
Infinite Time Register Machines

Peter Koepke

University of Bonn
Mathematisches Institut

Beringstraße 1
D 53115 Bonn

Germany
Koepke@Math.Uni-Bonn.de

Abstract. Infinite time register machines (ITRMs) are register ma-
chines which act on natural numbers and which may run for arbitrarily
many ordinal steps. Successor steps are determined by standard regis-
ter machine commands, at limits the register contents are defined as
lim inf’s of the previous register contents. We prove that a real number
is computable by an ITRM iff it is hyperarithmetic.

1 Introduction

In [2], Joel D. Hamkins and Andy Lewis define infinite time Turing ma-
chines (ITTMs) by letting an ordinary Turing machine run for arbitrarily many
ordinal steps, taking appropriate limits at limit times. An ITTM can compute
considerably more functions than a standard Turing machine. In analogy, we
let a standard register machine run for arbitrarily many ordinal steps and call
it an infinite time register machines (ITRM). An ITRM can carry out infinitely
many steps of an ordinary register machine and can thus compute the halting
problem. Indeed we show in Lemma 1 that it can compute any Δ1

1 real number.
Conversely it will be shown in Lemma 4 that if a computation by an ITRM halts
then it halts before the Church-Kleene ordinal ωCK

1 . Hence all computable
reals are in the admissible set LωCK

1
(Lemma 5). Since the Δ1

1-reals coincide with
the reals in LωCK

1
and with the hyperarithmetic reals (see [8]) this yields a new

characterisation of the hyperarithmetic reals:

Theorem 1. A real x ⊆ ω is computable by an infinite time register machine
iff it is hyperarithmetic.

This result was inspired by discussions with Joel Hamkins and Philip Welch

at Oberwolfach in December 2005. Infinite time register machines belong to the
following schema of machines which may all run for arbitrarily many ordinal
steps. Let Ord be the class of ordinal numbers.

1.1: Infinite time Turing machines, ITTMs, with finitely many standard Turing
tapes; every Σ1

1 real and every Π1
1 real is ITTM computable [2].

A. Beckmann et al. (Eds.): CiE 2006, LNCS 3988, pp. 257–266, 2006.
c© Springer-Verlag Berlin Heidelberg 2006

258 P. Koepke

1.2: Ordinal Turing machines, OTMs, with finitely many Turing tapes of length
ORD; a set of ordinals is OTM computable iff it is a constructible set of ordinals
[3], [4], [6].
2.1: Infinite time register machines, ITRMs, as defined in this article; a real is
ITRM computable iff it is hyperarithmetic (Δ1

1).
2.2: Ordinal register machines, ORMs, with finitely many registers containing
arbitrary ordinals; a set of ordinals is ORM computable iff it is a constructible
set of ordinals [7].

2 Infinite Time Register Machines

We base our presentation of infinite time machines on the unlimited register
machines as presented in [1].

Definition 1. An unlimited register machine URM has registers R0, R1, . . .
which can hold natural numbers. A register program consists of commands to
increase or to reset a register. The program may jump on condition of equality
between two registers.

An URM program is a finite list P = I0, I1, . . . , Is−1 of instructions each of
which may be of one of four kinds:

a) the zero instruction Z(n) changes the contents of Rn to 0, leaving all other
registers unaltered;

b) the successor instruction S(n) increases the natural number contained in Rn

by 1, leaving all other registers unaltered;
c) the transfer instruction T (m, n) replaces the contents of Rn by the natural

number contained in Rm, leaving all other registers unaltered;
d) the jump instruction J(m, n, q) is carried out within the program P as fol-

lows: the contents rm and rn of the registers Rm and Rn are compared, but
all the registers are left unaltered; then, if Rm = Rn, the URM proceeds
to the qth instruction of P ; if Rm �= Rn, the URM proceeds to the next
instruction in P .

The instructions of a register program can be addressed by their indices which
are called program states. At each ordinal time t the machine will be in a con-
figuration consisting of a program state I(t) ∈ ω and the register contents which
can be viewed as a function R(t) : ω → ω. R(t)(n) is the content of the register
Rn at time t. We also write Rn(t) instead of R(t)(n).

Definition 2. Let P = I0, I1, . . . , Is−1 be an URM program. A pair

I : θ → ω, R : θ → (ωω)

is an (infinite time register) computation by P if the following hold:

a) θ is an ordinal or θ = Ord; θ is the length of the computation;
b) I(0) = 0; the machine starts in state 0;

Infinite Time Register Machines 259

c) If t < θ and I(t) �∈ s = {0, 1, . . . , s − 1} then θ = t + 1; the machine stops if
the machine state is not a program state of P ;

d) If t < θ and I(t) ∈ state(P) then t + 1 < θ; the next configuration is deter-
mined by the instruction II(t) :

i. if II(t) is the zero instruction Z(n) then let I(t+1) = I(t)+1 and define
R(t + 1) : ω → Ord by

Rk(t + 1) =
{

0, if k = n
Rk(t), if k �= n

ii. if II(t) is the successor instruction S(n) then let I(t + 1) = I(t) + 1 and
define R(t + 1) : ω → Ord by

Rk(t + 1) =
{

Rk(t) + 1, if k = n
Rk(t), if k �= n

iii. if II(t) is the transfer instruction T (m, n) then let I(t+1) = I(t)+1 and
define R(t + 1) : ω → Ord by

Rk(t + 1) =
{

Rm(t), if k = n
Rk(t), if k �= n

iv. if II(t) is the jump instruction J(m, n, q) then let R(t + 1) = R(t) and

I(t + 1) =
{

q, if Rm(t) = Rn(t)
I(t) + 1, if Rm(t) �= Rn(t)

e) If t < θ is a limit ordinal, the machine constellation at t is determined by
taking inferior limits. If lim inf

r→t
Rk(r) = ω for some k ∈ ω then let θ = t; the

machine stops if one of the registers overruns; otherwise let

∀k ∈ ω Rk(t) = lim inf
r→t

Rk(r);

I(t) = lim inf
r→t

I(r).

The computation is obviously determined recursively by the initial register con-
tents R(0) and the program P . We call it the (infinite time register) computation
by P with input R(0). If the computation stops at a successor ordinal θ = β +1
then R(β) is the final register content. In this case we say that P computes
R(β)(0) from R(0) and write P : R(0) �→ R(β)(0).

The definition of I(t) for limit t can be motivated as follows. Since a program
is finite its execution will lead to some (complex) looping structure involving
loops, subloops and so forth. This can be presented by pseudo code like:

...
17:begin mainloop

...

260 P. Koepke

21: begin subloop
...

29: end subloop
...

32:end mainloop
...

Assume that for times r → t the main loop (17−32) with its subloop (21−29)
is traversed cofinally often. Then at time t it is natural to put the machine at the
start of the “main loop”. Assuming that the lines of the program are enumerated
in increasing order this corresponds to the lim inf rule

I(t) = lim inf
r→t

S(r).

The interpretation of programs yields associated notions of computability.

Definition 3. An n-ary partial function F : ωn ⇀ ω is (ordinal register) com-
putable if there is a register program P such that for every n-tuple (a0, . . . , an−1)
∈ dom(F) holds

P : (a0, . . . , an−1, 0, 0, . . .) �→ F (a0, . . . , an−1).

Definition 4. A subset x ⊆ ω, i.e., a real number, is (ordinal register) com-
putable if there is a register program P such that for every m ∈ ω holds

P : (m, 0, 0, . . .) �→ χx(m),

where χx is the characteristic function of x.

Obviously any standard recursive function is ordinal register computable.

3 Computing Δ1
1-Reals

For e ∈ ω let Re denote the e-th recursively enumerable, binary relation on ω.
If Re is wellfounded, let |Re| denote the ordinal rank of Re. Consider a hyper-
arithmetic real number x, i.e., {x} is a parameter-free Δ1

1-singleton. By standard
representation theorems for Π1

1 -reals there exists a recursive function f : ω → ω
such that for all n ∈ ω:

n ∈ x iff Rf(n) is a wellfounded relation. (1)

Since x is also Σ1
1 the boundedness property for parameter-free Σ1

1-sets implies
the existence of an ordinal α less than the Church-Kleene ordinal ωCK

1 such
that for all n ∈ ω:

n ∈ x iff Rf(n) is a wellfounded relation of rank |Rf(n)| < α. (2)

Infinite Time Register Machines 261

The ordinal α is the ordertype of some recursive wellorder (ω, S). The right-hand
side of (2) holds iff there is an orderpreserving embedding from (ω, Rf(n)) into
(ω, S).

More generally, consider any infinite time register computable relations (ω, R)
and (ω, S) where (ω, S) is a wellorder. We shall define a register program P
uniformly in programs for R and S which computes whether (ω, R) can be em-
bedded orderpreservingly into (ω, S). This shows that the right-hand side of the
equivalence (2) is infinite time register computable and proves

Lemma 1. If x ⊆ ω is a hyperarithmetic real then x is computable by an infinite
time register machine.

For r ∈ ω let TCR(r) be the transitive closure of r in R, i.e. the ⊆-smallest set
which contains r and is closed under R-predecessors. Define TCS(s) similarly.
Define a relation r ∼ s iff there is an orderpreserving map

π : (TCR(r), R) → (TCS(s), S) with π(r) = s.

If the relations R and S both have 0 as their maximum element, i.e.,

∀r ∈ dom(R) \ {0} rR0 and ∀s ∈ dom(S) \ {0} sS0 ,

then (ω, R) can be embedded orderpreservingly into (ω, S) iff 0 ∼ 0. Since we
may simply assume that R and S have maximum elements, this reduces the
embeddablility property to the problem of computing ∼ with an ITRM. Since
S is a wellorder the following lemma yields a recursive definition of ∼.

Lemma 2. For every r and s, r ∼ s iff ∀r′Rr∃s′Ss r′ ∼ s′.

Proof. Assume r ∼ s. Take an orderpreserving map

π : (TCR(r), R) → (TCS(s), S) with π(r) = s.

Let r′Rr. Let s′ = π(r′) S s = π(r). Then TCR(r′) ⊆ TCR(r) and

π � TCR(r′) : TCR(r′) → TCS(s′)

orderpreservingly with π(r′) = s′. Thus ∀r′Rr∃s′Ss r′ ∼ s′.
Conversely assume that ∀r′Rr∃s′Ss r′ ∼ s′. For every r′Rr choose a map

πr′ : TCR(r′) → TCS(s′) witnessing r′ ∼ s′. Note that

TCR(r) = {r} ∪
⋃

r′Rr

TCR(r′).

Thus we may define a map π : TCR(r) → TCS(s) by π(r) = s and for r′′ �= r:

π(r′′) = min{πr′(r′′)|r′Rr}

where the minimum is formed with respect to the the wellorder S. Then π
witnesses that r ∼ s.

262 P. Koepke

We shall compute ∼ on an ITRM using finite stacks of natural numbers. Code a
stack (r0, . . . , rm−1) by r = 2r0 · 3r1 · · · prm−1+1

m−1 . Standard stack operations like
pushing and popping natural numbers or finding the length m − 1 of the stack r
are recursive and thus computable by an ITRM. Since the relations R and S are
infinite time register computable the question whether the stack (r0, . . . , rm−1)
is strictly descending in R or S can also be computed by an ITRM. For the
subsequent program we shall use two registers A and B as stacks with associated
operations pushA, popA, lenghthA, A-is-decreasing-in-R and pushB, popB,
lenghthB, B-is-decreasing-in-S. The specific coding of stack contents leeds
to a controlled limit behaviour:

Proposition 1. Let α < t where t is a limit ordinal. Assume that the stack
A (or B) contains the contents r = (r0, . . . , rm−1) for cofinally many times
below t and that all contents in the time interval (α, t) are endextensions of
r = (r0, . . . , rm−1). Then at time t the stack contents are r = (r0, . . . , rm−1).

So let us assume that R and S both have 0 as their maximum element. Running
the following program P on an ITRM outputs yes/no depending on whether R
can be embedded order-preservingly into S. We present the program in simple
pseudo-code and assume that it is translated into a register program according
to Definition 1 so that the order of commands is kept. Also the stack commands
like pushA are understood as macros which are inserted into the code with
appropriate renaming of variables and statement numbers.

pushA 0;
pushB 0;
FLAG := 1; %% ask whether 0 ~ 0

Loop: Case1: if FLAG=0 and lengthA=lengthB=1 %% 0 ~ 0
then begin; output ’yes’; stop; end;

Case2: if FLAG=0 and lengthA>lengthB=1 %% 0 !~ 0
then begin; output ’no’; stop; end;

Case3: if FLAG=0 and lengthA = lengthB > 1
%% last element of A ~ last of B

then begin; %% check next
popA N;
pushA N+1;
popB N;
pushB 0;
FLAG:=1; %% ask whether last of A ~ last of B
goto Loop;
end;

Case4: if FLAG=0 and lengthA>lengthB
%% 2nd-but-last of A !~ last of B

then begin;
popA N;
popB N;
pushB N+1;

Infinite Time Register Machines 263

FLAG:=1; %% ask whether last element of A ~ last of B
goto Loop;
end;

Case5: if FLAG=1 and A-is-decreasing-in-R
and B-is-decreasing-in-S
then begin;
pushA 0;
pushB 0;
FLAG:=0; FLAG:=1; %% flash the flag
goto Loop;
end;

Case6: if FLAG=1 and A-is-decreasing-in-R
and not B-is-decreasing-in-S
then begin;
popB N;
pushB N+1;
FLAG:=0; FLAG:=1; %% flash the flag
goto Loop;
end;

Case7: if FLAG=1 and not A-is-decreasing-in-R
then begin;
popA N;
pushA N+1;
popB N;
pushB 0;
FLAG:=0; FLAG:=1; %% flash the flag
goto Loop;
end;

The next Lemma proves the correctness of the program. Note that the program
will always loop back to Loop until the program stops.

Lemma 3. Let
I : θ → ω, R : θ → (ωω)

be the computation by P with trivial input (0, 0, . . .). Then the computation sat-
isfies:

a) Suppose the machine is in state Loop and the stack contents of A and B are
(r0, . . . , rm−1) and (s0, . . . , sm−1), m � 1 which descend strictly in R and S
resp. Moreover suppose that Flag=1 and rm−1 ∼ sm−1. Then the machine will
reach the state Loop with the same stack contents and Flag=0 after a certain
interval of time; during that interval, (r0, . . . , rm−1) and (s0, . . . , sm−1) will
always be initial segments of the stacks A and B resp.

b) Suppose the machine is in state Loop and the stack contents of A and B
are (r0, . . . , rm−1) and (s0, . . . , sm−1), m � 1 which descend strictly in R
and S resp. Moreover suppose that Flag=1 and rm−1 � sm−1. Let rm be

264 P. Koepke

the smallest integer such that rmRrm−1 for which there is no smSsm−1 such
that rm ∼ sm. Then the machine will reach the state Loop with stack contents
(r0, . . . , rm−1, rm) and (s0, . . . , sm−1) and Flag=0 after a certain interval of
time; during that interval, (r0, . . . , rm−1) and (s0, . . . , sm−1) will always be
initial segments of the stacks A and B resp.

c) If R can be embedded orderpreservingly into S then the computation stops
with output ’yes’.

d) If R cannot be embedded orderpreservingly into S then the computation stops
with output ’no’.

Proof. a) and b) are proved by simultaneous induction on sm−1 along the well-
order S. So consider a situation (r0, . . . , rm−1) and (s0, . . . , sm−1) as in a) or b)
and assume that a) and b) already hold for all appropriate stacks (r′0, . . . , r′m′−1)
and (s′0, . . . , s

′
m′−1) with s′m′−1Ssm−1.

We first prove a) for the given situation. So Flag=1 and rm−1 ∼ sm−1. In-
spection of the program shows that the machine will successively enter the main
loop with register A containing the stacks (r0, . . . , rm−1, i) for i = 0, 1, Note
that by Case7, only the strictly decreasing stacks with iRrm−1 are relevant. For
such a (r0, . . . , rm−1, i) in register A the machine will enter the main loop with
register B containing stacks (s0, . . . , sm−1, j). Again, by Case6, only strictly de-
creasing stacks (s0, . . . , sm−1, j) with jSsm−1 are relevant. In these cases, the
main loop is entered with strictly descending stack contents (r0, . . . , rm−1, i) and
(s0, . . . , sm−1, j) and Flag=1.

We can apply the inductive assumptions: If i ∼ j the machine will subse-
quently reach the state Loop with the same stack contents and Flag=0. If i � j
the machine will reach the state Loop with stack contents (r0, . . . , rm−1, i, k),
some k < ω, and (s0, . . . , sm−1, j) and Flag=0; it will then set the stack contents
to (r0, . . . , rm−1, i) and (s0, . . . , sm−1, j + 1) with Flag=1. Since rm−1 ∼ sm−1
there is some j such that i ∼ j and so the machine will eventually reach the state
Loop with stack contents (r0, . . . , rm−1, i) and (s0, . . . , sm−1, j), some j < ω,
and Flag=0. This will be the case in turn for all i < ω. By the limit rules the
limit of these configurations will be a machine configuration with stack contents
(r0, . . . , rm−1) and (s0, . . . , sm−1), and Flag=0.

For b) assume that Flag=1 and rm−1 � sm−1. Let rm be defined as above.
Then the machine will proceed as in the proof of a), until it reaches the stack
contents (r0, . . . , rm−1, rm). We argue inductively that it will subsequently set
the contents of B to (s0, . . . , sm−1, j) for j = 0, 1, . . . and enter the main loop
with Flag=1.

For j = 0, an analysis of the program shows that when the contents of A are
first set to (r0, . . . , rm−1, rm), the contents of B are set to (s0, . . . , sm−1, 0) (Case3
or Case5). For the inductive step assume that the machine enters the main
loop with stack contents (r0, . . . , rm−1, rm) and (s0, . . . , sm−1, j) with Flag=1.
If (s0, . . . , sm−1, j) is not strictly descending in S then Case6 will modify the
contents of B to (s0, . . . , sm−1) and (s0, . . . , sm−1, j + 1) and enter the main
loop with Flag=1. If (s0, . . . , sm−1, j) is strictly descending in S then we can
apply the inductive assumptions. Since rm � j the machine will reach the state

Infinite Time Register Machines 265

Loop with stack contents (r0, . . . , rm−1, rm, k), some k < ω, and (s0, . . . , sm−1, j)
and Flag=0 after a certain interval of time. Then Case4 will modify the stack
contents to (r0, . . . , rm−1, rm) and (s0, . . . , sm−1, j + 1), set Flag:=0 and enter
the main loop. This concludes the induction.

By the limit rules the limit of this inductive sequence of configurations will be
a configuration with state Loop, Flag=0, and stack contents (r0, . . . , rm−1, rm)
and (s0, . . . , sm−1), as required by b). Inspection of the algorithm shows that
the desired configurations for a) and b) are first reached with the stack contents
always endextending (r0, . . . , rm−1) and (s0, . . . , sm−1) resp.
c) Assume that R can be embedded orderpreservingly into S. Since 0 is the
maximum element of both R and S, 0 ∼ 0. The computation will first reach
state Loop with stack contents (0) and (0) and Flag=1. By a), it will later reach
state Loop with stack contents (0) and (0) and Flag=0. By Case1 of the main
loop, the machine will output ’yes’ and stop.
d) is proved an analogy with c).

4 Admissible Sets and Infinite Register Computations

For the converse we show

Lemma 4. Let I : θ → ω, R : θ → (ωω) be a computation by a program P which
stops at some successor ordinal θ = β + 1. Then θ < ωCK

1 .

Proof. Assume that θ � ωCK
1 . Let I(ωCK

1) = k and

R(ωCK
1) = (n0, . . . , nl−1, 0, 0, . . .)

where R0, . . . , Rl−1 includes all the registers mentioned in the program P . By
the liminf rules for ITRMs there is some α < ωCK

1 such that the sets

{t ∈ (α, ωCK
1)|I(t) = k}

and
{t ∈ (α, ωCK

1)|Rj(t) = nj}

are closed unbounded in ωCK
1 . These sets are Σ1-definable over the admissible

set LωCK
1

in the parameter α. In LωCK
1

define a sequence α0 = α < α1 < α2 < . . .
such that

∃t ∈ (αn, αn+1) I(t) = k and for j = 0, . . . , l − 1∃t ∈ (αn, αn+1) Rj(t) = nj.

Such a sequence may be defined by a Σ1-definition over LωCK
1

. By the Σ1-
bounding principle in LωCK

1
, α∗ =

⋃
n<ω αn < ωCK

1 . Also I(α∗) = k and
R(α∗) = (n0, . . . , nl−1, 0, 0, . . .). So the constellation I(t) = k and R(t) =
(n0, . . . , nl−1, 0, 0, . . .) occurs at times α∗ and ωCK

1 . This means that the ma-
chine runs into a cycle and does not stop, contrary to our assumption.

266 P. Koepke

Lemma 5. Let x ⊆ ω be computable by an infinite time register machine. Then
x ∈ LωCK

1
.

Proof. Let P be a register program such that such that for every n < ω

P : (n, 0, 0, . . .) �→ χx(n).

For n < ω let the computation by P with input (n, 0, 0, . . .) stop at time θn.
By the previous lemma, θn < ωCK

1 . Therefore the computation by P with input
(n, 0, 0, . . .) is an element of LωCK

1
. The characteristic function χx is Δ1-definable

over LωCK
1

by

χx(n) = 1 iff there is a computation by P with input (n, 0, 0, . . .) and output 1
iff all computations by P with input (n, 0, 0, . . .) stop with output 1.

Since the admissible set LωCK
1

satisfies Δ1-separation, x ∈ LωCK
1

.

5 Further Considerations

One may consider variants of the ITRMs, where the registers can hold ordinals
below a certain bound β. What is the collection of subsets of β computable by
β-ITRMs? It is hoped that such interpolations between ITRMs and ORMs yield
a stratification of the constructible sets which may lead to a fine structure theory
of the class L of constructible sets (see [5]).

References

[1] Nigel J. Cutland. Computability: An Introduction to Recursive Function Theory.
Perspectives in Mathematical Logic. Cambridge University Press, 1980.

[2] Joel D. Hamkins and Andy Lewis. Infinite Time Turing Machines. J. Symbolic
Logic, 65(2):567–604, 2000.

[3] Peter Koepke. Turing computations on ordinals. Bulletin of Symbolic Logic,
11(3):377–397, 2005.

[4] Peter Koepke. Computing a model of set theory. In: S. Barry Cooper, Benedikt
Löwe, Leen Torenvliet (editors). New Computational Paradigms: First Conference
on Computability in Europe, CiE 2005. Proceedings. Lecture Notes in Computer
Science 3526:223–232, 2005.

[5] Peter Koepke and Sy Friedman. An elementary approach to the fine structure of
L. Bulletin of Symbolic Logic, 3(4):453–468, 1997.

[6] Peter Koepke and Martin Koerwien. Ordinal computations. To appear in: Math-
ematics of Computation at CiE 2005. Special issue of the journal Mathematical
Structures in Computer Science: 17 pages.

[7] Peter Koepke and Ryan Siders. Computing the recursive truth predicate on ordinal
register machines. Submission to CiE 2006, Swansea.

[8] Gerald E. Sacks. Higher Recursion Theory. Perspectives in Mathematical Logic.
Springer-Verlag, Berlin, 1990.

	Introduction
	Infinite Time Register Machines
	Computing Δ^1_1-Reals
	Admissible Sets and Infinite Register Computations
	Further Considerations

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (Gray Gamma 2.2)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (ISO Coated)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Error
 /CompatibilityLevel 1.3
 /CompressObjects /Off
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJDFFile false
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends true
 /DetectCurves 0.1000
 /ColorConversionStrategy /sRGB
 /DoThumbnails false
 /EmbedAllFonts true
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 524288
 /LockDistillerParams true
 /MaxSubsetPct 100
 /Optimize false
 /OPM 1
 /ParseDSCComments true
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveDICMYKValues true
 /PreserveEPSInfo true
 /PreserveFlatness true
 /PreserveHalftoneInfo false
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts false
 /TransferFunctionInfo /Remove
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /CropColorImages true
 /ColorImageMinResolution 150
 /ColorImageMinResolutionPolicy /OK
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 600
 /ColorImageDepth 8
 /ColorImageMinDownsampleDepth 1
 /ColorImageDownsampleThreshold 1.01667
 /EncodeColorImages true
 /ColorImageFilter /FlateEncode
 /AutoFilterColorImages false
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /ColorImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasGrayImages false
 /CropGrayImages true
 /GrayImageMinResolution 150
 /GrayImageMinResolutionPolicy /OK
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 600
 /GrayImageDepth 8
 /GrayImageMinDownsampleDepth 2
 /GrayImageDownsampleThreshold 1.01667
 /EncodeGrayImages true
 /GrayImageFilter /FlateEncode
 /AutoFilterGrayImages false
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /GrayImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasMonoImages false
 /CropMonoImages true
 /MonoImageMinResolution 1200
 /MonoImageMinResolutionPolicy /OK
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 1200
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 2.00000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /CheckCompliance [
 /None
]
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile (None)
 /PDFXOutputConditionIdentifier ()
 /PDFXOutputCondition ()
 /PDFXRegistryName (http://www.color.org)
 /PDFXTrapped /False

 /SyntheticBoldness 1.000000
 /Description <<
 /DEU ()
 /ENU ()
 >>
>> setdistillerparams
<<
 /HWResolution [2400 2400]
 /PageSize [595.000 842.000]
>> setpagedevice

