the threshold. Unless
α is a limit, we will interpret α as a stack element. If α is a limit, we will only
be interested in it, in case it is the predecessor of the next-larger exponent,
α′, in which case α witnesses that α′ is false. We can find the representation
Stack = σ + 2ε + τ in many ways, but simply trying all possibilities is one
option:

We define two functions Pop, one to take the smallest value off the stack, and
one to take successive values off the stack:

Definition 16 PopLeast(Stack, β) is the following routine:

CONSTANT Stack, β;

SCR σ, ε;

for ε from 0 to β + 1 (

for σ from 0 to Stack (

if (σ + 2ε = Stack) (return ε)

)

)

Definition 17 PopNext(Stack, Threshold, β) is the following routine:

CONSTANT Stack, Threshold, β;

SCR SmallStack = 0, TempStack = 0, σ, ε, κ;

for ε to β (

for σ from 0 to Stack (

if (σ + 2ε+1+SmallStack = Stack) (

10

if (ε ≥ Threshold) (return ε);

for TempStack to Smallstack ();

for Smallstack to 2ε+1 ();

for κ from 0 to TempStack (Smallstack++)

)

)

);

return ε

We intend these programs to be applied when the value of Stack is between
2β+1 and 2β+2. In that situation, there is always something on the stack smaller
than β. If there were not, then these programs would return nothing, which is
reasonable when PopNext is designed to find a stack element less than β and
larger than a given threshold.

Neither program Pop really changes the stack. They just read the least element
βj + 1 of the stack which is not larger than β, or the least element which is
>Threshold. We read the whole exponent, βj +1, not just βj, since the stack
might contain, as its last term, 2λ for λ a limit.

Abstract ordinal computers as in definition 9 can compute syntactic operations
on the codes of formulas, in the signature Σ. We would like to show that ordinal
computers can compute, in addition to Σ, the truth predicate T , determining
whether any ∆0 formula is true. Let’s gather all of the syntactic formula
manipulation into an abstract ordinal program called W for Witnessing, as is
done in [6], section 6. We have used this notion already in lemma 9.

Definition 18 Let W (β, γ, T (γ)) be an abstract ordinal computer program
that determines whether γ and its truth value T (γ) are sufficient information
to witness the truth of β. Let the output of W be 0 unless some pair (γ, T (γ))
with γ < β witnesses the truth of β, in which case W outputs 1. In particular,
W (β, γ, T (γ)) is the program which finds the syntactic structure of β, and then

• if β codes an atomic sentence with constant symbols for ordinals and for
T (γ), in the signature {<,G}, the program W evaluates that atomic sen-
tence.

• if β and γ code the sentences φ and ¬φ, W = 1− T (γ).
• if β codes the sentences φ ∨ ψ and γ codes ψ, then W (β, γ, T (γ)) = T (γ).
• if β codes the sentences ∃x < cφ, where c is a constant symbol, and if γ

codes the sentence c′ < c∧φ(c′/x) where the constant c′ replaces the variable

11

x, then W (β, γ, T (γ)) = T (γ).

Then β is true iff there is some witness γ < β such that W (β, γ, T (γ)) = 1.
We will find the truth value of β by searching through decreasing sequences of
ordinals< β, until we find a witnessing sequence, a stack which conveys its wit-
nessing – through pairs of ordinals of the form α′ > α such that W (α′, α, T (α))
holds, or of the form α′ = α + 1 such that T (α) is known – from a limit or-
dinal α which appears twice in the stack. This situation arises as the limit
of a search over all ordinal sequences < α during which we did not find a
witnessing sequence for α. This is the falsehood from which we conclude, via
the witnessing sequence, the truth value of β.

Definition 19 Say β = β0 > β1 > β2... > βn−1 = βn is a witnessing sequence
for β if for each i = 1 . . . n − 1, W (βi−1, βi, T (βi)) = 1 = T (βi−1) or βi−1 =
βi + 1 and T (βi−1) = 0 and βn is a limit ordinal and T (βn) = 0.

The terminal value of the stack will be 2β+1 +
∑

i=1...n−1 2βi+1 + 2βn , where
βn = βn−1 is a limit, and no other βi is a limit. That last summand witnesses
that we have examined every possible witness for βn−1 and found none, hence
βn−1 is false. Each summand then witnesses the truth value of the preceding
summand, back to β, and we are done. We cannot simply loop through all
decreasing sequences. If we know that βj is true, but that βj doesn’t witness
βj−1, we must skip the sequence · · · βj, βj−1 · · ·, since that sequence, as soon as
we know the truth value T (βj−1) and check that W (βj, βj−1, T (βj−1)) = 0,
we intend to interpret to mean that βj is false. We should only reach that
sequence if no βj+1 < βj could witness that βj is true. This “skip” is performed
by Push-ing the Stack to

∑
i<j 2βi+1 +2βj+1 +2βj+1. Of course, this also speeds

up the program: once we know that βj is true but that that our current
witnessing sequence 2β+1 +

∑
i=1...j−1 2βi+1 + 2βj+1 doesn’t witness β’s truth,

we move on, and consider 2β+1 +
∑

i=1...j−1 2βi+1 + 2βj+2.

Definition 20 Truth(β) is the following program:

CONSTANT: β;

MONOTONE: Stack, i;

SCRATCH: α, α′;

Push(Stack,β);

for i from 0 to 2β (

α = PopLeast(Stack, β);

if α is a successor (Stack ++; α = 0);

12

α′ = PopNext(Stack, α, β);

if α′ 6= α (Push(Stack, α));

if α′ = α (

ν = 0; % This is the truth value of α′.

while α′ ≤ β (

if α′ = β (return ν);

α = α′;

α′ = PopNext(Stack,α+ 1,β);

if W(α′,α,ν)= 0 and α′ 6= α+ 1 (

α′ = β; % to terminate the while loop

Push(Stack,α)

);

if W(α′,α,ν)= 1 (ν = 1);

if W(α′,α,ν)= 0 and α′ = α+ 1 (ν = 0)

)

)

)

If there is a witnessing sequence for β, then this search will find it. The only
stack value which witnesses β being false is 2β+1 + 2β if β is a limit, and if β
is a successor, then 2β+1 +2β + τ , where τ witnesses the truth value T (β− 1),
and W (β, β − 1, T (β − 1)) = 0.

Theorem 21 Truth(β) computes the truth value of the sentence in the lan-
guage {∈} with constant parameters which β codes.

Proof: We reduce truth in ZFC with parameters to a computation of the
recursive truth predicate for the constructible universe, as in ([6], section
6). Then we write an abstract ordinal program to compute the syntactic
operations, as in lemma 10, to satisfy definition 18. As we explained be-
fore and after definition 17, a proof of T (β) is contained in a witnessing
sequence β > β1 > · · · betai > · · · βn−1 = βn. If Stack codes a witnessing

13

sequence with the coding described in definition 11, then Truth(β) will halt
and return the truth value of β, for in the computation of Truth(β), the
pair (α′ + 1, α) become the least two exponents of the stack. If α is a limit
and α′ = α, then the while loop repeatedly sets (α′α) equal to each pair
(βi, βi+1) of stack elements and checks that T (βi) = 1 = W (βi, βi+1, T (βi))
or T (βi) = 0 = W (βi, βi+1, T (βi)) and βi = βi+1 + 1. We need to know that
Stack will eventually code the witnessing sequence for β. But focusing on how
Push(Stack, · · ·) is called in the program, we see that Stack will eventually
code every decreasing sequence of ordinals β > β1 > · · · betai > · · · βn−1 ≥ βn

for which βi+1 ≤ the least witness for T (βi). �.

3 How many registers are necessary in a universal ordinal register
machine?

Consider, first, ordinary register machines storing natural numbers.

Definition 22 A register machine has the following three commands

• Zero(x) : erases the value of register x.
• x ++ : increments the value of register x.
• if x = y goto i else j : a general switch.

A For program uses goto loops only to model the commands

• for x from 0 to z (loop).
• if (x = y) (instructions).

A While program lacks Zero(x) and goto, but has the commands

• x -- : decrements the value of register x.
• while(x > 0; x--) loop.

Theorem 23 ([7] p. 205) 5-variable While-programs simulate Turing ma-
chines.

The proof is by storing the bit strings on the Turing tape left and right of the
active head as register values. When the active head goes right, the bit string
to the left increases by 2×, and the bit string to the right decreases by 1/2.

Theorem 24 ([7] pp. 255-8) While-programs using 2 variables can simulate
all While-programs. FOR-programs using 3 variables can simulate all While-
programs.

14

The proof is by storing all the registers as 2x0 × 3x1 × ...pn
xn , then copying

these values to another register, and meanwhile altering or comparing them
according to how the many-register program would have altered or compared
them in its active command.

Definition 25 Let OCn be the set of n-register well-structured ordinal com-
puter programs (as in definition 2). Say ρ : Ordn → αn reflects OCn if for
each P in OCn, the function fP which takes the inputs to P to the output of P ,
commutes with ρ. Let Ln be the vocabulary with a function for each n-register
program: Ln = {Ord,<,=} ∪ {fP : P ∈ OCn}, and let FOk(L) be the first
order formulas in the language L, to quantifier depth k.

Definition 26 Let ρ0 be the function ρ0(α) = αmodω.

Let ρ1 be the identity below ω, and be ω + ρ0 above ω.

Let ρ2 be the identity below ω × 2, and be ω × 2 + ρ0 above ω × 2.

Let ρ3(α) = αmodωω.

Let ρ4 be the identity below ωω, and be ωω + ρ3 above ωω.

Let ρ5(α, β) be the pair (ρ4(α), ρ4(α) + ρ4(β − α)) if α ≤ β and be undefined
if α > β.

Lemma 27 ρ1 : Ord→ ω×2 reflects OC1, is the minimal reflection preserv-
ing FO1(L1), and preserves even FO2(L1). ρ2 preserves FO3(L1).

Proof: In a well-structured program with only 1 variable, for a to a (L)
never executes its loop, and if a = a (L) always executes its instructions.
The result of the computation, on input a, is a + nP or nP , depending on
whether the instruction Zero(a) occurs and executes. It is easy to check that
ρ(P (a)) = P (ρ(a)). If ∀aP (a) 6= Q(a), then, as P and Q are constants or
linear functions, we get four cases, in all of which ∀aρ(P (a)) 6= ρ(Q(a)), and
similarly for ∀aP (a) < Q(a) and other atomic relationships replacing 6=, we
can check the language’s preservation. �

Lemma 28 ρ5 : Ord2 → (ωω × 3)2 reflects OC2, is minimal such that it
preserves FO2(L2), and preserves FO(L2).

Proof (that ρ5 is minimal): If L×ω = Zero(b); forb to a (a + +)., then
L×ω(a, b) = (a × ω, a × ω). (Proof: Let a initially be a0. When b reaches
a0 × n, a reaches a0 × (n + 1). �) If L×ωn = L×ω repeated n times, then
L×ωn(a, b) = (a × ωn, a × ωn); If Lp = Zero(b); for b to a (for b to a
(a+ +); a+ +), then Lp(a, b) = (a× ω + ω2, a× ω + ω2). (Proof: The first
run through the inner loop produces (a× ω+ 1, a× ω). Further runs through

15

the inner loop produce (a × ω + ω × n + 1, a × ω + ω × n), which are finally
equal at (a × ω + ω2, a × ω + ω2). In this way, we can generate Lq for any
linear (in a) polynomial (in ω) q(a, ω) we wish to see as the output. � Proof
(reflection) First, observe that P ∈ OC2 is equivalent to a program P ′ ∈ OC2

which is only one loop deep.

For instance, we can write a two-loop-deep program to produce the value
ω2: Zero(x); for x to y (for x to y (y++); y++) takes any finite in-
put to ω2, just the same as running y up to ω and then running x up to
y. Similarly, Zero x; for x to y (for x to y(for x to y(y++); y++);
y++) takes any finite input to ω3, just the same limit as running y up to ω,
then running x up to y, then running y up to x. The proof relies on the rule in
definition 2 which prevents a loop index or bound from being erased. As a re-
sult, the order between them is fixed, and can only be made to fail during the
loop by incrementing the index. Then, this finite difference can be exploited by
an interior for loop. However, the variables could be imagined to be switched,
then, so that the order relation “index < bound” can be imagined to be strict
throughout the whole operation of the main loop. In this case, repeatedly
chasing the bound only results in finding the next “limit of f -closed ordinals,”
and ωn provide infinitely many limits of limits of... f -closed ordinals, where
f is any function that can be produced within an interior loop. Those same
functions can be computed, then by a sequence of loops without inner loops,
which push the loop bound high enough, and then run the index up to it.

As was observed in the run of Lp now happens generally: after the inner loop
has run, a = b. Subsequent operations inside the outer loop can only make b
finitely larger than a. Second, inside any loop, the loop index grows at least
linearly in time, and the loop bound grows at most linearly in time. To “Zero”
the index or bound of a loop, in the loop, is illegal by definition 2, so if a
loop is called, the order relation between the variables is fixed (up to a finite
amount) throughout. An interior for loop forces the loop and index to be the
same, and if has no effect on the values. So for any P ∈ OC2, P is bound by
a function q(a, ω), linear (in a), polynomial (in ω). �.

Lemma 29 Ord3 reflects below εω×4, and not lower.

Proof (not lower): The program y + +; for x to y (Zero(z); for z to

y (y + +)) halts at the first ε-number (closed under α → ωα) above the
initial value of y. Repeating the loop n-many times finds the n-th ε-number
above the initial value of y. � Proof(reflection): Suppose the first loop is L0 =
for(x = a;x < y;x + +), where a can be x, z, or 0 (same as Zero(x);
for(x = x...). This same loop format can be repeated, as in for(x =
0;x < y;x + +) (for(x = x;x < y;x + +) (L); y + +). Let f(x, y, z) be
the supremum of the register values after applying the loop L to the initial
register values x, y, z. The inner loop ends when x reaches an ordinal γ which

16

is closed under f (γ is f -closed if f(x, y, z) < γ whenever x, y, z < γ). Then
in the outer loop, y increments, and so we reach γ1 f -closed, and so on. The
outer loop ends at the first γ which is a limit of f -closed ordinals. Now x < y
is fixed for the duration of the computation. For if x were incremented above y
infinitely often, then y is also incremented above x infinitely often (before each
consideration of the bounding clause x < y), so that at time sup ti, where t2i+1

is the next time x is larger, and t2i+2 is the next time y is larger, then x = y
again, and as this is a limit time, we are checking the bounding clause x < y,
and the loop ends. So if x exceeds y infinitely often, then the loop ends. So,
without loss of generality, suppose x < y always holds, and consider what an
inner loop can do. Incrementing x is counter-productive, since it hastens the
time when x = y will be attained. Incrementing y is a great idea, but the only
clock available is Zero(z); for z to y(f(y)), which executes until z + α,
incrementing once each loop, reaches fα(y), the α-th iteration of f , whatever
function is in the innermost part. This function could, at most, be for z to

x or for x to z, in which cases f(y) would increase y some infinite number
of times, but never more than its own value, so f(y) < y + y.�

If the initial register values are 0, then we cannot compute anything beyond
εω. But if the initial register values are given, then we reflect the first one into
(εω, εω×2) and the next into (εω×2, εω×3), the third into (εω×3, εω×4), and the
same proof shows that subsequent computation stays below εω×4.

Theorem 30 An ordinal computer with fewer than four registers cannot be a
universal ordinal computer. However, an ordinal computer with ten registers
can model a universal ordinal computer.

Proof: We have proven in the lemmas that fewer than four registers is insuf-
ficient, since these computers reflect below small ordinals. The program in
definition 20 is written using ten registers. That is, it uses the five variables
β, Stack, i, α, α′, (we can recompute the loop limit 2β each time we check
i < 2β) and then calls Pop, which uses as local variables a Small Stack, a
Temp Stack, ε to search between 0 and β + 1, γ, and a fifth register, which
might sometimes store the sum α + 2ε+ SmallStack, and sometimes be the
loop index κ in the last line of Pop. The register for Pop’s γ, which we could
call Large Stack in analogy with Small Stack never exceeds Stack; we can
make it larger than Stack when it’s time for the while loop in definition 20
to halt. If γ can code the bit of information that halts the while loop, then
that loop doesn’t need a register dedicated to indexing it. �

We would like to indicate how four registers are sufficient for a universal
program on an ordinal register machine. We simulate an n-register machine
by putting all n variables onto two stacks. We copy the information from one
stack to the other, and change the appropriate i-th register in the process, as
in the proof of theorem 24. The fourth variable contains the value of a single

17

element. When that element is erased on the stack, we copy its value more
deeply into the stack, where it won’t be erased by the varying and limiting
of values lower on the stack. We do not have a clear and convincing proof of
this.

Conjecture 31 Four registers suffice for a universal program on an ordinal
register machine.

4 Complexity

For ordinal register machines, it is possible to compare the runtime of a pro-
gram to its input values, and therefore it is reasonable to talk about the bounds
on the complexity of problems for such machines.

Our program for computing truth (definition 20) runs in time at most ordinal-
exponential in the input β. A similar program, described in [5], runs in ordinal-
polynomial time: to determine the truth predicate, when ordinally many bit
registers are available, search the registers below α to find a witness for α.
This takes time

∑{β : β < α} If α = ωγ for some γ, this is α. In any case, the
sum is < α2. This program runs faster than definition 20 because it can store
the whole recursive truth predicate up to β when computing F (β). It seems
intuitively clear that a computer with finitely many ordinal registers cannot
run in time faster than O(2β), i.e., that it must compute F (β1)...F (βn) for
every finite sequence {βi : i < n} of ordinals < β.

References

[1] R. Bissell-Siders, Ordinal computers. math.LO/9804076 at arXiv.org, 1998.

[2] H. Friedman, Algorithmic procedures, generalized Turing algorithms, and
elementary recursion theory. Logic Colloquium ’69 (Proc. Summer School and
Colloq., Manchester, 1969), pp. 361–389. North-Holland, Amsterdam, 1971.

[3] G. Jacopini and C. Böhm, Flow Diagrams, Turing Machines, and Languages
with Only Two Formation Rules. Comm ACM, 9,5 May 1966.

[4] J. Hamkins and A. Lewis, Infinite Time Turing Machines. J. Symbolic Logic,
65(2): 567-604, 2000.

[5] P. Koepke, Turing Computations on Ordinals. Bulletin of Symbolic Logic, 11(3):
377-397, 2005.

[6] P. Koepke and R. Siders, Register Computations on Ordinals. submitted Feb
2006. For the moment, see

18

http://www.math.helsinki.fi/∼rsiders/Papers/RegistersOnOrdinals/

[7] M. Minsky, Computation: Finite and Infinite Machines. Prentice-Hall, 1967.

[8] J. Shepherdson and H. Sturgis, Computability of recursive functions, J. Assoc.
Comput. Mach. 10 217–255, 1963.

[9] J. Tucker and J. Zucker, Computable functions and semicomputable sets on
many sorted algebras, in S. Abramsky, D. Gabbay and T Maibaum (eds.)
Handbook of Logic for Computer Science, Volume V, Oxford University Press,
317-523.

19

