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HYPERFINE STRUCTURE THEORY AND GAP 1 MORASSES

SY-DAVID FRIEDMAN⋆, PETER KOEPKE†, AND BORIS PIWINGER‡

Abstract. Using the Friedman-Koepke Hyperfine Structure Theory of [2], we provide a short construc-

tion of a gap 1 morass in the constructible universe.

§1. Introduction. The constructible universe L of set theory is defined as the
class of sets definable in a transfinite process as follows: Start with an empty L0,
for Lα already defined let Lα+1 consist of all subsets of Lα definable by ∈-formulae,
and for limit ordinals ë take the union of all previous stages of the construction,
Lë =

⋃
α<ë

Lα . Finally L =
⋃
α∈On

Lα .

As a consequence of its very concrete definition, L has some fundamental prop-
erties which are unprovable in ZFC alone. For example, Gödel defined this model
to prove the relative consistency of the continuum hypothesis (CH ) withZFC . His
proof is based on a condensation lemma which states that Σ1-substructures of L
condense down to stages of L.
In contrast to the simplicity of its definition, the proofs of some of L’s most
important properties such as the �-principle or the covering lemma can be rather
complex. Jensen [5] in 1972 established those results, using his fine structure theory.
Even today, after 30 years of development, Jensen’s method remains challenging.
In the early seventies, Silver found a different approach—the Silver machines (see
Richardson [8]). These machines reduce set-theoretic properties to calculations
with sets of ordinals. In analogy to the L-hierarchy, a hierarchy of algebras M ä

is defined. And analogous to the condensation lemma is the collapsing property:
closed structures (which are produced by a hull operator) condense down to stages
of the machine. In contrast to the L-hierarchy, very little happens in the passage
fromM ä toM ä+1. This is guaranteed by a certain finiteness property which codes
all information needed for this step in a finite set which itself has a simple form.
A nice introduction to Silver machines can be found in the third author’s Diplom
thesis [6].
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Another approach is due to Friedman and Koepke [2]; it incorporates the finite-
ness property and other ideas of Silver machines into the L-hierarchy. The ad-
vantage of the resulting hyperfine structure theory is that it not only achieves the
finiteness property, but also preserves the natural and simple intuitions inherent in
theL-hierarchy. In this article we use this theory to build gap 1 morasses. Morasses
are combinatorial structures invented by Jensen as a tool to construct infinite struc-
tures from structures of smaller cardinality, e.g., a structure of size ℵn+1 can be built
from countable structures using a gap n morass. An important application is the
gap (n + 1) transfer theorem (requiring a gap n morass). For a discussion of these
ideas, see Devlin [1].
Jensen’s definition of a gap 1morass is repeated inDefinition 1.10 below. Richard-
son [8] has a construction of such a morass using Silver machines. In this article
we construct a gap 1 morass using a precise language for hyperfine structures to-
gether with a property called type preservation (Lemma 1.8); this basically says that
isomorphic hulls are still isomorphic when mapped in a Σ1-preserving way; using
type preservation one can avoid lengthy calculations using terms in the language
of hyperfine structure theory. This presentation follows the third author’s PhD
thesis [7] under the supervision of the first author, based on an original outline of
the proof from the second author.
The construction we give is of a gap 1 morass at ù1. It easily generalizes to give
a gap 1 morass at any regular cardinal.
Gap 2 morasses can also be constructed using the hyperfine structure theory. For
this we refer the reader to the forthcoming [3].

1.1. Notation. The basic concepts of set theory (especially the constructible uni-
verse L) are assumed to be known. Any notation and definition not explained is
standard and may, e.g., be found in Jech [4].
We use the usual logical symbols: ∧ (and), ∨ (or), ¬ (not), ∃ (exists), ∀ (for all),

→ (implies), (, and ) (parentheses).
For two sets x and y we write x ∼= y if x and y are isomorphic (i.e., there exists a
1-1 function from x onto y which preserves all structures on x; the structures will
be clear from the context). Furthermore, we write x ⊂ y if x is a (not necessarily
proper) subset of y. For a well-ordering 〈Z,<Z〉 and a set X ⊂ Z let lubX (least
upper bound) be the <Z-least z ∈ Z s. t. ∀x ∈ X x < z. As usual small Greek
letters will denote ordinals.
Let f : x → y; we write domf for the domain and rangef for the range of f.

<ùx is the set of all finite sequences in x. If x and y are ordered sets and f is a

function which preserves these orders we write f : x
o. p.

−−−→ y.

1.2. The Friedman-Koepke hyperfine structure theory. Let’s recall the basic defi-
nitions and properties. See [2] for details and proofs. The main tools of the theory
are locations, also referred to as names, and the corresponding hulls. Locations are
triples of the form (α, φ, ~x) well-ordered by ≤̃ (such a location will be called an
α-location, we will also refer to α as the level of this location). For a given location
s we write s = (α(s), φn(s), ~x(s)), where a canonical list ϕ0, ϕ1, . . . of formulas has
been fixed. The basic operations are:

Interpretation: I (α, φ, ~x) = {y ∈ Lα |Lα |= φ(y, ~x)}.
Naming: For y ∈ L let N(y) = (α, φ, ~x) be ≤̃-least s. t. I (α, φ, ~x) = y.
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Skolem function: S(α, φ, ~x) is the least y ∈ Lα s. t. Lα |= φ(y, ~x) if exists; else
S(α, φ, ~x)↑ (undefined).

We say that (α, φ, ~x) ∈ X ⊂ L if α and each component of ~x are elements of
X . A set or class X ⊂ L is constructibly closed iff X is closed under applications
of I , N , and S. We denote the constructible closure or hull of X by L{X}. If X is
constructibly closed and ð : X ∼= M is the Mostowski collapse, then M = Lα for
some α ∈ On and the basic operations are preserved by ð.
The fine constructible hierarchy is given by

Ls =
(
Lα(s),∈, <L, I,N, S↾s

)

where S↾s means thatS is applied to locations inLα(s) and to α(s)-locations which

are below s with respect to ≤̃ (the latter will for that purpose also be considered
elements of the structure, but not of the domain of I ). Now the definition of closure
extends to structures Ls for a location s , namely a set X ⊂ Lα(s) is closed in Ls
(X◁Ls) if it is closed under its operations (S can be applied to top-locations below
s if their third component is an element of X ). The hull Ls{X} is defined similarly.
Again, we have condensation: There is a unique isomorphism ð : Ls{X} ∼= Ls̄ for
some s̄ . Locations are mapped component-wise; if the first component is α(s) it is
mapped to α(s̄). For notational convenience we write ð(s) = s̄ .
For finite sets p, q ⊂ Lα(s) define p <

∗ q iff max<L(p △ q) ∈ q (△ is the
symmetric difference). If a finite set is used as a parameter to a formula, it is taken
as a <L-increasing tuple.
Additionally, we have a finiteness property, monotonicity, continuity, and a com-
pactness property:

Finiteness Property: For an α-location s there exists z ∈ Lα s. t. for any X ⊂ Lα
we have Ls+{X} ⊂ Ls{X ∪ {z}} where s+ denotes the immediate successor of
s in the well-ordering of locations; z = S(s) is as required.

Monotonicity: For α-locations s ≤̃ t: ∀X ⊂ Lα Ls{X} ⊂ Lt{X}.
For s, t α-, â-locations respectively, where α < â :

Ls{X} ⊂ Lt{X ∪ {α}}.

Continuity: For locations of the form s = (α, φ0, ∅) for limα and X ⊂ Lα :

Ls{X} = L{X} =
⋃

â<α

L(â,φ0,∅){X ∩ Lâ}.

For s = (α + 1, φ0, ∅) and X ⊂ Lα :

Ls{X ∪ {α}} ∩ Lα = L{X ∪ {α}} ∩ Lα

=
⋃

{Lt{X}|t an α-location}.

For s = (α, φ, ~x) a ≤̃-limit not of the above forms and X ⊂ Lα :

Ls{X} =
⋃

{Lt{X}|t <̃ s an α-location}.

Compactness Property: Let s be an α-location and X ⊂ Lα , then x ∈ Ls{X} iff
x ∈ Ls{Y} for some finite Y ⊂ X .
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Lemma 1.1. Let s be a ã-location, X ◁ Ls , ð : X ∼= Ls̄ , and t ≤̃ s , t ∈ X ∪ {ã},
then (let α = α(t)):

∀Z ⊂ X ∩ Lα ð [Lt{Z}] = Lð(t){ð[Z]}.

Proof. First note, that X ∩ Lα ◁ Lt . Hence ð↾X ∩ Lα : X ∩ Lα ∼= Lt̄ where
t̄ = ≤̃-lubð

[
{r <̃ t|r ∈ X ∩Lα ∪ {α}}

]
(with ð(ã) = α(s̄)). Then, of course,

ð [Lt{Z}] = Lt̄{ð[Z]} for Z ⊂ X ∩ Lα . It remains to show that t̄ = ð(t).

Since ð preserves the ≤̃-relation, t̄ ≤̃ ð(t). On the other hand, let r = (â, φ,~b) <̃

ð(t). Then â ≤ ð(α) and ~b ∈ Lâ ⊂ Lð(α) = ð [X ∩ α]. So there are ä ∈

X∩Lα∪{α} and ~d ∈ X∩Lα s. t. r = (ð(ä), φ, ð(~c)). But thenð−1(r) = (ä, φ, ~c) <̃ t
and ð−1(r) ∈ X ∩Lα ∪ {α}. Therefore, by definition of t̄ we have r <̃ t̄. ⊣

Next we fix our language for the investigation of morasses.

Definition 1.2 (LanguageL for Ls ). Let s be an α-location. We take function
symbols for the structure Ls discussed above: naming N , interpretation I , Skolem
functionS, locationdecompositionα(·) and ~x(·), and location composition (·, φ·, ·).
(The distinction between function symbols and functions won’t be shown, same for
relations etc.). We have relation symbols ∈, <L (on sets, i.e., on elements of the
structure), = (on sets and locations) and <̃, ≤̃ (on locations). Finally, we have
variables for sets.
Terms are defined as usual, note that there will be terms for sets and for locations:
Variables are terms. If x, y are set terms or y is α (strictly speaking a constant
symbol for the top level) and t a location term, then the following are also terms:
N(x), I (t), S(t), α(t), ~x(t), (y, φn , x) for n < ù.
Interpretation of terms. Given a term t with variables vi , i < k for some k < ù,
interpreted as ai ∈ Lα . Then the interpretation ts of t is defined inductively: If t is
of the form vi then ts = ai . If t is of the form (t0, φn, t1) and ts0 is defined and an
ordinal or α, n < ù, and ts1 is defined and a vector of length m of elements of Lts0
where φn has m + 1 free variables (“t1 is of the right length”), then ts = (ts0 , φn, t

s
1 )

provided that this is <̃ s , else undefined. If ts = (â, φn, ~z) is defined with â < α
then α(t)s = â and I (t)s = I (ts ). If ts = (â, φn , ~z) is defined then ~x(t)s = ~z and
S(t)s = S(ts ) (here â ≤ α). If ts is defined and t a set term then N(t)s = N(ts ).
All other terms are undefined, we write t↑; also t↓ iff ¬t↑.
We say that the term t is determined by location s iff for each subterm of the form
(α, φn , u) where us is defined, if (α, φn, us ) is a location then it is <̃ s .
Given set terms x0, x1 as well as location terms t0, t1 the following are atomic
formulas: x0 ∈ x1, x0 <L x1, x0 = x1, t0 = t1, t0 <̃ t1 and t0 ≤̃ t1. Atomic formulas
are formulas. And if φ, ÷ are formulas and v is a variable, then φ∧÷,¬φ and ∃vφ(v)
are formulas. A quantifier-free formula (QFF ) is a formula with no occurrence of
∃. A Σ1-formula is a formula of the form ∃v φ(v) where φ is quantifier-free; instead
of v a tuple ~v is allowed.
We say that a formula φ (together with an assignment of its free variables) is
determined by location s iff each term in it is determined by location s .
Given an assignment of the variables, we define truth for a determined formula
φ (Ls |= φ) as follows: Equality is true in Ls iff both sides are defined and equal
or both sides are undefined. The other relations must have both sides defined to be



484 SY-DAVID FRIEDMAN, PETER KOEPKE, AND BORIS PIWINGER

true. φ ∧ ÷ is true iff φ and ÷ are true, ¬φ is true iff φ is false and ∃v φ(v) is true iff
there is an a ∈ Lα s. t. φ(a) holds.
The hull of X for the location s , Ls{X}, is the set of values of defined terms with
parameters from X .
The Σ1-hull of X for the location s is the closure of the normal hull Ls{X} under
<L-least witnesses for Σ1-formulas. We write L

∗
s {X}.

Remark 1.3. The following observations about our language are straightforward
(t a term, φ a formula, given an assignment):
Assume t is determined by s . Then so is every subterm of t. Further, if s <̃ s ′

with α(s) = α(s ′) then t is determined by s ′; also ts is defined iff ts
′

is defined, in
which case their values agree. If s is a limit location then t is already determined by
a location s ′ <̃ s (note that if s is a minimal location with α(s) a successor ordinal,
it will be formally necessary to replace terms interpreted as α(s ′), if any, by the
constant symbol for the top level of Ls′); furthermore, s ′ can be taken from Ls{~a}
where ~a is assigned to the free variables of t. The latter implies that a structure-
preserving map between structures Ls with s limit preserves the determinedness of
terms.
If t is determined by s , ts is defined, s <̃ s ′ with α(s) < α(s ′), then t′ is
determined by s ′ with ts = (t′)s

′

where t′ is the same as t with all references to the
top level α replaced by α(s).
If t is determined by s , then t↑ (and hence also t↓) can be expressed by a QFF:
If t is a set term we have t↑ iff t = S(0, y ∈ y, ∅); if t is a location term we have t↑
iff t = (0, φ0, 1).
If s <̃ s ′ with α(s) = α(s ′) and φ is quantifier-free and determined by s , then φ
is determined by s ′ and Ls |= φ iff Ls′ |= φ.
The concept of “determined” is needed so that a term which is undefined cannot
become defined for a bigger location on the same level, thereby changing truth values
of formulas. For level changes we also get persistence provided terms are translated
(as indicated above). From now on those translations won’t be mentioned.
If s <̃ s ′ and φ is a Σ1-formula with Ls |= φ, then Ls′ |= φ.
If φ is a Σ1-formula with Ls |= φ and s is a limit location, then there is an s ′ <̃ s
s. t. Ls′ |= φ.
Let ð : Ls → Lt be a structure-preserving map with s , t limit locations. ð is Σ1-
preserving iff rangeð is Σ1-closed (i. e., rangeð = L∗

t {rangeð}): Clearly if rangeð
is Σ1-closed then ð is Σ1-preserving; for the other direction just note that if you have
a witness for a Σ1-formula then it is Σ1 to say there is a smaller one.

Lemma 1.4. Let s be a location and s0 = (α0, φn0 , p0) <̃ s . For every term in the
language for Ls0 we have a QFF in the language for Ls (uniformly definable using α0
and p0 as parameters and the free variables of the term) which is true in Ls for an
Ls0 -assignment of the variables iff the term is defined inLs0 with the same assignment.

Proof. This is done by induction on the complexity of a term (everything is
evaluated according to the assignment). We write defs0(t) for “t is a defined term
in Ls0”. For a variable vi , set terms x, y and a location term t we have:

— Ls |= def s0(vi).
— Ls |= def s0(α(t)) iff Ls |= defs0(t) ∧ α(t) < α0.
— Ls |= def s0(~x(t)) iff Ls |= defs0(t).
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— Ls |= def s0((x, φn, y)) iff Ls |= defs0(x) ∧ defs0(y) ∧ (x, φn, y)↓.
— Ls |= def s0((α0, φn, y)) iff Ls |= defs0(y) ∧ (α0, φn, y)↓ ∧ (α0, φn, y) <̃ s0.
— Ls |= def s0(N(x)) iff Ls |= defs0(x).
— Ls |= def s0(I (t)) iff Ls |= defs0(t) ∧ α(t) < α0.
— Ls |= def s0(S(t)) iff Ls |= defs0(t) ∧ S(t)↓. ⊣

A similar result holds not only as above for the property “t is determined”, but
also for the property “t is defined”:

Lemma 1.5. Let s be a location and s0 = (α0, φn0 , p0) <̃ s . For every term in the
language for Ls0 we have a QFF in the language for Ls (uniformly definable using
α0 and p0 as parameters and the free variables of the term) which is true in Ls for
an Ls0 -assignment of the variables iff the term is determined by s0 with the same
assignment.

Proof. As in the previous lemma, this is done by induction on the complexity of
a term where everything is evaluated according to the assignment. We write dets0(t)
for “t is determined by s0”. For a variable vi , set terms x, y and a location term t
we have:

— Ls |= dets0(vi).
— Ls |= dets0(α(t)) iff Ls |= dets0(t).
— Ls |= dets0(~x(t)) iff Ls |= dets0(t).
— Ls |= dets0((x, φn, y)) iff Ls |= dets0(x) ∧ dets0(y).
— Ls |= dets0((α0, φn, y)) iff Ls |= dets0(y) ∧

(
(α0, φn, y)↓ → (α0, φn, y) <̃ s0

)
.

— Ls |= dets0(N(x)) iff Ls |= dets0(x).
— Ls |= dets0(I (t)) iff Ls |= dets0(t).
— Ls |= dets0(S(t)) iff Ls |= dets0(t). ⊣

Corollary 1.6. Let s be a location and s0 = (α0, φn0 , p0) <̃ s . For every QFF φ
in the language forLs0 there is aQFF φ

′ in the language forLs (uniformly definable)
which is true in Ls for an Ls0 -assignment of the variables iff φ is true in Ls0 with the
same assignment.

Proof. Using dets0 for every term in φ we can check that φ is determined by s0.
Then by induction on the complexity of the formula using defs0 and dets0 we express
the truth of φ. ⊣

Definition 1.7 (Type). Let s be a location and ~x, ~p ∈ Lα(s). Define:

Type(s, ~x, ~p) = {(0, ô0, ô1)|ô0, ô1 terms, Ls |= ô0(~x, ~p) = ô1(~x, ~p)} ∪

∪{(1, ô0, ô1)|ô0, ô1 terms, Ls |= ô0(~x, ~p) ∈ ô1(~x, ~p)}.

Lemma 1.8 (Type Preservation). Let ð : Ls → Lt be a Σ1-preserving map, s0 ≤̃
s1 ≤̃ s , ~p0 ∈ Ls0 , ~p1 ∈ Ls1 , s0, s1 limit locations, and α ≤ α(s0). Then:

∀~x ∈ α Type (s0, ~x, ~p0) = Type (s1, ~x, ~p1) iff

∀~x ∈ ð(α) Type
(
ð(s0), ~x, ð( ~p0)) = Type

(
ð(s1), ~x, ð( ~p1)) .

Proof. ∀ is preserved downwards (note the implicit ∀ quantification over terms).
So it remains to show, that the upward direction is preserved. Let

¬∀~x ∈ ð(α) Type
(
ð(s0), ~x, ð( ~p0)) = Type

(
ð(s1), ~x, ð( ~p1)) .
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Equivalently:

∃~x ∈ ð(α) Type
(
ð(s0), ~x, ð( ~p0)) 6= Type

(
ð(s1), ~x, ð( ~p1)) .

Hence there are terms ô0, ô1 which witness this inequality, e.g., (0, ô0, ô1) is in the
right Type but not in the left one. So using Corollary 1.6 we can write:

Lt |= ∃~x ∈ ð(α)
(
Lð(s0) |=

(
ô0(~x, ð( ~p0)) 6= ô1(~x, ð( ~p0)))∧

∧Lð(s1) |=
(
ô0(~x, ð( ~p1)) = ô1(~x, ð( ~p1)))

)
.

This is a Σ1-statement and therefore preserved. ⊣

Corollary 1.9. With the hypotheses of the lemma we get:

Ls0{α ∪ ~p0} ∼= Ls1{α ∪ ~p1} iff

Lð(s0){ð(α) ∪ ð( ~p0)}
∼= Lð(s1){ð(α) ∪ ð( ~p1)}.

Proof. First assume ð1 : Ls0{α ∪ ~p0} ∼= Ls1{α ∪ ~p1}. ð1 is structure preserving
and hence preserves determinedness of terms. Therefore, we have Type (s0, ~x, ~p0) =
Type (s1, ~x, ~p1) for all ~x ∈ α. Now apply type preservation along ð to get
Type

(
ð(s0), ~x, ð( ~p0)) = Type

(
ð(s1), ~x, ð( ~p1)) for all ~x ∈ ð(α). This shows we

have an isomorphism as required: Lð(s0){ð(α) ∪ ð( ~p0)}
∼= Lð(s1){ð(α) ∪ ð( ~p1)}.

The same argument works for the other direction. ⊣

1.3. Gap 1 morasses in L.

Definition 1.10 (Gap 1 Morass). An (ù1, 1)-morass (morass, from now on) is a
structure of the form

〈
S1,J, (ðóô)óJô

〉
with

S0, S1 ⊂ ù2,

ãó ∈ S0 for ó ∈ S1,

Sã := {ó ∈ S1|ãó = ã} for ã ∈ S
0,

S0 = {ãó |ó ∈ S1}, and

≺, J are strict partial orderings on S1.

(M0) 1. ∀ã ∈ S0 ∩ ù1 Sã closed.
2. Sù1 club in ù2.
3. ù1 = sup(S0 ∩ ù1) ∈ S0 and Sã ⊆ ä for ã, ä ∈ S0, ã < ä.
4. J is a tree-ordering on S1 and if ó J ô J í then ðóí = ðôíðóô .
5. ä ≺ ô iff (ä < ô and ãä = ãô).

(M1) If ó J ô then
1. ðóô : ó + 1→ ô + 1, ðóô↾ãó = id↾ãó , ãó < ðóô(ãó) = ãô , ðóô(ó) = ô.
2. ðóô is order-preserving with ð−1óô

[
Sãô ∩ (ô + 1)

]
= Sãó ∩ (ó + 1).

3. For all í � ó, í is ≺-minimal, successor, limit iff ðóô(í) is ≺-minimal,
successor, limit, respectively. In the successor case also the immediate
predecessor is preserved.

(M2) Let ó J ô, ó̄ ≺ ó, and ô̄ := ðóô(ó̄), then ó̄ J ô̄ via ðó̄ô̄ = ðóô↾(ó̄ + 1).
(M3) For ô ∈ S1 {ãó |ó J ô} closed in ãô .
(M4) If ô is not ≺-maximal then {ãó |ó J ô} cofinal in ãô .
(M5) If {ãó |ó J ô} is unbounded in ãô , then ô =

⋃
óJô

ðóô[ó].
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(M6) If ó J ô, ó a ≺-limit, and ë := sup rangeðóô ↾ ó < ô, then ó J ë with
ðóë↾ó = ðóô↾ó.

(M7) If ó J ô, ó a ≺-limit, and ô = sup rangeðóô ↾ ó, then for α ∈ S0, if
∀ó̄ ≺ ó ∃ȭ ∈ Sα ó̄ J ȭ J ðóô(ó̄) then ∃õ ∈ Sα ó J õ J ô.

From now on, we work in L.

Definition 1.11. ó < ù2 is called (ù1, 1)-morass point (morass point, from now
on) iff ó =

⋃
{ì < ó|Lì |= ZF−}, andLó |= ∃!ã ∈ Card ã > ℵ0. In this case, let ãó

be this unique ordinal. Let S1 = {ó < ù2|ó morass point} and S0 := {ãó |ó ∈ S1}.
For ó, ô ∈ S1 define ó ≺ ô iff ó < ô ∧ ãó = ãô .
For ó ∈ S1 let s(ó) be the ≤̃-least location s s. t. there is a p ∈ <ùLα(s) with
Ls{ãó ∪ p} ∩ ó cofinal in ó (we say: Ls{ãó ∪ p} collapses ó); in this case let pó be
the <∗-least such. Note that s(ó) is a limit location by the finiteness property.
Define the partial ordering J on S1 by letting ó J ô iff there exists ð : Ls(ó) →
Ls(ô) with:

1. ð is Σ1-preserving.
2. ð↾ãó = id↾ãó , ãó < ð(ãó) = ãô , ô = ð(ó), pô ∈ rangeð
(define ð(ó) = ô if ó 6∈ domð)

3. If ô is a ≺-successor with immediate predecessor ô′, then ô′ ∈ rangeð.

Lemma 1.12.

1. ó ⊂ Ls(ó){ãó ∪ pó}.
2. Ls(ó){ó ∪ pó} = Ls(ó).
3. Ls(ó){ãó ∪ pó} = Ls(ó).
4. The map ð : Ls(ó) → Ls(ô), if exists, is uniquely determined.
5. ð(pó) = pô .
6. ð[Sãó ∩ (ó +1)] ⊆ Sãô ∩ (ô +1). If ô

′ is the immediate ≺-predecessor of ô, then
ð−1(ô′) is the immediate ≺-predecessor of ó.

Proof. For 1 assume î ∈ Ls(ó){ãó ∪ pó} ∩ ó. Let ç ∈ Ls(ó){ãó ∪ pó} ∩ ó s. t.
∃f ∈ Lçf : ãó ↔ î. In particular, S (ç, v0 : ℵ1 ↔ v1, 〈î〉) is such a map. Therefore,
î = rangef ⊂ Ls(ó){ãó ∪ pó}. Using that the hull is cofinal in ó we have that ó
actually is a subset.
For 2 consider Ls(ó){ó ∪ pó} ∼= Ls̄{ó ∪ p̄} = Ls̄ . Then s̄ , p̄ satisfy the definition
of s(ó), pó ; by minimality we have s(ó) = s̄ and pó = p̄.
3 follows from 1 and 2. Now 4 is clear.
For 5 note, that pô ∈ rangeð. By 3, ð(pó) ∈ Ls(ô){ãô ∪ pô}. Using Σ1-

preservation, we get pó ∈ Ls(ó){ãó ∪ ð−1(pô)} and hence Ls(ó) = Ls(ó){ãó ∪

ð−1(pô)}. Therefore, pó ≤∗ ð−1(pô). Assume for contradiction that this is strict.
Then we get ð(pó)<∗ pô. But pô ∈ Ls(ô){ãó ∪ ð(pó)} ⊂ Ls(ô){ãô ∪ ð(pó)} = Ls(ô)
contradicting the minimality of pô.
For 6 suppose that ó ′ ≺ ó; we must show that ð(ó ′) is a morass point. Let ç < ó
be large enough s. t. Lç |= ZF

− ∧ ó ′ morass point. Now ð↾Lç is elementary and
thereforeLð(ç) |= ð(ó

′) morass point; therefore ð(ó ′) is amorass point. The second
part of 6 now follows from the first part and requirement iii) on the map ð. ⊣

Definition 1.13 (morass map). For ó J ô, let ðóô be the unique map from the
previous lemma. The actual morass map to satisfy the morass axioms will be
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(ðóô↾ó) ∪ {(ó, ô)} (note that ðóô(ó) = ô if ó ∈ domðóô), but we will write ðóô for
both maps and work with the underlying map only.

Theorem 1.14.
〈
S1,J, (ðóô)óJô

〉
as defined above is an (ù, 1)-morass.

Proof. For (M0) the first three assertions are clear. To see that J forms a tree-
ordering, presume ðóô and ðõô are morass maps with ó < õ; then ðóõ = ð−1õô ◦ ðóô is
as required.
For (M1) the first assertion is as defined. For 2 note first that by the first part of
Lemma 1.12(6), morass points í̄ ≤ ó are mapped to morass points ≤ ô. Clearly,
the map is order-preserving. The next properties for morass points below the top
are immediate by elementarity. For the morass point at the top use the second part
of Lemma 1.12(6).
To see (M2) first note that by (M1) ô̄ is a morass point. Using that Ló is a limit
ofZF−-models find ç < ó s. t. Ls(ó̄) and pó̄ are definable in Lç from the parameter
ó̄. Hence ðóô↾Lç is elementary and, therefore, maps Ls(ó̄) into Ls(ô̄) and pó̄ onto
pô̄ . Then ðó̄ô̄ is as required.
For (M3) let ô ∈ S1 and ᾱ < ãô a limit point of {ãó |ó J ô}. By condensation let
ð : Ls(ô){ᾱ ∪pô} ∼= Ls̄ and ô̄ = ð(ô), p̄ = ð(pô). Note thatLs(ô){ᾱ ∪pô}∩ ãô = ᾱ,
since ᾱ is the limit of Ls(ô){ãó ∪ pô} ∩ ãô = ãó < ᾱ.

We show s̄ = s(ô̄): Clearly s(ô̄) ≤̃ s̄ , since Ls̄ = Ls̄{ᾱ ∪ p̄} cofinal in ô̄. Now
assume for contradiction that s(ô̄) <̃ s̄ . Let ðó = ð ◦ ðóô for ó ∈ {ó J ô|ãó < ᾱ}.
Choose ó large enough s. t. exist s̃ , p̃ ∈ Ls(ó) with s(ô̄) = ðó(s̃) and pô̄ = ðó(p̃).

By s(ô̄) <̃ s̄ we have s̃ <̃ s(ó) and hence Ls̃{ãó ∪ p̃} bounded in ó, say by â .
But this bound is preserved by ðóô and by ð (hence by ðó); therefore, we get that
Ls(ô̄){ᾱ ∪ pô̄} ∩ ô̄ is bounded by ðó(â) < ô̄ which contradicts the definition of s(ô̄)
and pô̄ .
To see that ð−1 : Ls(ô̄) → Ls(ô) is a morass map and hence ô̄ J ô with ãô̄ = ᾱ, we

need to show, that ð−1 preserves Σ1; the other properties follow by definition, for
pô and the predecessor of ô (if any) note that domð contains the ranges of morass
maps as subsets.
As a collapsing map, ð−1 is structure-preserving. Σ1 is preserved upwards. Now
assume, we have a Σ1-formula in Ls(ô). It is preserved downwards by morass maps
ðóô for ó ∈ {ó J ô|ãó < ᾱ} and hence has a witness in rangeðóô ⊂ domð.
For the proof of (M4) let õ ∈ Sãô with ô < õ. Let α < ãô be arbitrary and ç
between ô and õ s. t. Ls(ô) ∈ Lç and Lç |= ZF

−. Let X ≺ Lç s. t. Ls(ô){α ∪ pô} ∪
{ô} ⊂ X and ᾱ := X ∩ ãô ∈ ãô . Let ð : X ∼= Lç̄, ó = ð(ô), and p̄ = ð(pô). So ó is a
morass point and ð−1↾Ls(ó) : Ls(ó) → Ls(ô) is elementary and, therefore, a morass
map. Hence ó J ô and α ≤ ãó = ᾱ.
For (M5) consider î ∈ ô ∈ S1 and Ls(ô) = Ls(ô){ãô ∪ pô}. By cofinality there
exists a ó J ô with î ∈ Ls(ô){ãó ∪ pô} = rangeðóô.

For (M6) let s̃ =≤̃-lub{ðóô(t)|t <̃ s(ó)}. We show Ls̃{ãô ∪ pô} ∩ ô = ë: First
assume ë0 ∈ ë; then there is ë1 with ë0 < ë1 < ë and ë1 = ðóô(ë̄1). Then
Ló |= card ë̄1 ≤ ãó , hence there exists f̄ ∈ Ló s. t. f̄ : ãó → ë̄1 is onto, in particular
f̄ ∈ Ls(ó){ãó ∪ pó}. As s(ó) is a limit location, we have f̄ ∈ Lt{ãó ∪ pó} for some

t <̃ s(ó). Let f = ðóô(f̄) ∈ Lðóô (t){ãô ∪ pô}, then f : ãô → ë1 is onto, so ë0 ∈
rangef, hence ë0 ∈ Ls̃{ãô ∪ pô}. On the other hand assume ë0 ∈ Ls̃{ãô ∪ pô} ∩ ô,
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then there is a t <̃ s(ó) s. t. ë0 ∈ Lðóô(t){ãô ∪ pô}. But Lt{ãó ∪ pó} ∩ ó is bounded

below ó (by â say), since t <̃ s(ó), hence also Lðóô (t){ãô ∪pô}∩ ô is bounded below
ô, namely by ðóô(â) < ë. So ë0 ∈ ë as required.
Let ð : Ls̃{ãô ∪ pô} ∼= Ls0 and p0 = ð(pô) (then ë = ð(ô)). Note that ë ∈ Sãô .
We show Ls0{ãô ∪ p0} = Ls(ë){ãô ∪ pë}:

s0 = s(ë): First note that s0 singularizes ë, so s(ë) ≤̃ s0. Assume for contradic-
tion that s0 is strictly greater. As pë ∈ Ls0{ãô∪p0}, we havepë ∈ Ls1{ãô∪p0}where
s(ë) <̃ s1 <̃ s0 (and where α(s(ë)) belongs toLs1{ãô ∪p0} in case α(s(ë)) < α(s0);
of course we are using the fact that s0 is a limit location). Since Ls(ë){ãô ∪ pë} ⊂

Ls1{ãô ∪ p0}, s1 singularizes ë. By definition of s0, ð
−1(s1) <̃ s̃ . Further, by

definition of s̃ , there is a t <̃ s(ó) s. t. ð−1(s1) ≤̃ ðóô(t). By minimality of s(ó),
Lt{ãó∪pó}∩ó is bounded below ó (by â say). HenceLðóô (t){ãô∪pô}∩ô is bounded

below ô (by ðóô(â)). Since ð−1(s1) ≤̃ ðóô(t), Lð−1(s1){ãô ∪pô}∩ ô is bounded below
ô (still by ðóô(â)). Apply ð: Ls1{ãô ∪ p0} ∩ ë is bounded below ë (by ð ◦ ðóô(â)),
contradiction.
p0 = pë: Ls(ë) = Ls(ë){ãô ∪ p0} is cofinal in ë (as above using s0 = s(ë)).
Therefore, pë≤

∗ p0. Assume for contradiction that p0 is strictly greater, then using
p0 ∈ Ls(ë) = Ls(ë){ãô ∪ pë} and applying ð

−1 we get ð−1(pë)<
∗ pô ∈ Ls̃{ãô ∪

ð−1(pë)} ⊂ Ls(ô){ãô ∪ ð
−1(pë)}. Therefore, Ls(ô) = Ls(ô){ãô ∪ pô} = Ls(ô){ãô ∪

ð−1(pë)} contradicting the minimality of pô.
Let ð0 = ð ◦ ðóô : Ls(ó) → Ls(ë). ð0 is well-defined as rangeðóô = Ls̃{ãó ∪ pô} ⊂
domð. Further, ð0(ó) = ë and ð0(pó) = pë. Since ë is a ≺-limit, property 3 of
the morass map definition is vacuous. Finally, ð0 is Σ1-preserving: First note that
ð0 is structure-preserving. Σ1 formulas are preserved by ð0 upwards, by ð upwards
(from Ls(ë) to Ls̃{ãô ∪ pô}), and by ðóô downwards, hence by ð0 both ways. Now
ð0 = ðóë is a morass map, hence ó J ë as required.
For (M7) we first show that Ls(ô){α ∪ pô} ∩ ãô = α, clearly α is a subset of the
left side. For the other direction note that since we assume ô = sup rangeðóô↾ó, the
argument for (M6) shows that s(ô) =≤̃-lub{ðóô(t)|t <̃ s(ó)}. Let î ∈ Ls(ô){α ∪
pô} ∩ ãô , then there is s0 <̃ s(ó) s. t. î ∈ Lðóô(s0){α ∪ pô} ∩ ãô . Working downstairs

we have that Ls0{ãó ∪ pó} does not collapse ó (by minimality of s(ó) >̃ s0). Let
ð0 : Ls̄ = Ls̄{ãó ∪ p̄} ∼= Ls0{ãó ∪ pó} where p̄ = ð

−1
0 (pó). Then ó

′ := ð−10 (ó) < ó.
Ls̄ cannot collapse ó ′, else there would be a map from ãó onto ó ′ and hence a map
from ãó ontoó inLs0{ãó∪pó}. Therefore,Ls̄ |= Cardó

′ andLó |= ¬Cardó ′, hence
Ls̄ ∈ Ló . Now, ó is a≺-limit, so there is ó̄ ≺ ó s. t. Ls̄ , p̄ ∈ Ls(ó̄) = Ls(ó̄){ãó ∪pó̄}.
Using Lemma 1.8 (type preservation) we shift the isomorphism ð0 to Ls(ô):

“ðóô(ð0)”: Lðóô (s̄){ãô ∪ ðóô(p̄)}
∼= Lðóô (s0){ãô ∪ pô}.

We started with î ∈ Lðóô(s0){α ∪ pô} ∩ ãô . Now we apply the isomorphism
and infer î ∈ Lðóô (s̄){α ∪ ðóô(p̄)} ∩ ãô (since î < ãô it is not moved). Further,
Lðóô (s̄){α ∪ ðóô(p̄)} ∩ ãô ⊂ Ls(ðóô (ó̄)){α ∪ pðóô(ó̄)} ∩ ãô = α, where the former holds

since ðóô(p̄) ∈ Lðóô (ó̄){ãó ∪ pðóô(ó̄)} and ðóô(s̄) <̃ s(ðóô(ó̄)) and the latter holds by
ó̄ J ȭ J ðóô(ó̄) for some ȭ ∈ Sα . Hence î ∈ α as desired.
Now we define ð : Ls(ô){α ∪ pô} ∼= Ls′{α ∪ p′} = Ls′ where p′ := ð(pô),

õ := ð(ô). By the previous argument we have ð−1(α) = ãô . Using the system of
morass maps we have õ ∈ Sα .
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We have to show s ′ = s(õ): Ls′ = Ls′{α ∪ p′} collapses õ, hence s(õ) ≤̃ s ′.
Assume for a contradiction that s(õ) <̃ s ′. Since põ ∈ Ls′ we have that there is
an s0 s. t. s(õ) ≤̃ s0 <̃ s ′ and põ ∈ Ls0{α ∪ p′}. Since ðóô and ð map locations
cofinally this is also true for ð0 := ð ◦ðóô (locations <̃ s(ó) are mapped to locations
<̃ s ′). Hence without loss of generality, s0 = ð0(s̄0) where s̄0 <̃ s(ó). Therefore,
Ls(ó) |= “Ls̄0{ãó ∪ pó} is bounded below ó”. This is preserved by ðóô : Ls(ô) |=
“Lðóô (s̄0){ãô ∪ pô} is bounded below ô”. Finally, this is preserved by ð downwards:

Ls′ |= “Ls0{α ∪ p′} is bounded below õ”, contradicting the definition of s(õ) ≤̃ s0.
Finally, we have to show that ð−1 is Σ1-preserving, then ð−1 = ðõô and ðóõ =
ð−1õô ◦ ðóô . First note that ð is structure-preserving.
Σ1 is preserved upwards by ð−1 (i.e., from Ls(õ) to Ls(ô){α ∪ põ}). For the other
direction, assume Ls(ô) |= ∃x φ (x,~r), where φ is quantifier-free and ~r ∈ domð =

Ls(ô){ãõ ∪ pô}; we have to show Ls(õ) |= ∃x φ
(
x, ð(~r)). As before, fix s0 <̃ s(ó)

s. t. ~r ∈ Lðóô (s0){ãõ ∪ pô} and w ∈ Lðóô (s0){ãô ∪ pô} where w is the least witness for
∃x φ (x,~r). Our aim is to show that ãô can be replaced by ãõ in the latter hull.
Let ð1 : Ls0{ãó ∪pó}

∼= Ls̄ = Ls̄{ãó ∪ p̄}where p̄ = ð1(pó). As above using type
preservation, we shift ð1 to the ãô -level, let’s call the resulting map ð2 : Lðóô(s0){ãô ∪
pô} ∼= Lðóô (s̄){ãô ∪ ðóô(p̄)}. Then we have ð2(~r) ∈ Lðóô(s̄){ãõ ∪ ðóô(p̄)} and ð2(w) ∈
Lðóô (s̄){ãô ∪ ðóô(p̄)}: Lðóô(s̄) |= φ(ð2(w), ð2(~r)).
Further, also as above, there is a ó̄ ≺ ó s. t. Ls̄ ∈ Ló̄ with ó̄ J ȭ J ô̄ := ðóô(ó̄)
and ð2(~r), ðóô(s̄), ðóô(p̄) ∈ rangeðȭô̄ . Therefore, ð2(w) ∈ rangeðȭô̄ and hence by
ðȭô̄ being a morass map, we can replace ãô by ãõ in “ð2(w) ∈ Lðóô (s̄){ãô ∪ ðóô(p̄)}”.

Applying ð−12 we get w ∈ rangeðõô . This proves Σ1-preservation. ⊣

REFERENCES

[1] Keith J. Devlin, Constructibility, Springer, 1984.
[2] Sy-D.Friedman andPeterKoepke,An elementary approach to the fine structure ofL,The Bulletin

of Symbolic Logic, vol. 3 (1997), pp. 453–468.
[3] Sy-D. Friedman and Boris Piwinger,Hyperfine structure theory and gap 2 morasses, to appear.
[4] Tomas Jech, Set Theory, Springer, 2003.
[5] Ronald B. Jensen, The fine structure of the constructible hierarchy,Annals of Mathematical Logic,

vol. 4 (1972), pp. 229–308.
[6] Boris Piwinger, Silver machines, Diplom thesis, 1997.
[7] ,Mind the gap, hyperfine structure theory and morasses, Ph.D. thesis, University of Vienna,

2004.
[8] Thomas Lloyd Richardson, Silver machine approach to the constructible universe, Ph.D. thesis,

University of California, Berkeley, 1979.

UNIVERSITY OF VIENNA
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