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Abstract

We give a new proof of D. Martin’s theorem that Π1
1–sets of re-

als are determined if there is a measurable cardinal. The argument

is based on representing Π1
1–sets using systems of elementary embed-

dings of models of set theory.

1 Games on Trees

We consider games whose positions are finite sequences and where two players
called I and II alternately try to lengthen a position by one move. Thereby,
they determine a maximal path through the tree of positions. Player I’s aim
is to get this path into a fixed winning set while player II tries to prevent
this.
Accordingly we define: A tree is a nonempty set of finite sequences, T ⊆ <ωV ,
closed under the formation of initial segments. T is partially ordered by ⊆. A
path through T is a sequence p of length ≤ ω such that ∀n < ω : p ↑ n ∈ T ;
p is maximal if there is no path through T properly extending p. A maximal
path through T is also called a play on T . A play p = (a0, a1, a2, a3, . . .) is
sometimes represented in the form

I a0 a2 . . .
II a1 a3 . . .

to indicate that I makes the move a0, then II answers a1, I makes the move
a2, etc. Let [T ] denote the set of plays of T .
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A game G(T,A) on T is given by a set A ⊆ [T ] of winning plays for IẆe say
that I wins the play p in the game G(T,A), if p ∈ A; II wins if p ∈ [T ] \ A.
The obvious question then is whether one of the players possesses a winning
strategy in this game. A strategy on T is a function σ : T → T such that

∀t ∈ T (t is not maximal in (T,⊆) ⇒ (σ(t) ⊇ t ∧ |σ(t)| = |t| + 1)),

where |t| denotes the length of the finite sequence t. A strategy σ : T → T

is a winning strategy for I in the game G(T,A), if

∀p ∈ [T ] [(∀2n + 1 ≤ |p|(p ↑ 2n + 1 = σ(p ↑ 2n))) ⇒ p ∈ A].

Similarly, σ is a winning strategy for II if

∀p ∈ [T ][(∀2n + 2 ≤ |p|(p ↑ 2n + 2 = σ(p ↑ 2n + 1))) ⇒ p ∈ [T ] \ A].

I and II cannot both have winning strategies in G(T,A). G(T,A) is deter-

mined, if one of the players has a winning strategy in G(T,A).
We are mainly interested in games on the real numbers. Here, T is the tree
<ωω of finite sequences of natural numbers. We identify [T ] = ωω with the
set R of real numbers. A set A ⊆ R is called determined if G(A)= G(<ωω,A)
is determined. Π1

1–determinacy is the statement that every Π1
1–set of reals

is determined. The determinacy of pointclasses like Π1
1 has profound impli-

cations for the descriptive set theory of projective sets (see Moschovakis [5]).
In the course of this article we shall prove the following theorem of D. Martin
[3]:
(1.1) Theorem. If there is a measurable cardinal then Π1

1–determinacy

holds.

The original proof employed indiscernibles derived from the partition prop-
erties of measurable cardinals. The argument given here emphasizes the view
that measurable cardinals are best characterized by elementary embeddings
of the universe, as are many large cardinals above measurables. Correspond-
ingly, we shall represent Π1

1–sets by embedding normal forms constructed
from iterated ultrapowers of the universe and natural embeddings among
them.
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2 An Auxiliary Game

Consider the game G(A)= G(<ωω,A), where A ⊆ R. An auxiliary game
G∗(A) will be defined by adding some ”side moves“ for I and a system of
rules such that if I satisfies all the rules then I has also produced a winning
play for the original game G(A). The crucial point will be that G∗(A), due
to its simple (topological) nature, will be determined. Let T ∗ consist of all
finite sequences of the form

((a0, f0), a1, (a2, f2), a3, . . . , (a2n, f2n))

or
((a0, f0), a1, (a2, f2), a3, . . . , (a2n, f2n), a2n+1)

such that (2.1) – (2.3) hold:

(2.1) aj ∈ ω, for j < 2n + 2;

(2.2) f2j : R → θ, for j ≤ n;

for some fixed sufficiently large ordinal θ; the size of θ will only become
important in Chapter 4, and we shall give an adequate lower bound for θ in
(4.2);

(2.3) ∀x ∈ R \ A(x ⊇ (a0, . . . , a2i+2) ⇒ f2i(x) > f2i+2(x)), for i < n.

A play on T ∗ may be represented as

I a0, f0 a2, f2 . . .
II a1 a3 . . .

Since there is no infinite descent in the ordinals, the functions f0, f2, . . . , f2n

serve to ”push away“ the sequence (a0, a1, . . .) from R\A and into A. Player
I wins the game G∗(A) if I is able to satisfy the rules (2.1) – (2.3) infinitely
often. So we define formally:

A∗ = {p ∈ [T ∗]| p is infinite},

G∗(A) = G(T ∗, A∗).

3



(2.4) Lemma. G∗(A) is determined

Proof. This follows from the Gale-Stewart Theorem on the determinacy of
closed games [1] as A∗ is closed in the natural topology on [T ∗]. A direct
argument would run as follows: Call a position a winning position for II if II
can force a finite play starting from that position.
Now assume that II has no winning strategy in G∗(A). Then the initial
position ∅ is not a winning position for II. Now whenever t ∈ T ∗ is of even
length 2n and is not a winning positon for II then there must be an extension
σ(t) = tÄ (a2n, f2n) such that σ(t) is not a winning position for II.
This function σ is basically a strategy for I and if I follows σ in a play p in
G∗(A), then p is infinite. Hence I has a winning strategy in G∗(A). 2

Player I is now able to turn a winning strategy for G∗(A) into a winning
strategy for G(A) by ”hiding“ the side-moves f0, f1, . . ..
(2.5) Lemma. If σ∗ is a winning strategy for I in G∗(A) then I has a

winning strategy in G(A).
Proof. Take σ satisfying:

σ(∅) = (a0), if σ∗(∅) = ((a0, f0));

σ(a0, a1) = (a0, a1, a2), if σ∗((a0, f0), a1) = ((a0, f0), a1, (a2, f2));

σ(a0, a1, a2, a3) = (a0, a1, a2, a4) if σ∗((a0, f0), a1, (a2, f2), a3)

= ((a0, f0), a1, (a2, f2), a3, (a4, f4));

etc.

Now let p = (a0, a1, a2, . . .) be a play in G(A) in which I follows σ. With
the f0, f1, . . . as above, p∗ = ((a0, f0), a1, (a2, f2), a3, . . .) is a play in G∗(A)
in which I follows σ∗.
If p ∈ R \ A, then rule (2.3) implies: f0(p) > f2(p) > f4(p) > f6(p) > . . ., a
contradiction. Hence p ∈ A, and σ is a winning strategy for I in G(A). 2

3 Normal Forms for Π1
1-sets

Lemmas 2.4 and 2.5 had simple proofs which did not depend on any special
assumptions on A. The definability of A and the measurable cardinal only
enter into the complementary argument where a winning strategy σ∗ for II
in G∗(A) has to be transformed into a winning strategy σ for II in G(A).
At a position a0, a1, . . . , a2n in G(A), player II simulates playing in G∗(A) by
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assuming suitable functions f0, . . . , f2n for I. The strategy σ∗ then yields a
move a2n+1 for II in G∗(A) which II also plays in G(A). Adequate functions
for the simulation of I’s moves in G∗(A) will be obtainable from a (sufficiently
complete) embedding normal form for A.
So let us now assume that A is a Π1

1–set of reals. Let us also suppose that κ is
a measurable cardinal in V with normal ultrafilter U . It is essentially shown
in Moschovakis [5], Lemma 6G.6, that our Π1

1-set A has a representation of
the following form: there is an assignment

s 7→<s, for s ∈ <ωω,

such that

(3.1) <s linearly orders |s|;

(3.2) s ⊆ t ∈ <ωω ⇒ <s⊆<t;

(3.3) for every p ∈ R:
p ∈ A iff <p:=

⋃

n<ω <p↑n is a wellordering of ω.

We transform this system into a commuting system of orderpreserving em-
beddings

es,t : (|s|, <) → (|t|, <), for s ⊆ t ∈ <ωω,

where |s| and |t| carry the usual order <. For s ∈ <ωω let

hs : (|s|, <) ↔ (|s|, <s)

be <–<s–orderpreserving. For s ⊆ t ∈ <ωω define es,t to be

es,t = h−1
t ◦ hs.

The system

(3.4) ((|s|, <), es,t)s⊆t∈<ωω
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commutes, and via (hs)s∈<ωω it is isomorphic to

((|s|, <s), id ↑ |s|)s⊆t∈<ωω.

Hence, for p ∈ R, the direct limit of

((m,<), ep↑m,p↑n)m≤n<ω

is isomorpic to

<p=
⋃

n∈ω

<p↑n .

By (3.3) we get:

(3.5) for every p ∈ R:
p ∈ A iff limm≤n<ω((m,<), ep↑m,p↑n) is wellfounded,

where the right-hand side denotes the formation of a direct limit.
From (3.5), player II could extract simulations of I’s side-moves, which satisfy
the rule (2.3). However, the ”simulations“ at various stages of the game have
to be consistent in the following sence. If we employed f0, . . . , f2n, to define
a2n+1 and f ′

0, . . . , f
′
2n, f ′

2n+2 to define a2n+3, then the latter sequence also has
to be compatible with a2n+1. We need to have:

a2n+1 = the last move of σ∗(a0, . . . , a2n, f0, . . . , f2n)

and also

a2n+1 = the last move of σ∗(a0, . . . , a2n, f ′
0, . . . , f

′
2n)

(on the right-hand side, we have permuted the input sequences of the strat-
egy to increase legibility). We obtain this compatibility by using indiscernible
functions. An Ehrenfeucht-Mostowski idea is used to map the natural num-
bers in the system

((|s|, <), es,t)s⊆t∈<ωω

up to the canonical indiscernibles of iterated ultrapowers of V .
We recall some key facts about iterated ultrapowers of V , and refer the reader
to Jech [2] for further details. From a normal ultrafilter U on the measurable
cardinal κ one defines the following system:

N0 = V, π00 = id : V → V, κ0 = κ, U0 = U ;

in the successor step set:

6



Nα+1 = Ult(Nα, Uα) is the ultrapower of Nα by Uα, which is transitive;

πα,α+1 : Nα → Nα+1 is the natural elementary embedding into the ultra-
power; πα+1,α+1 = id ↑ Nα+1; πγ,α+1 = πα,α+1 ◦ πγ,α, for γ < α;

κα+1 = π0,α+1(κ0), Uα+1 = π0,α+1(U0);

for limit ordinals λ we let Nλ, (πα,λ)α≤λ be the transitive direct limit of
(Nα, πα,β)α≤β<λ, and κλ = π0,λ(κ0), Uλ = π0,λ(U0).
The following two statements express that Nα is an Ehrenfeucht-Mostowski
model for the (class sized) theory of (V,∈) with constant symbols for every
set x ∈ V , and the model is generated by the wellorder α:

(3.6) Each Nα is Σ1-generated by range(π0,α) ∪ {κi : i < α}:

Nα = {π0,α(f)(κi1 , . . . , κin) : n ∈ ω, f : κn → V, i1 < . . . < in < α}.

(3.7) The set {κi : i < α} is a set of orderindiscernibles for Nα relative to
parameters from range(π0,α).

These facts imply the following lifting properties for orderpreserving maps:

(3.8) Let e : α → β be (strictly) orderpreserving, α ≤ β ∈ On. Then there
is a canonical elementary map

e∗ : Nα → Nβ

defined by:

e∗(π0,α(f)(κi1 , . . . , κin)) = π0,β(f)(κe(i1), . . . , κe(in)),

for n < ω, f : κn → V , i1 < . . . < in < α.

(3.9) If (em,n)m≤n<ω is a commutative system of orderpreserving maps em,n :
m → n, then (e∗m,n)m≤n<ω commutes.

(3.10) Moreover, the system (m, em,n)m≤n<ω has a wellfounded direct limit
iff the system (Nm, e∗m,n)m≤n<ω has a wellfounded direct limit.
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Proof. The system (m, em,n)m≤n<ω is canonically embedded into the system
(Nm, e∗m,n)m≤n<ω by the orderpreserving maps m → Nm, i 7→ κi. So if
(m, em,n) has an illfounded direct limit, so has (Nm, e∗m,n). Assume now
that (m, em,n) has a wellfounded direct limit. Without loss of generality we
can assume it to be an ordinal α; so let (α, em)m<ω be the direct limit of
(m, em,n)m≤n<ω. It is then easy to check that (Nα, e∗m)m<ω is the transitive
direct limit of (Nm, e∗m,n)m≤n<ω. 2

Let us now lift the system (3.4) by defining:

(3.11) (Ms, πs,t)s⊆t∈<ωω is given by Ms = N|s|, πs,t = e∗s,t.

Facts (3.5) and (3.10) imply that

(3.12) for every p ∈ R:
p ∈ A iff limm≤n<ω(Mp↑m, πp↑m,p↑n) is wellfounded, hence transitive.

For the intended ”simulations“ we extract certain functions from the system
which witness the nonwellfoundedness of paths through the system. For each
p ∈ R \ A, choose a sequence (γp

n : n ∈ ω) of ordinals such that

πp↑m,p↑n(γp
m) > γp

n, for all m < n < ω.

For each s ∈ <ωω define ws : R → On by

ws(p) =
{

γp
n if s = p ↑ n and p ∈ R \ A;

0 else.

Each Ms is closed under the formation of κ-sequences, since it is an iterated
ultrapower of V with finite index |s|. Hence, ws ∈ Ms. These functions
satisfy:

(3.13) For s ⊆ t ∈ <ωω, s 6= t, and p ∈ R \ A, p ⊇ t:

πs,t(ws)(p) > wt(p).

Proof. πs,t(ws)(p) = πs,t(ws(p)) = πs,t(γ
p

|s|) > γ
p

|t| = wt(p). 2

A commuting elementary system (Ms, πs,t)s⊆t∈<ωω with M∅ = V , satisfying
(3.12) is called an embedding normal form for A. If moreover there is a system
(ws)s∈<ωω of functions ws : R → On, with ws ∈ Ms, satisfying (3.13), then
(ws)s∈<ωω is called a system of witnesses for the embedding normal form. We
have shown above:
(3.14) Lemma. If A ⊆ R is Π1

1 and if there exists a measurable cardinal

then A has an embedding normal form with witnesses.
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4 Witnesses as Side-Moves

To complete the proof of Theorem (1.1), let σ∗ be a winning strategy for II
in G∗(A), where A is the fixed Π1

1-set from above. We have to find a winning
strategy for II in G(A). Let

(Ms, πs,t, ws)s⊆t∈<ωω

be the embedding normal form with witnesses for A as constructed in chap-
ter 3. By (3.13), the witnesses are ”descending“ along the embedding normal
form, and this gives arbitrary long sequences of functions satisfying the rule
(2.3). We shall now describe a strategy σ : <ωω → <ωω which will be a win-
ning strategy for II in G(A); let σ̂(s) be the move demanded by the strategy
σ on input s, i.e. σ(s) = sÄ σ̂(s); obviously we only have to define σ̂(s) for
odd-length sequences s in <ωω to get an appropriate σ. We set:

(4.1)

σ̂(a0) = π∅,a0
(σ̂∗)(a0, wa0

);

σ̂(a0a1a2) = π∅,a0a1a2
(σ̂∗)(a0, πa0,a0a1a2

(wa0
), a1, a2, wa0a1a2

);

σ̂(s) = π∅,s(σ̂
∗)(s, πs↑1,s(ws↑1), πs↑3,s(ws↑3), . . . , ws),

for |s| odd.

Note that the sequence (πs↑1,s(ws↑1), πs↑3,s(ws↑3), . . . , ws) is a ”descending“
sequence of functions which ”lives“ in Ms. It is therefore appropriate to apply
the mapped strategy π∅,s(σ

∗). We are now able to give a lower bound for the
parameter θ in (2.2). Since we want the functions πs↑1,s(ws↑1), πs↑3,s(ws↑3),
. . ., ws to be legitimate side-moves for I in π∅,s(G

∗(A)), we require:

(4.2) θ > supremum of the range of w∅.

(4.3) Lemma. σ is a winning strategy for II in G(A).
Proof. Let p = (a0, a1, a2, . . .) ∈ R be a play in G(A) where II follows σ.
Assume for a contradiction that p ∈ A. Then the direct limit

(Mp, πp↑m,p)m∈ω = limm≤n<ω(Mp↑m, πp↑m,p↑n)
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is transitive by (3.12). p = (a0, a1, a2, . . .) satisfies the equations (4.1). Ap-
plying the maps πp↑m,p to the equations yields

a1 = π∅,p(σ̂
∗)(a0, πa0,p(wa0

));

a3 = π∅,p(σ̂
∗)(a0, πa0,p(wa0

), a1, a2, πa0a1a2,p(wa0a1a2
));

a2n+1 = π∅,p(σ̂
∗)(p ↑ 2n + 1, πp↑1,p(wp↑1), πp↑3,p(wp↑3), . . . , πp↑2n+1,p(wp↑2n+1)),

for n < ω. The sequence of functions on the right-hand side satisfies the rule
(2.3): If x ∈ R \ A and p ↑ 2n + 3 ⊆ x then:

πp↑2n+1,p(wp↑2n+1)(x) = πp↑2n+3,p(πp↑2n+1,p↑2n+3(wp↑2n+1)(x))

> πp↑2n+3,p(wp↑2n+3(x)) by (3.13),

= πp↑2n+3,p(wp↑2n+3)(x).

Therefore,

(4.4) I a0, πp↑1,p(wp↑1) a2, πp↑3,p(wp↑3) . . .
II a1 a3

is a play in π0,p(G
∗(A)) in which II follows the strategy π0,p(σ

∗) and in which
the rule (2.3) is kept.
An absoluteness argument shows that a similar play must actually exist inside
the model Mp. Consider, in Mp, the set P of all positions in π∅,p(G

∗(A)),
in which II follows the strategy π∅,p(σ

∗) (Note that a position is a finite
sequence of moves). (P ,⊇) is a partial order under reverse inclusion. (P ,⊇)
is illfounded in V as witnessed by the play (4.4). By the absoluteness of
wellfoundedness between V and the transitive model Mp, (P ,⊇) is illfounded
in Mp. Hence, in Mp, there is an infinite play in π∅,p(G

∗(A)) in which II
follows the strategy π∅,p(σ

∗). Since π∅,p : V → Mp is elementary, there is, in
V , an infinite play in G∗(A) in which II follows the strategy σ∗. But then
σ∗ is not a winning strategy for II since II’s aim is to make plays in G∗(A)
finite. Contradiction. 2

Let us recapitulate our result. For the game G(A) we have introduced an
auxiliary game G∗(A) which is determined. If σ∗ is a winning strategy for
I in G∗(A) we immediately get a winning strategy for I in G(A). If σ∗ is a
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winning strategy for II in G∗(A) the embedding normal form with witnesses
which we constructed from our assumptions in chapter 3 allows us to obtain
a winning strategy for II in G(A). In either case, G(A) is determined and we
have proved Theorem (1.1).

5 Concluding remarks

(5.1) The arguments about embedding normal forms and witnesses can be
modified to obtain the sharper result of D. Martin [3]: if a# exists then
every Π1

1-set in the parameter a is determined. Instead of iterated ultrapow-
ers one uses the model L[a] with its Silver-indiscernibles given by a# as an
Ehrenfeucht-Mostowski model for (3.6) and (3.7). The construction of the
witnesses becomes more involved since L[a] is not even ω-closed.
(5.2) Our interest in embedding normal forms in determinacy proofs is mo-
tivated by the observation that the large cardinals used give embeddings of
transitive models of set theory rather than combinatorial objects like mea-
sures or indiscernibles. Therefore it is tempting to work with elementary em-
beddings whenever possible. We have carried this out for the Martin-Steel
theorem [4] (if there are infinitely many Woodin cardinals then projective
determinacy holds) in an article submitted to the Journal of Symbolic Logic.
That article also covers remark (5.1).
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