
Computing the Recursive Truth Predicate on
Ordinal Register Machines

Peter Koepke1 and Ryan Siders2

1 University of Bonn, Mathematisches Institut,
Beringstraße 1, D 53115 Bonn, Germany

Koepke@Math.Uni-Bonn.de
2 University of Helsinki, Department of Mathematics and Statistics

Gustaf Hällströminkatu 2b, Helsinki 00014, Finland
bissell@mappi.helsinki.fi

(corresponding author)

Abstract. We prove that any constructible set is computable from or-
dinal parameters by a wellfounded program on an infinite-time ordinal-
storing register machine.
This brings us closer to “minimal” computation of set theoretic con-
structibility. To that end, we describe data types and well-founded pro-
gramming to consider what can be cut from the machine or programming
languge.
These machines were designed to define and study run-time complex-
ity for hypercomputation. We solve one complexity problem: deciding
the recursive truth predicate is ordinal-exponential time on a register
machine, and ordinal-polynomial time on a Turing machine.

1 Register Machines

Ordinal Register Machines increment and erase a finite number of registers con-
taining ordinals; the number of necessary registers can eventually be reduced to
four. They exemplify abstract model-theoretic computation. The ordinals they
store can refer to the timesteps of a hypercomputation.

We motivate these machines by first considering 1. finite-time register ma-
chines storing finite register values, and 2. finite-time register machines ordinal
register machines storing ordinal register values with an oracle for ordinal arith-
metic.

Definition 1. ([10]) A register machine stores natural numbers and runs for
finite time. A register machine program is written using the three instructions:
1. Zero(x), which sets x to zero; 2. x++ which increments x; and 3. If (x = y)
goto i else j, which switches the flow of control, depending on whether two
registers are equal or not. Here, i and j name instructions in the program. When
the program is interpreted in a machine, i and j label states of the machine.

Definition 2. On a register machine, a “For-program” uses goto switches only
to define the commands: 3a. if (x = y) (instructions); 3b. for (x = y;x <
z;x + +) (instructions), where x is never set to zero within the loop.



Ordinal Register Machines 161

A “While-program” has the extra instruction 4. Decrement(x); but only uses
goto switches to define: 3a. if (x = 0) (instructions); 3b. while (x > 0;x−
−) (instructions), where x is never incremented within the loop.

We call finite register machine For- and While-programs “well-structured.”

Definition 3. for x from 0 to y means Zero (x); for (x = x;x < y;x + +).
if(a = b) (instructions) means Zero(x); for(c = a; c < b; c + +)(x + +);
for(c = b; c < a; c + +)(x + +); if(x = 0)(instructions).

Theorem 1. ([9] p. 205) 5-variable While-programs simulate Turing machines.

Theorem 2. ([9] pp. 255-8) While-programs using 2 variables can simulate
all While-programs. FOR-programs using 3 variables can simulate all While-
programs.

In this paper, we have used the word ”model” in the sense of ”a model
of computation,” and in the sense of ”model theory.” We try to never say a
machine A ”models” the behaviour of machine B, but rather that it ”simulates”
B. Simulating one machine on another, and building a model of one theory inside
a model of another are such similar concepts, that the idea of computing over
abstract models seems ripe for self-reference.

Definition 4. (see the survey [11]) For M any model, an M -register machine
stores (has some variables xi refering to) elements ai of M , and runs for finite
time. Its programming language assigns variables to elements of M with the
following two commands:

1. assign xi to aj (duplicate);
2. assign xi to aj; assign xj to ai; (swap);
The constants, functions, and relations in M are assumed to be computable,

so the programming language includes the following three commands
3. ai = fM (a1...an);
4. ai = cM ;
5. If RM (a1...an), then i, else j.

The storage of elements of M in the register machine is like the assignment
of variables to elements of M in a finite-variable pebble game. The M -register
machine can set a register to any constant in M , set a register a1 to f(a1...an), for
any n-ary function f , and switch its state, depending on whether M |= R(a1...an)
or not.

Analyzing the flow of control in a computer program, without looking at
what is in the registers, was pursued in [3], in which it is proved that “any Goto
program is equivalent to a While program.” Such analyses are fruitful too in
“abstract computability theory,” surveyed by [11].

1.1 Pairing and Stacking

Research on abstract-model recursion theory since [2] suggests that the ordi-
nary theorems of recursion theory will lift, if equality is decidable, pairing is



162 Peter Koepke and Ryan Siders

computable, and the domain is finitely generated. Fortunately, ordinals have an
efficient notion of pairing.

Definition 5. Let Γ be the pairing function taking (a, b) to the wellorder of pairs
(c, d) <2 (a, b), where (c, d) <2 (a, b) iff max(c, d) < max(a, b), or max(c, d) =
max(a, b) and c < a, or max(c, d) = max(a, b) and c = a and d < b.

Lemma 1. Γ (a, a) ∼= a iff a is a ×-closed ordinal. (so Γ is “efficient.”)

Remark 1. ([11] pp. 485,486) show that recursion theory lifts to M -register ma-
chines if M has counting and stacking. Our main result depends heavily on
using the following binary stack to prove that ordinals have stacking, and that
the stack is robust, as the ordinal register machine runs over a limit-ordinal time.

Definition 6. A “binary stack” codes a finite, monotonically decreasing se-
quence (βi : i < n) as

∑
i 2

βi+1 = 2β0+1 + 2β1+1 + ... + 2βn−1+1, where 2α

is ordinal exponentiation.

The reason for +1 in the exponent is that when βi+1 limits up to βi, and
βi is a limit ordinal and false (it codes φβi

, a falsehood, so for T the Recursive
Truth Predicate of definition 13, T (β) =“false”) then we need to be able to check
whether βi being false witnesses the truth of βi−1, before incrementing βi. The
+1 in the exponent allows us to identify a limit ordinal appearing as a term in
the

∑
which is the stack as a limit of earlier stack elements and not a stack

element itself.

Definition 7. Let “Seq” be the set of finite, descending sequences of ordinals,
all less than $ , ordered by their first difference.

Lemma 2. (βi) �→
∑

2βi is an isomorphism between Seq and 2$ .

Lemma 3. If the supremum of T is α, then the supremum of {2β : β ∈ T} is
2α.

We will define Pop, Push, and IsEmpty for this stack in section 3, after we
have learned the natural data types and definitions for ordinal computers and
are comfortable writing longer routines.

1.2 A model of infinitely-long computation

Definition 8. An Infinite-time Ordinal-storing Register Machine is a register
machine storing ordinal values and runing for ordinal time, with a programming
language including the three instructions: 1. Zero(x); 2. x + +; 3. if x = y goto
i else j; in which the registers’ values at limit times obeys the following three
rules:

R1. If the command “Zero(x)” is called at each time t ∈ T , then x is 0 at
time supT , too.

R2. At limit times, command passes to the liminf of the commands which
have been active cofinally often.

R3. Until it is zero’d, a register’s value increases continuously.



Ordinal Register Machines 163

We’ll also call this model of computation an Ordinal Computer, or OC.

Remark 2. The study of continuous computation or abstract register machine
computation over an infinite model motivates the study of hypercomputation.

Our rule 2. is the same as that in [6]. Other definitions of limit time use the
lim-sup rule ([4]) or require wellfounded programs ([1], see definition 9) so at
a limit time, the machine only decides whether to keep looping (see remark 3
below). These approaches are equivalent.

Definition 9. An OC program is “well-structured” if goto switches are only
used to model the following two commands: 3a. if(xi = 0) (instructions); 3b.
for(x = y;x < z;x + +) (instructions); where neither Zero(x) nor Zero(z) is
among the instructions in the loop. A for loop tests x < z, then executes.

Remark 3. At any limit time λ during the run of a well-structued program, there
is a unique instruction for(x = y;x < z;x++)(loop) for which we have checked
whether x ≥ z at times T a cub subset of λ, but x < z was true each time. Rule
2. of definition 8 requies that at a limit time, control returns to the start of the
loop; the start of a for loop is its test, so equivalently, Rule 2’. At a limit time
λ, repeat the outermost loop which has been active cofinally often. That is, after
checking x < z infinitely often and finding it always true, check again.

Rule 2’ makes a very reasonable, but nontrivial, requirement of the machine’s
state at a limit time: that if the program says to loop states until x ≥ z, then
the machine does not stop looping states simply because it reaches a limit time,
but only when x ≥ z.

Theorem 3. For well-structured computations, Rule 1 can be simplified, so as to
require nothing of the machine’s limiting behaviour, but only require something
syntactical, about how well-structured programs are formulated: Rule 1’: In a
well-founded program, immediately before a switch if(x = 0) is called, x was
changed one last time (and not an infinite, unbounded set of times, before the
switch is called).

Then any register, at any time, is defined in terms of other variables, each
of which was defined one last time beforehand, such that there is a finite tree
of variables and times, on whose definition x’s value at the time of the switch
depends, the leaves of which are variables which are never zero’d, during the
computation. So OC programs can be written so that switches well-foundedly
depend on monotonic variables.

1.3 Discovering data types

Lemma 4. 1. If all registers are set to 0 repeatedly (after any time t, each
register is again set to 0 at some time t′ > t), then there is a time at which all
registers are simultaneously zero. 2. Any active loop index is equal to the clock
at all times εα.



164 Peter Koepke and Ryan Siders

As a result, we find that there are fundamentally different natural data types.

Remark 4. In a well-structured computation we can identify three types of reg-
isters: 1. registers which are zero’d infinitely often, 2. registers which are never
zero’d, and so are cub-often equal to the clock, and 3. registers which are neither
incremented nor zero’d.

Registers that are zero’d infinitely often are the indices to short loops and
“active memory.” Registers that are frequently close to the clock are really just
marking time (and storing type 1 variables between each other). Registers that
do not change during the computation are the parameters which the computation
(seen as a subroutine) was given from the outside.

Definition 10. We call type 1. variables ORD, type 2. variables MON, and
type 3 variables STO, for “ordinal,” “monotone,” and “static storage.” In long
programs, all variables will have for scope only the subroutine they are defined
in, and we will declare their type before using them, for clarity.

Lemma 5. All well-structured ordinal computer programs halt.

Proof: by induction on the depth of For loops: the maximum value ρ of the
registers is a normal function in time, which has arbitrarily large fixed points.
At exp-closed ordinal times, the loop-index is time, as well. At these times, the
loop index and bound are equal, and the loop terminates. �

But other programs need not halt:

Example 1. A. For-programs halt when they reach a fixed point. B. some non-
well-structured programs do not halt at all

A. for(b = a + 1;a < b;a++) (b + +) halts at the least limit ordinal > b.
B. b = a; 1. if (b = a) (b + +); b + +; a + +; if (b �= a) (goto 1);

never halts since at limit times line-control passes to its lim-inf (def’n 8, R2).

Because of the intuitive variable types found in lemma 4 and remark 4 and
the simple program-flow described in lemma 5 and remark 3, we will restrict our
attention to well-structured ordinal computer programs.

1.4 Reflection of few registers

How many registers are needed to simulate an infinitary Turing machine on
an ordinal computer? How many registers are clearly trivial? Four registers are
universal, and three registers are fairly trivial. In the next subsection we will
prove the reflection of up to three registers. Note that the program computing the
universal truth predicate uses 6 variables outside any subroutine, and the longest
subroutine, Pop, uses 6 variables. So twelve registers are enough to compute any
element of the constructible universe, and hence any ordinal computer with
more than twelve registers. A reduction to four registers is simply technical,
using oscilating stacks as in 2, repeating all finite intervals as many times as
there are stack elements, and using the last variable to store a single variable,



Ordinal Register Machines 165

just as it appears on the stack, and store it, after the stack limits and is erased,
very high on the stack, where it won’t be erased by the varying and limiting of
values lower on the stack. However, we will not prove rigorously in this paper
that four register suffice.

Definition 11. Let OCn be the set of n-register well-structured ordinal com-
puter programs (obeying rules 1 and 2’). Say ρ : Ordn → αn reflects OCn if for
each P in OCn, the function fP which takes the inputs to P to the output of P ,
commutes with ρ. Let Ln be the vocabulary with a function for each n-register
program: Ln = {Ord,<,=}∪{fP : P ∈ OCn}, and let FOk(L) be the first order
formulas in the language L, to quantifier depth k.

Definition 12. Let ρ0 be the function ρ0(α) = α mod ω.
Let ρ1 be the identity below ω, and be ω + ρ0 above ω.
Let ρ2 be the identity below ω × 2, and be ω × 2 + ρ0 above ω × 2.
Let ρ3(α) = α mod ωω.
Let ρ4 be the identity below ωω, and be ωω + ρ3 above ωω.
Let ρ5(α, β) be the pair (ρ4(α), ρ4(α) + ρ4(β −α)) if α ≤ β and be undefined

if α > β.

Lemma 6. ρ1 : Ord→ ω× 2 reflects OC1, is the minimal reflection preserving
FO1(L1), and preserves even FO2(L1). ρ2 preserves FO3(L1).

Corollary 1. FO3(L1) is much less expressive than the 4-quantifier theory of
linear order, FO4(<). Indeed, FO4(<) can define every predicate definable in
FO3(L1).

Lemma 7. ρ5 : Ord2 → (ωω×3)2 reflects OC2, is minimal such that it preserves
FO2(L2), and preserves FO(L2).

Remark 5. Suppose that the rule 3b in definition 9 were relaxed, and only the
index were not allowed to be zero’d. Then y + +; for(x = 0;x < y;x + +)

(Zero(y); for(y = y; y < x; y + +)(x + +); y + +) halts with register values
ωω).

Corollary 2. FO(L2) computes x �→ x × ω and x �→ n × x (for finite n), but
it is weaker than FO(Ord,<, c0, c1), where c0 and c1 are constants naming any
two ×-closed ordinals; this is much weaker than FO(Ord,+). So an ORM with
two variables can not compute the + of two input values.

By theorem 2, OC3 can simulate a finite turing machine. But OC3 still
reflects into a small ordinal, and as a result, we find that stacking ordinals re-
quires more registers than stacking finite numbers. Moving an infinite ordinal
onto a stack by incrementing the stack once every few time-steps requires in-
finite time. So the stacking operation with which OCn simulates a finite-time
(ω1,+,×, a→ ωa)-register machine (an abstract register machine as in definition
4) must limit continuously without losing any information.

Lemma 8. Ord3 reflects below εω×4, and not lower.



166 Peter Koepke and Ryan Siders

2 Recursive Truth Predicate

Our main theorem is that infinite ordinal register machines can decide all sets
of ordinals which are elements of the constructible hierarchy, L, i.e.: For every
set of ordinals S which exists in L, there is an ordinal computer program P and
a single ordinal input, the Γ -stack Γ (...Γ (α0, α1)..., αn) of (α0...αn−1), which
program decides S.

Conversely, the definition of the program P exists within L, so OC com-
putation reflects into L. That is, anything OC-computed from finite ordinal
parameters a0...an ∈ L is thereby constructed in L.

Theorem 4. (analogous to Theorem 5 of [8]) A set S of ordinals is ordinal
computable from some finite set of ordinal parameters if and only if it is an
element of the constructible universe L.

We prove the theorem, that everything in L can be computed by an ordinal
computer (from some ordinal parameters), by computing the “recursive truth
predicate” described in [8].

The recursive truth predicate is a recursive characteristic function on the
ordinals, coding all constructible sets of ordinals. It is defined as

Definition 13. Let T be the recursive truth predicate, defined by: T (α) = True
if and only if (α,<, Γ, T 	 α) |= φα, where Γ is the ordinal pairing function in
definition 5, where the sentence φα is coded by α, has a finite number of ordinal
parameters.

Definition 14. (F from H): F (α) =True⇐⇒ ∃β < α H(α, β, F (β)) =True:
for β from 0 to α (

if (F (β) = False and H(α, β, False) = True) (return True);

if (F (β) = True and H(α, β, True) = True) (return True);

);

Return False

That program is written in a language which allows a subroutine to call itself.
First, we show that from this recursive routine, set-theoretical constructibility
can be carried out.

Theorem 5. If an OC can simulate the recursive routine in definition 14, then
theorem 4 holds.

Now we simulate the program in definition 14 using a wellordered stack of
formulas on an OC.

3 Stack, Pop, Push, IsEmpty

Definition 15. Pop, taking two parameters (Stack, Threshold) and referenc-
ing the global variable $ in which the program has received as its input a formula



Ordinal Register Machines 167

whose truth is to be witnessed, (and which serves as an upper bound to all for-
mulas and all searches) is the following routine:

MON SmallStack := 0;

MON TempStack := 0;

for ε from 0 to $ (

for α from 0 to Stack (

if (α + 2ε+SmallStack = Stack) (

if (ε > Threshold) (return ε);

for TempStack to Smallstack ();

for Smallstack to 2ε ();

for κ from 0 to TempStack (Smallstack++)

)

)

)

Pop doesn’t really change the stack. It just reads the next element, past a
certain threshold.

Lemma 9. Pop reads least element 2ε of the Stack, such that ε is at least as
large as the parameter Threshold.

Definition 16. Push, a program taking two parameters (Stack, β), is the fol-
lowing routine:

Stack ++;

for ι from 0 to 2β+1 (

if (¬ (2β+1 divides Stack)) (Stack ++)

)

where
β divides α is the routine:
MON γ = 0
for ι from 0 to α (

for κ from 0 to β (γ + +)

if (γ = α) (Return Yes);

if (γ > α) (Return No)

);

Return No

Push(β onto Stack) erases all stack values less than β.

Lemma 10. Push(β onto Stack) increases the Stack to the next full multiple
of 2β+1.

Definition 17. IsEmpty, taking the single input Stack, is the routine:
ORD α = Pop(Stack,0);
if (2α = Stack) (return "True")

else (return "False")

IsEmpty(Stack) returns the value “True” when the stack is a singleton, 2$ ,
i.e., the initial value, the truth of which we would like to determine.



168 Peter Koepke and Ryan Siders

Definition 18. β is the largest element on the stack is the program
for ι < 2β (if (2β + ι = Stack) (Return Yes));

Return No

Clearly, this halts before ι exhausts β iff β is indeed the largest stack value.
On the other hand, 2β + ι = Stack never holds if β is larger than the largest
stack value, nor if β is less than the largest stack value.

3.1 The Recursive Truth Predicate OC Program

Theorem 6. The recursive truth predicate F defined in 14 is equivalent to the
following program:
Determining the Truth Value of ($ ):

ORD α = 0;
ORD β = 0;
ORD ν = 0;
MON Stack = 0;
ORD TruthValue = Unknown;

Push($ onto Stack);

for ι from 0 to 2$ (

β = Pop(Stack,0);
If (β is a limit) (TruthValue = Unknown);

If IsEmpty(Stack) (Stack ++); # That is, "if Stack = 2β."

if TruthValue is Unknown (

if β is a successor ordinal (Stack ++;β = 0);
α = Pop(Stack,β + 1);
if β is not a successor ordinal and α = β + 1 (

β = α;TruthValue = False;

);

if β is not a successor ordinal and α 
= β + 1 (

Push(β onto Stack);

)

);

while TruthValue is Known (

if β is the largest element on the stack (return TruthValue);

α = Pop(Stack,β + 1);
Let ν = H(α − 1, β − 1, TruthValue);
if (ν = True)(β = α;TruthValue= ν);

if (ν = False and α = β + 1)(β = α;TruthValue= ν);

if (ν = False and α 
= β + 1)(
TruthValue=Unknown;

Push(β onto Stack)

)

)

)

Definition 19. Call (αi : i ≤ k) a witnessing sequence if, for each i < k − 1,
αi − 1 is true and H(αi − 1, αi+1 − 1, F (αi+1 − 1)) = True, and αk−1 is false
and αk = αk−1− 1. Call WIT (γ) the least witnessing sequence (αi : i < k) such



Ordinal Register Machines 169

that γ = α0 and αk−1 − 1 is false and a limit. Call W (γ) =
∑

α∈W (γ) 2α the
witnessing series.

Lemma 11. a) If Stack =
∑

i<n 2γi+1+W (γn), where γn does not witness γn−1

(i.e.: it is not the case that γn is true and H(γn−1, γn, 1) = 1, nor is it the case
that γn is the predecessor of γn−1 and γn−1 is false), and W (γn) is a series with
m terms, then in the first part of the loop TruthValue becomes known and after
m iterations of the while loop, the program passes command to Push(γn−1 onto

Stack).
b) If Stack = W (γn), a series with m terms, then in the first part of the loop

TruthValue becomes known and after m iterations of the while loop, the program
halts, returning the truth value of γ0 − 1.

Now we prove theorem 6 by induction on the following:

Lemma 12. Intention Lemma:
a. If Stack is 2$ +1 + σ + 2γ , where 2γ × 2 divides σ, γ is a successor, and

TruthValue is Unknown, then the Stack will reach 2$ +1 + σ + W (γ), when ι ≤
(σ × 1/2) + 2γ−1, with β = γ and TruthValue known.

b. If Stack is 2$ +1 +σ+2γ , where 2γ ×2 divides σ, and γ−1 is a false limit
then the stack will be ≥ 2$ +1 + σ + 2γ + 2δ, for each successor δ < γ − 1, at
some time ι ≤ (σ × 1/2) + 2γ−1 + 2δ−1.

c. if the Stack is 2$ +1 = 2γ , and TruthValue is Unknown, then the Stack will
reach W (γ), when ι ≤ 2γ−1, with β = γ and TruthValue known, i.e., P halts
on input $ after at most 2$ loops through the main loop, and returns the value
F ($ ).

References

1. R. Bissell-Siders, Ordinal computers. math.LO/9804076 at arXiv.org, 1998.
2. H. Friedman, Algorithmic procedures, generalized Turing algorithms, and elemen-

tary recursion theory. Logic Colloquium ’69 (Proc. Summer School and Colloq.,
Manchester, 1969), pp. 361–389. North-Holland, Amsterdam, 1971.

3. G. Jacopini and C. Böhm, Flow Diagrams, Turing Machines, and Languages with
Only Two Formation Rules. Comm ACM, 9,5 May 1966.

4. J. Hamkins and A. Lewis, Infinite Time Turing Machines. J. Symbolic Logic, 65(2):
567-604, 2000.

5. P. Koepke, Infinite Time Register Machines. Submitted to Computing In Europe
2006; this volume. 11(3): 377-397, 2005.

6. P. Koepke, Turing Computations on Ordinals. Bulletin of Symbolic Logic, 11(3):
377-397, 2005.

7. P. Koepke and M. Koerwien, The Theory of Sets of Ordinals. math.LO/0502265
at the e-print archive arXiv.org, 2005

8. P. Koepke and M. Koerwien, Computing a Model of Set Theory. CIE 2005.
9. M. Minsky, Computation: Finite and Infinite Machines. Prentice-Hall, 1967.

10. J. Shepherdson and H. Sturgis, Computability of recursive functions, J. Assoc.
Comput. Mach. 10 217–255, 1963.

11. J. Tucker and J. Zucker, Computable functions and semicomputable sets on many
sorted algebras, in S. Abramsky, D. Gabbay and T Maibaum (eds.) Handbook of
Logic for Computer Science, Volume V, Oxford University Press, 317-523.


