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ABSTRACT

We give a self-contained proof of the GÖDEL completeness
theorem based on “natural language”. Utilizing a naive under-
standing of language, the semantics of natural language for-
mulas is intuitively clear, which makes the correctness of our
natural deduction style proof calculus immediate. The con-
verse direction, including a HENKIN-style model construction,
is more involved, but hopefully “natural” as well.

1 INTRODUCTION

One of KURT GÖDEL’s great achievements is the completeness theorem
for first-order logic, which he proved in his 1929 Vienna doctoral disser-
tation Über die Vollständigkeit des Logikkalküls (published as [2]). The
completeness theorem can be seen as the fundamental theorem of mathe-
matical logic, showing the universality of the mathematical proof method.
Mathematical proofs consist (in principle) of a sequence of elementary log-
ical steps. The completeness theorem states that every universally valid
statement is formally provable.

The completeness theorem also has a bearing on the famous GÖDEL

incompleteness theorems [3]. The incompleteness of theories like PEANO

arithmetic can only be appreciated in contrast to the completeness of the
underlying logic.

At the University of Bonn, the GÖDEL centenary was commemorated
by two special lectures of the Dies Academicus in May 2006. Prof. Dr.
RAINER STUHLMANN-LAEISZ gave a talk “Unbeweisbare Wahrheiten -
zum 100. Geburstag von Kurt Gödel” on the GÖDEL incompleteness the-
orems. The current paper is an elaboration of the second lecture which
presented the GÖDEL completeness theorem to a general academic audi-
ence.

∗Dedicated to Prof. Dr. RAINER STUHLMANN-LAEISZ on the occasion of his 65. birth-
day
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2 EXAMPLE: THE IRRATIONALITY OF
√

2

In ordinary, “semi-formal” mathematical proofs technical formulas are con-
nected by natural language phrases which give information on logical de-
pendencies, on proof methods, and on intuitions intended to enable the
reader to supply the missing details. By filling in gaps and normalizing
the language one arrives at proofs where the individual steps are of a very
elementary nature.

Let us consider a standard proof of the irrationality of
√

2. The proof
presupposes some elementary facts from arithmetic which we do not state
in detail. We number the lines of the proof for later reference.

Theorem 1
√

2 is irrational.

Proof
1 Assume

√
2 is rational.

2 Assume that
√

2 = a
b , and that

3 a is even implies that b is odd.
4 2 = a

b · a
b = a·a

b·b .
5 2 ·b ·b = a ·a.
6 Case 1. Assume a is odd.
7 2 ·b ·b is even.
8 a ·a is even.
9 a ·a is odd.
10 Contradiction.
11 Thus
12 a is odd implies a contradiction.
13 Case 2. Assume a is not odd.
14 a is even.
15 b is odd.
16 b ·b = a

2 ·a. b ·b is odd. a
2 ·a is even.

17 Contradiction.
18 Thus
19 a not odd implies a contradiction.
20 Contradiction.
21 Thus
22

√
2 is rational implies a contradiction.

23
√

2 is not rational. �
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Most arguments in this proof are of a purely formal nature, i.e., they
only depend upon the syntactic structure of assumptions and conclusions
regardless of the semantic meaning of the statements:

− Line 7: “2 · b · b is even” follows from the number theoretic back-
ground assumptions. The next line 8: “a ·a is even”, can be produced
from lines 7 and 5 simply by replacing 2 · b · b by a · a. This corre-
sponds to the transformation

2 ·b ·b is even 2 ·b ·b = a ·a
a ·a is even

.

Generally this substitution rule can be expressed as

t has the property A t = t ′

t ′ has the property A
.

− Line 10: “contradiction” follows from lines 8 and 9, since one is the
negation of the other when we take “odd” to be an abbreviation of
“not even”. The contradiction rule can be expressed by

A not A
contradiction

.

− Line 15: “b is odd” is a logical consequence of line 14: “a is even”,
and line 3: “a is even implies that b is odd”. This uses the rule modus
ponens

A A implies B
B

.

In the next section we shall exhibit a proof calculus consisting of similar
rules.

Usually in the course of a proof, assumptions are introduced to carry out
“subproofs” which depend on those extra assumptions. Consider the case
distinction of the example:

− Line 6: “Case 1. Assume a is odd” introduces an assumption lead-
ing to line 10: “contradiction”. The subargument is then closed by
the keyword “thus” in line 11. The subsequent line 12, draws the
conclusion “a is odd implies a contradiction” from the subargument.

The “assume-thus” construct structures the proof into (nested) (sub-)argu-
ments. As in the example one may visualize this structure by indentations:
“Assume A” starts an indentation and adds A to the assumptions usable in
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the course of the subargument. “Thus” finishes a subargument and also the
present indentation. Directly after the subargument one may introduce an
implication “A implies B” where B is the last formula of the subargument
before “Thus”. After that the subargument becomes invisible for the further
course of the argument.

3 A NATURAL MATHEMATICAL LANGUAGE

We give a formalization of the mathematical language used in the
√

2-
example. We shall work with natural language constructs like “for all x”
instead of introducing formal quantifiers “∀x”. In this way the meaning
or the semantics of formulas becomes self-explanatory. For the purposes
of this paper we keep the language small, allowing for small definitions,
a small proof calculus, and a small number of cases in the completeness
proof. On the other hand one may imagine an extended mathematical lan-
guage built on similar principles, which models many common phrases,
and an associated rich proof calculus, which contains common figures of
argument [6]. The NaProChe project [7] is developing that approach.

Our language is based on a sufficiently large reservoir of basic symbols.
Since functions can be modeled by relations, we can omit functions from
the language. Also equality (=) can be seen as another binary relation. So
we assume that for every natural number n there is a countable supply of
n-ary relations available which we denote by R(x1, . . . ,xn), S(x1, . . . ,xn), . . .

For simplicity we also restrict the number of logical connectives. Since
“A and B” is equivalent to “not(not A or not B)” one obtains “and” from
“not” and “or”; since “A or B” is equivalent to “not A implies B” one obtains
“or” from “not” and “implies”. So we only allow “not” and “implies” as
propositional connectives. Since “there is x such that A” is equivalent to
“not for all x holds not A” we can restrict to the universal quantifier “for
all”.

Definition 1 The collection of (natural language) formulas is defined by:

− every relational formula R(x1, . . . ,xn) is a formula; for specific rela-
tions like “odd” or “=” one may also write as usual “x is odd” or
“x < y” instead of R(x) or R(x,y);

− “contradiction” is a formula;

− if A is a formula then “not A” is a formula;
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− if A and B are formulas then “(A implies B)” is a formula;

− if A is a formula then “for all x (holds) A” is a formula.

Brackets in formulas may be omitted according to the usual conventions.

Any natural language formula is making statements about a finite set of
free, or global variables. This set is defined recursively.

Definition 2 For a formula A define the set free(A) of free variables of A
by recursion:

− free(R(x1, . . . ,xn)) = {x1, . . . ,xn};

− free(contradiction) = /0;

− free(notA) = free(A);

− free(A impliesB) = free(A)∪ free(B);

− free(forallxholdsA) = free(A)\{x}.

Thus the “local” variable x of the quantification “for all x holds A” is not
free after the quantification. If Φ is a set of formulas then free(Φ) is the set
of all variables which occur free in some formula in Φ.

E.g., the transitivity axiom

for all x for all y for all z (x < y implies (y < z implies x < z))

has no free variable since all occurring variables are quantified.
Mathematical formulas can be interpreted in suitable structures. Given a

structure (A,<A) with a binary relation <A on A one can canonically check
whether the above transitivity axiom holds in (A,<A).

Definition 3 A formula is called universally valid if it holds in all suitable
structures.

The GÖDEL completeness theorem states that every universally valid for-
mula is formally provable.
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4 PROOFS

We work with a GENTZEN-style natural deduction calculus [1], using a
small number of basic proof rules.

Definition 4 The basic proof rules are given by the rules of

a) contradiction
A not A
contradiction

b) proof by contradiction
not A implies contradiction
A

c) modus ponens
A implies B A
B

d) instantiation
for all x holds A(x)
A(y)

e) generalization
A(y)
for all x holds A(x)

Note that the first four rules are correct in the following sense: if the as-
sumptions of the rule hold in some structure then the conclusion also holds
in the structure. The situation is more complex for the generalization rule
which can only be applied in certain proof situations.

Definition 5 A (mathematical) text is a sequence T = S1 . . .Sl of state-
ments where each statement is of the form Sk =“Assume Ak.”, Sk =“Ak.”,
or Sk =“Thus” for some formula Ak.

The proof of the irrationality of
√

2 is basically a mathematical text in the
sense of this definition. A text is a proof if every line within the text is for-
mally justified, e.g., that it can be generated by a proof rule from previous
lines which are “visible” to the present line. Visibility can be calculated via
indentation depths: a previous line is visible if it is not “blocked” by some
“Thus” which has the same indentation level as that previous line. This is
formalized by the following definitions.

Definition 6 Let T = S1 . . .Sl be a mathematical text. Then define:

a) For k 6 l let

indT (k) = |{ j 6 k | S j starts with “Assume”}|−
|{ j < k | S j starts with “Thus”}|
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be the (indentation) depth of Sk in T . It is given by the difference between
the numbers of previous assumptions (“Assume”) and the previous con-
clusions (“Thus”).

b) The text T is properly indented if indT (k) > 0 for all k 6 l, i.e., we
cannot have more conclusions than assumptions.

c) For i < k 6 l the line number i is visible from line number k if there is
no j, i 6 j < k such that S j =“Thus” and indT (i) = indT ( j). In case i
is visible from k we also say that the formula Ai and the free variables
of Ai are visible from k.

Definition 7 Let T = S1 . . .Sl be a mathematical text. Let Φ be a set of
formulas.

a) T is a (formal) proof from Φ if T is properly indented, and for all k 6 l
one of the following holds:

i. Sk =“Assume Ak.”, or Sk =“Thus”; this means that we can intro-
duce an assumption or try to conclude a subargument at any place
in a proof;

ii. Sk =“Ak.” where Ak ∈ Φ or Ak = Ai, i<k where the line Si is visi-
ble by Sk; this means that the “axioms” contained in Φ or visible
statements established previously can be used freely;

iii. Sk =“Ak.” where Ak can be produced by one of the basic proof rules
from formulas which are elements of Φ or which are visible from k;
moreover, if Ak is of the form Ak =“for all x holds A(x)” and is
produced by the rule of generalization from the formula A(y), we
also require that the variable y 6∈ free(Φ) and that y is not visible
from k as a free variable; so the generalization from A(y) to “for
all x holds A(x)” is possible if y was a “general” variable without
further specifications in Φ or previous relevant formulas;

iv. Sk =“Ai implies Ak−2” where Sk−1 =“Thus” and i 6 k− 2 is the
minimal line number which is visible from k− 1; we say that Sk is
produced by the rule of implication; the result of a subargument
from the assumption Ai to the conclusion Ak−2 is the implication
“Ai implies Ak−2”.

b) T is a (formal) proof of A from Φ if A = Al and indT (l) = 0; the latter
means that all subarguments have been concluded.
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c) A is (formally) provable from Φ if there exists a proof of A from Φ.

d) A is (formally) provable if it is provable from the empty set /0, i.e., with-
out further hypothesis.

We demonstrate this type of (formal) proof by proving some derived rules
which may also be used conveniently in further proofs.

Proposition 1 Let A,B be formulas. Then A is provable from the formulas
“B implies A”, “(not B) implies A”. This justifies the use of the derived
rule of case distinction:

B implies A not B implies A
A

.

Proof The following is a proof of A from F1 = “B implies A” and F2 =
“not B implies A”. We also state the rules which are applied and the local
depths and hypotheses.

k Statement Rule . . . with hypothesis . . . indT (k) visible
lines

1 Assume not A. - 1 -
2 Assume not B. - 2 1
3 A. modus ponens w. 2, F2 2 1,2
4 Contradiction. contradiction w. 1, 3 2 1,2,3
5 Thus - 2 1,2,3,4
6 not B implies implication 1 1

a contradiction.
7 B. proof by contradiction w. 6 1 1,6
8 A. modus ponens w. 7, F1 1 1,6,7
9 Contradiction. contradiction w. 1, 8 1 1,6,7,8
10 Thus - 1 1,6,7,8,9
11 not A implies implication 0 -

a contradiction.
12 A. proof by contradiction w. 11 0 11

�

Proposition 2 Let A be a formula. Then A is provable from the formula
“contradiction”. This justifies the use of the derived rule of ex falsum liben-
ter:

contradiction
A

.
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Proof The following is a formal proof of A from F = “contradiction”.

k Statement Rule . . . with hypothesis . . . indT (k) visible
lines

1 Assume not A. - 1 -
2 Contradiction. Copying F 1 1
3 Thus - 1 2
4 not A implies implication 0 -

a contradiction.
5 A. proof by contradiction with 4 0 4

�

A formal proof as defined in Definition 7, though formulated in a “poor”
vocabulary and grammar, can be read as a proof in the ordinary mathemat-
ical sense. Since mathematical proofs prove universally valid statements,
we obtain the correctness theorem:

Theorem 2 If a formula A is provable then it is universally valid.

5 THE COMPLETENESS THEOREM

GÖDEL’s completeness theorem is the converse of the correctness theorem.
Our proof uses the approach of L. HENKIN [5] and G. HASENJAEGER [4].1

Given a formula which is not provable build a HENKIN set of formulas (de-
noted by H in the subsequent proof) which describes a structure in which
A fails. Then build such a structure S out of the terms of the language.

Theorem 3 If a formula A is universally valid it is provable.

Proof Assume that A is not provable. It suffices to show that A is not
universally valid by constructing a structure S in which A does not hold.

We shall recursively define a sequence A1,A2,A3, . . . of formulas which
describe the structure S . Along the recursion we maintain that A is not
provable from A1, . . . ,An. To extend the sequence, we postulate two exten-
sion properties: by (1), every formula can be decided positively or nega-
tively in the construction; by (2), we can add a counterexample to every
universal formula which is not valid.

1Prof. Dr. Gisbert Hasenjaeger (1919 – 2006) prededed Prof. Dr. Rainer Stuhlmann-
Laeisz from 1962 until 1984 on the chair for logic and foundations at the University of
Bonn.
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(1) Assume that A is not provable from A1, . . . ,An and let B be a for-
mula. Then A is not provable from A1, . . . ,An,B, or A is not provable from
A1, . . . ,An,“not B”.
Proof . Assume not. Assume that the mathematical text Proof1, A is a
proof of A from A1, . . . ,An,B and that Proof2, A is a proof of A from
A1, . . . ,An,“not B”. Then the following combined text is a proof of A from
A1, . . . ,An:

k Statement Rule ... with hypothesis ...
1 Assume B. -
2 Proof1 given
3 A given
4 Thus -
5 B implies A implication
6 Assume not B -
7 Proof2 given
8 A given
9 Thus -
10 not B implies A implication
11 A case distinction with 5, 10

This contradicts the initial assumption. qed(1)

(2) Assume that A is not provable from

A1, . . . ,An,“not for all x holds B(x)”

and that y is a variable which does not occur in A1, . . . ,An, or in the formula
“not for all x holds B(x)”. Then A is not provable from

A1, . . . ,An,“not for all x holds B(x)”,“not B(y)”.

Proof . Assume not and assume that the text Proof1, A is a proof of A from

A1, . . . ,An,“not for all x holds B(x)”,“not B(y)”.

Then the following combined text is a proof of A from A1, . . . ,An, and
“not for all x holds B(x)”:
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k Statement Rule ... with hypothesis ...
1 Assume B(y). -
2 For all x holds B(x). generalization with 1
3 Contradiction. contradiction with 2 and

“not for all x holds B(x)”
4 A ex falsum libenter with 3
5 Thus -
6 B(y) implies A. implication
7 Assume not B(y). -
8 Proof1 given
9 A. given
10 Thus -
11 not B(y) implies A. implication
12 A. case distinction with 6, 11

This contradicts the initial assumption. qed(2)

The collection of formulas is countable since every formula is basically a
finite sequence of symbols taken from a countable or even finite alphabet.
Let F1,F2, . . . be an enumeration of all formulas.

Define a sequence A1,A2, . . . of formulas by recursion. At odd stages
1,3, . . ., we ensure that every formula is decided by the sequence; at even
stages 2,4,6, . . ., we care about quantifiers. So let 2m−1 be an odd number,
where m > 1, and assume that A1, . . . ,A2m−2 are defined. We shall define
A2m−1 and A2m.

If A is not provable from {A1, . . . ,A2m−2,Fm}, set A2m−1 = Fm; otherwise
set A2m−1 = “not Fm”. Thereafter, if A2m−1 is of the form “not for all x holds
B(x)”, choose a variable y which does not occur in {A0, . . . ,A2m−1} and set
A2m = “not B(y)”; otherwise set A2m = A2m−1.

We prove several claims about the set of formulas H = {A1,A2, . . .}
which will correspond to the fact that the sequence describes a certain struc-
ture S as desired.

(3) For all n, A is not provable from {A1, . . . ,An}.
Proof . This follows immediately from the construction and properties (1)
and (2). qed(3)

(4) For every formula B, “not B” ∈ H iff B 6∈ H .
Proof . Consider B = Fm. Assume that “not B” ∈ H . Assume for a con-
tradiction that also B ∈ H . Choose a natural number n such that B, “not
B”∈ {A1, . . . ,An}. Then A is immediately provable from {A1, . . . ,An} by
the rules of contradiction and ex falsum libenter. But this contradicts (3).
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Conversely assume that “not B” 6∈ H . Then by construction of H ,
A2m−1 = Fm = B ∈ H . qed(4)

(5) Let B be provable from H . Then B ∈ H .
Proof . Let Proof1, B be a proof of B from H . Assume B 6∈ H . By (4),
“not B” ∈ H . Then the following text is a proof of A from H :

k Statement Rule ... with hypothesis ...
1 Proof1 given
2 B. given
3 not B. copying “not B” out of H

4 Contradiction. contradiction with 2, 3
5 A. ex falsum libenter with 4

This contradicts (3). qed(5).

(6) “not A”∈ H .
Proof . By (3), A 6∈ H . The claim follows by (4). qed(6)

(7) “contradiction”6∈ H .
Proof . If “contradiction”∈ H , say “contradiction”= An then A is provable
from {A1, . . . ,An} by the ex falsum libenter rule, which contradicts (3).
qed(7)

(8) For all formulas B and C, we have “B implies C”∈ H iff (B ∈ H

implies C ∈ H ).
Proof . Assume “B implies C”∈ H and assume that B ∈ H . Then C is
provable from H . By (5), C ∈ H , and thus B ∈ H implies C ∈ H .

Conversely assume that “B implies C”6∈ H . By (4), “not (B implies
C)”∈ H . From “not (B implies C)” one can prove B and “not C”. By (5),
B ∈ H and C 6∈ H . Hence B ∈ H does not imply C ∈ H . qed(8)

(9) For all formulas B(x) we have: “for all x holds B(x)”∈ H iff for all
variables y holds B(y) ∈ H .
Proof . Assume that “for all x holds B(x)”∈ H . Then for all variables y,
B(y) is provable from H by the rule of instantiation. By (5), B(y) ∈ H .

Conversely assume that “for all x holds B(x)”6∈ H . By (4), “not for all
x holds B(x)”∈ H . Choose an index m such that Fm =“not for all x holds
B(x)”. By construction, A2m−1 = Fm and A2m =“not B(y)”∈ H for some
variable y. By (4), B(y) 6∈ H . qed(9)

Now define the structure S = (S, . . .) as follows. Let S be the set of all vari-
ables occurring in A0,A1, . . .. For every n-ary relation symbol R occurring
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in A0,A1, . . . define an n-ary relation RS on S by

RS(x1, . . . ,xn) iff R(x1, . . . ,xn) ∈ H .

(10) Let F be a formula. Then F holds in S iff F ∈ H .
Proof . We prove the claim by induction on the length of F as a sequence
of symbols. So assume that the claim holds for all shorter F ′.
Case 1. F is a relational formula of the form F = R(x1, . . . ,xn).
Then by definition of the structure S , F holds in S iff RS(x1, . . . ,xn) iff
R(x1, . . . ,xn) ∈ H .
Case 2. F =“contradiction”.
Then F does not hold in S . Also, by (7), F 6∈ H .
Case 3. F = “not B”.
Then by the inductive assumption and (4),

F holds in S

iff B does not hold in S

iff B 6∈ H

iff “not B” ∈ H .
Case 4. F =“B implies C”.
Then by the inductive assumption and (8),

“B implies C” holds in S

iff B holds in S implies C holds in S

iff B ∈ H implies C ∈ H

iff “B implies C”∈ H .
Case 5. F =“for all x holds B(x)”.
Then by the inductive assumption and (9),

“for all x holds B(x)” holds in S

iff for all variables y ∈ S, B(y) holds in S

iff for all variables y ∈ S, B(y) ∈ H

iff “for all x holds B(x)”∈ H . qed(10)
By (10) and (6), the initial formula A does not hold in S . Thus A is not

universally valid. �

6 GENERAL REMARKS

The GÖDEL completeness theorem is sometimes considered to be of lesser
importance than the far reaching incompleteness theorems. Technically,
however, the completeness theorem is essential for the incompleteness the-
orem, since it yields distinguished, complete calculi for which one then can
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examine incompleteness and consistency questions. Moreover, due to the
effective nature of the proof calculi, the HENKIN-style model construction,
and its universal applicability to all first-order theories the completeness
theorem has a broad spectrum of “positive” applications which may be even
wider than the limitative consequences of the incompleteness theorem. We
list a few application areas.

Mathematical applications: The completeness theorem and its proofs
have immediate consequences in first-order logic like the compactness the-
orem or the LÖWENHEIM-SKOLEM theorems, which can be used to con-
struct structures with particular or unusual properties. This has many alge-
braic and other applications, including nonstandard analysis.

Mathematical correctness and proof checking: The completeness theo-
rem provides an absolute criterion for the correctness of proofs. A mathe-
matical proof is correct if and only if it can (in principle) be reformulated as
a formal proof. Although one usually carries out informal or “semi-formal”
proofs, one may if there is any doubt formalize and atomize arguments in
such a way that proofs or parts thereof become fully formal and may also
be checked by computer (automatic proof checking).

Formalization in other areas: The success of the formal method in math-
ematics has provided motivations for other sciences to formalize their state-
ments and methods as far as possible. This corresponds to the tendency to
present the world by data which can be operated on by algorithms.

Automatic theorem proving. In principle all universally valid statements
A can be proved automatically: enumerate all possible (proof) texts and
check automatically whether the enumeration contains a proof of A. The
success of this method is guaranteed by the completeness theorem. In gen-
eral this method is not feasable due to the enormeous size of the set in which
the proofs are searched for. But for limited domains there are now practical
automatic theorem provers.

Artificial intelligence: The beginnings of artificial intelligence were char-
acterized by the logical formalization of the state of the environment in
question and by applying automatic proving techniques to answer ques-
tions about the environment. Due to the complexity problems mentioned
above, this approach is meanwhile considered to be unrealistic.

Non-classical logics. First-order predicate logic is considered to be an
optimal logic in the sense that it has a complete, decidable proof calculus
which connects syntax and semantics. Many other languages and logics
have been designed and studied on the pattern of first-order logic: modal
logics, temporal logics, algorithmic logics.
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