
Computing a Model of Set Theory

Peter Koepke

Mathematisches Institut,
Rheinische Friedrich-Wilhelms-Universität Bonn,

Beringstraße 1,
53113 Bonn, Germany

Abstract. We define the notion of ordinal computability by generalizing
standard Turing computability on tapes of length ω to computations
on tapes of arbitrary ordinal length. The generalized Turing machine
is able to compute a recursive bounded truth predicate on the ordinals.
The class of sets of ordinals which can be read off the truth predicate
satisfies a natural theory SO. SO is the theory of the sets of ordinals in a
model of the Zermelo-Fraenkel axioms ZFC. Hence a set of ordinals
is ordinal computable from ordinal parameters if and only if it is an
element of Gödel’s constructible universe L.

1 Introduction

A standard Turing computation may be visualized as a time-like sequence of
elementary read-write-move operations carried out by one or more “heads” on
“tapes”. The sequence of actions is determined by the initial tape contents and
by a finite Turing program. We may assume that Turing machines act on
tapes whose cells are indexed by the set ω (= N) of natural numbers 0, 1, . . . and
contain 0’s or 1’s.

SPACE
0 1 2 3 4 5 6 7

0 1 0 0 1 1 1 0 0 0 0
1 0 0 0 1 1 1 0 0

T 2 0 0 0 1 1 1 0 0
I 3 0 0 1 1 1 1 0 0
M 4 0 1 1 1 1 1 0 0
E :

n 1 1 1 1 0 1 1 1
n+1 1 1 1 1 1 1 1 1

:

A standard Turing computation. Head positions are indicated by underlining.

An obvious generalization from the perspective of transfinite ordinal theory is
to extend Turing calculations to tapes whose cells are indexed by the class Ord

S.B. Cooper, B. Löwe, and L. Torenvliet (Eds.): CiE 2005, LNCS 3526, pp. 223–232, 2005.
c© Springer-Verlag Berlin Heidelberg 2005

224 P. Koepke

of all ordinal numbers. At limit ordinals we define the tape contents, program
states and head positions by appropriate limit operations which may be viewed
as inferior limits.

Ordinal Space
0 1 2 3 4 5 6 7 ω . . . α . . . κ . . .

O 0 1 1 0 1 0 0 1 1 1 . . . 1 0 0 0
r 1 0 1 0 1 0 0 1 1 1
d 2 0 0 0 1 0 0 1 1 1
i 3 0 0 0 1 0 0 1 1 1
n 4 0 0 0 0 0 0 1 1 1
a :
l n 1 1 1 1 0 1 0 1 1

n+1 1 1 1 1 1 1 0 1 1

T
...

...
...

...
...

...
i ω 0 0 1 0 0 0 1 1 1
m ω+1 0 0 1 0 0 0 1 1 0
e :

θ 1 0 0 1 1 1 1 0 0
...

...
...

...
...

...
...

An ordinal computation.

This notion of ordinal computability obviously extends Turing computabil-
ity. By the Church-Turing thesis many operations on natural numbers are
ordinal computable. The ordinal arithmetical operations (addition, multiplica-
tion, exponentiation) and other basic operations on ordinals are also ordinal
computable.

Using Gödel’s pairing function G : Ord×Ord → Ord one can view each
ordinal α as a first-order sentence with constant symbols for ordinals < α. One
can then define a recursive truth predicate T : Ord → {0, 1} by:

T (G(α, β)) = 1 iff (α,<,G ∩ α3, T � α) � α[β].

This recursion can be carried out by an ordinal Turing machine. For ordinals
µ and α the function T codes the set

T (µ, α) = {β < µ|T (G(α, β)) = 1}.
The class

S = {T (µ, α)|µ, α ∈ Ord}
is the class of sets of ordinals of a transitive proper class model of set theory.
Since the ordinal Turing computations can be carried out in the ⊆-smallest
such model, namely Gödel’s model L of constructible sets, we obtain our main
result characterizing ordinal computability:

Computing a Model of Set Theory 225

Theorem 1. A set x ⊆ Ord is ordinal computable from finitely many ordinal
parameters if and only if x ∈ L.

This theorem may be viewed as an analogue of the Church-Turing the-
sis: ordinal computability defines a natural and absolute class of sets, and it is
stable with respect to technical variations in its definition. This work was in-
spired by the infinite time Turing machines introduced by Joel D. Hamkins,
Jeff Kidder and Andy Lewis [3]. A more comprehensive technical account of
ordinal computability, also indicating set theoretical applications is given in [5].

2 Ordinal Turing Machines

Ordinal Turing machines are defined in close analogy with standard Turing

machines. At successor ordinals we use standard Turing steps. The behaviour
at limit ordinals will be defined by simple limit operations.

Definition 2.

a) A command is a 5-tuple C=(s, c, c′,m, s′) where s, s′ ∈ ω and c, c′,m ∈
{0, 1}; the natural number s is the state of the command C. The intention
of the command C is that if the machine is in state s and reads the symbol
c under its read-write head, then it writes the symbol c′, moves the head left
if m = 0 or right if m = 1, and goes into state s′. States correspond to the
“line numbers” of some programming languages.

b) A program is a finite set P of commands satisfying the following structural
conditions:

i. If (s, c, c′,m, s′) ∈ P then there is (s, d, d′, n, t′) ∈ P with c �= d; thus in
state s the machine can react to reading a “0” as well as to reading a
“1”.

ii. If (s, c, c′,m, s′) ∈ P and (s, c, c′′,m′, s′′) ∈ P then c′ = c′′,m = m′, s′ =
s′′; this means that the course of the computation is completely deter-
mined by the sequence of program states and the initial cell contents.

c) For a program P let

states(P) = {s|(s, c, c′,m, s′) ∈ P}

be the set of program states.

Definition 3. Let P be a program. A triple

S : θ → ω, H : θ → Ord, T : θ → (Ord2)

is an ordinal computation by P if the following hold:

a) θ is a successor ordinal or θ = Ord; θ is the length of the computation.
b) S(0) = H(0) = 0; the machine starts in state 0 with head position 0.

226 P. Koepke

c) If t < θ and S(t) �∈ state(P) then θ = t+1; the machine stops if the machine
state is not a program state of P .

d) If t < θ and S(t) ∈ state(P) then t + 1 < θ; choose the unique command
(s, c, c′,m, s′) ∈ P with S(t) = s and T (t)H(t) = c; this command is executed
as follows:

T (t + 1)ξ =
{

c′, if ξ = H(t);
T (t)ξ , else;

S(t + 1) = s′;

H(t + 1) =

⎧⎨
⎩

H(t) + 1, if m = 1;
H(t) − 1, if m = 0 and H(t) is a successor ordinal;
0, else.

e) If t < θ is a limit ordinal, the machine constellation at t is determined by
taking inferior limits:

∀ξ ∈ OrdT (t)ξ = lim inf
r→t

T (r)ξ;

S(t) = lim inf
r→t

S(r);

H(t) = lim inf
s→t,S(s)=S(t)

H(s).

The computation is obviously recursively determined by the initial tape contents
T (0) and the program P . We call it the ordinal computation by P with input
T (0). If the computation stops, θ = β + 1 is a successor ordinal and T (β) is the
final tape content. In this case we say that P computes T (β) from T (0) and
write P : T (0) �→ T (β).

This interpretation of programs yields associated notions of computability.

Definition 4. A partial function F :Ord 2 ⇀Ord 2 is ordinal computable if
there is a program P such that P : T �→ F (T) for every T ∈ dom(F).

By coding, the notion of ordinal computability can be extended to other
domains. We can e.g. code an ordinal δ ∈ Ord by the characteristic function
χ{δ} : Ord → 2, χ{δ}(ξ) = 1 iff ξ = δ, and define:

Definition 5. A partial function F : Ord ⇀ Ord is ordinal computable if the
function χ{δ} �→ χ{F (δ)} is ordinal computable.

We also consider computations involving finitely many ordinal parameters.

Definition 6. A subset x ⊆ Ord is ordinal computable from finitely many
ordinal parameters if there a finite subset z ⊆ Ord and a program P such that
P : χz �→ χx.

Computing a Model of Set Theory 227

3 Ordinal Algorithms

The intended computations will deal with ordinals and sequences of ordinals.
The simplest way of representing the ordinal α ∈ Ord in an ordinal machine is
by a tape whose content is the characteristic function of {α}:

χ{α} : Ord → 2, χ{α}(ξ) = 1 iff ξ = α.

A basic task is to find or identify this ordinal α: initially the head is in position
0, it then moves to the right until it stops exactly at position α. This is achieved
by the following program:

P = {(0, 0, 0, 1, 0), (0, 1, 1, 1, 1), (1, 0, 0, 0, 2), (1, 1, 1, 0, 2)}.
The program is in state 0 until it reads a 1, then it goes one cell to the right,
one cell to the left, and stops because 2 is not a program state. Informally the
algorithm may be written as

Find_Ordinal:
0 if head = 1 then STOP otherwise moveright, go to 0

It will be convenient to work with several tapes side-by-side instead of just
one. One can simulate an n-tape machine on a 1-tape machine. The contents
(T i

ξ |ξ ∈ Ord) of the i-th tape are successively written into the cells of tape T
indexed by ordinals 2nξ + 2i:

T2nξ+2i = T i
ξ .

The head position Hi on the i-th tape is simulated by writing 1’s into an initial
segment of length Hi of cells with indices of the form 2nξ + 2i + 1:

T2nξ+2i+1 =
{

1, if ξ < Hi;
0, else.

So two tapes with contents a0a1a2a3a4 . . . and b0b1b2b3b4 . . . and head positions
3 and 1 respectively are coded as

T = a01b01a11b10a21b20a30b30a40b40

There are canonical but tedious translations from programs for n-tape machines
into corresponding programs for 1-tape machines. One can assume that one or
more of the machine tapes serve as standard Turing tapes on which ordinary
Turing recursive functions are computed.

Basic operations on ordinals are ordinal computable. The Gödel pairing
function for ordinals is defined recursively by

G(α, β) = {G(α′, β′)|max(α′, β′) < max(α, β) or
(max(α′, β′) = max(α, β) and α′ < α) or
(max(α′, β′) = max(α, β) and α′ = α and β′ < β)}.

228 P. Koepke

We sketch an algorithm for computing γ = G(α, β) which can be implemented
straightforwardly on a Turing machine with several tapes, each holding one of
the variables.

Goedel_Pairing:
0 alpha’:=0
1 beta’:=0
2 eta:=0
3 flag:=0
3 gamma:=0
4 if alpha=alpha’ and beta=beta’ then print gamma, stop fi
5 if alpha’=eta and and beta’=eta and flag=0 then

alpha’=0, flag:=1, go to 4 fi
6 if alpha’=eta and and beta’=eta and flag=1 then

eta:=eta+1, alpha’=eta, beta’=0, gamma:=gamma+1, go to 4 fi
7 if beta’<eta and flag=0 then

beta’:=beta’+1, gamma:=gamma+1, go to 4 fi
8 if alpha’<eta and flag=1 then

alpha’:=alpha’+1, gamma:=gamma+1, go to 4 fi

Observe that at limit times this algorithm will always cycle to command 4. The
inverse functions G0 and G1 satisfying

∀γγ = G(G0(γ), G1(γ))

are also ordinal computable. To compute G0(γ) compute G(α, β) for α, β < γ
until you find α, β with G(α, β) = γ; then set G0(γ) = α.

4 A Recursive Truth Predicate

The gödel pairing function G allows to code a finite sequence α0, . . . , αn−1 of
ordinals as a single ordinal

α = G(. . . G(G(α0, α1), α2) . . .).

The usual operations on finite sequences like concatenation, cutting at a certain
length, substitution, etc. are ordinal computable using the Gödel functions
G,G0, G1. We can thus code terms and formulas of a first-order language by
single ordinals in an ordinal computable way.

We introduce a language LT suitable for structures of the form

(α,<,G ∩ α3, f)

where G ∩ α3 is viewed as a ternary relation and f : α → α is a unary function.
The language has variables vn = G(0, n) for n < ω and constant symbols cξ =
G(1, ξ) for ξ ∈ Ord; the symbol cξ will be interpreted as the ordinal ξ. Terms
are defined recursively: variables and constant symbols are terms; if t is a Term
then G(2, t) is a term as well which stands for f(t). Atomic formulas are of the
forms

Computing a Model of Set Theory 229

− G(3, G(t1, t2)) where t1, t2 are terms; this stands for the equality t1 = t2;
− G(4, G(t1, t2)) where t1, t2 are terms; this stands for the inequality t1 < t2;
− G(5, G(G(t1, t2), t3)) where t1, t2, t3 are terms; this stands for the relation

t3 = G(t1, t2).

LT -Formulas are defined recursively: atomic formulas are formulas; if ϕ and ψ
are formulas then the following are formulas as well:

− G(6, ϕ); this stands for the negation ¬ϕ;
− G(7, G(ϕ,ψ)); this stands for the conjunction (ϕ ∧ ψ);
− G(8, G(vn, ϕ)) where vn is a variable; this stands for the existential quantifi-

cation ∃vnϕ.

Then the satisfaction relation

(α,<,G ∩ α3, f) � ϕ[b]

for ϕ an LT -formula and b an assignment of values in α can be defined as usual. If
the function f is ordinal computable then this property is ordinal computable,
since the recursive Tarski truth definition can be carried out by an ordinal
Turing machine.

Define the truth predicate T : Ord → {0, 1} recursively by

T (α) = 1 iff (α,<,G ∩ α3, T � α) � G0(α)[G1(α)].

The assignments α �→ T (α) can be enumerated successively by an ordinal Tur-

ing machine. Hence T is ordinal computable. We shall see shortly that T is a
strong predicate which codes a model of set theory.

5 The Theory SO of Sets of Ordinals

It is well-known that a model of Zermelo-Fraenkel set theory with the axiom of
choice (ZFC) is determined by its sets of ordinals [4], Theorem 13.28. We define
a natural theory SO which axiomatizes the sets of ordinals in a model of ZFC.
This theory was first defined and examined in [6].

The theory SO is two-sorted: ordinals are taken as atomic objects, the other
sort corresponds to sets of ordinals. Let LSO be the language

LSO := {Ord,SOrd, <,=,∈, g}
where Ord and SOrd are unary predicate symbols, <, = and ∈ are binary pred-
icatesymbols and g is a two-place function. To simplify notation, we use lower
case greek letters to range over elements of Ord and lower case roman letters to
range over elements of SOrd.

1. Well-ordering axiom:
∀α, β, γ(¬α < α ∧ (α < β ∧ β < γ → α < γ) ∧
(α < β ∨ α = β ∨ β < α)) ∧
∀a(∃α(α ∈ a) → ∃α(α ∈ a ∧ ∀β(β < α → ¬β ∈ a)));

230 P. Koepke

2. Axiom of infinity (existence of a limit ordinal):
∃α(∃β(β < α) ∧ ∀β(β < α → ∃γ(β < γ ∧ γ < α)));

3. Axiom of extensionality: ∀a, b(∀α(α ∈ a ↔ α ∈ b) → a = b);
4. Initial segment axiom: ∀α∃a∀β(β < α ↔ β ∈ a);
5. Boundedness axiom: ∀a∃α∀β(β ∈ a → β < α);
6. Pairing axiom (Gödel Pairing Function):

∀α, β, γ(g(β, γ) ≤ α ↔ ∀δ, ε((δ, ε) <∗ (β, γ) → g(δ, ε) < α)).
Here (α, β) <∗ (γ, δ) stands for
∃η, θ(η = max(α, β) ∧ θ = max(γ, δ) ∧ (η < θ ∨
(η = θ ∧ α < γ) ∨ (η = θ ∧ α = γ ∧ β < δ))),
where γ = max(α, β) abbreviates (α > β ∧ γ = α) ∨ (α ≤ β ∧ γ = β);

7. g is onto: ∀α∃β, γ(α = g(β, γ));
8. Axiom schema of separation: For all LSO-formulae φ(α, P1, . . . , Pn) postulate:

∀P1, . . . , Pn∀a∃b∀α(α ∈ b ↔ α ∈ a ∧ φ(α, P1, . . . , Pn));
9. Axiom schema of replacement: For all LSO-formulae φ(α, β, P1, . . . , Pn) pos-

tulate:
∀P1, . . . , Pn(∀ξ, ζ1, ζ2(φ(ξ, ζ1, P1, . . . , Pn)∧ φ(ξ, ζ2, P1, . . . , Pn) → ζ1 = ζ2) →
∀a∃b∀ζ(ζ ∈ b ↔ ∃ξ ∈ aφ(ξ, ζ, P1, . . . , Pn)));

10. Powerset axiom:
∀a∃b(∀z(∃α(α ∈ z) ∧ ∀α(α ∈ z → α ∈ a) → ∃=1ξ∀β(β ∈ z ↔ g(β, ξ) ∈ b))).

6 T Codes a Model of SO

The truth predicate T contains information about a large class of sets of ordinals.

Definition 7. For ordinals µ and α define

T (µ, α) = {β < µ|T (G(α, β)) = 1}.

Set
S = {T (µ, α)|µ, α ∈ Ord}.

Theorem 8. (Ord,S, <,=,∈, G) is a model of the theory SO.

Proof. The axioms (1)-(7) are obvious. The proofs of axiom schemas (8) and (9)
rest on a Levy-type reflection principle. For θ ∈ Ord define

Sθ = {T (µ, α)|µ, α ∈ θ}.

Then for any LSO-formula ϕ(v0, . . . , vn−1) and η ∈ Ord there is some limit
ordinal θ > η such that

∀ξ0, . . . , ξn−1 ∈ θ((Ord,S, <,=,∈, G) � ϕ[ξ0, . . . , ξn−1] iff

(θ,Sθ, <,=,∈, G) � ϕ[ξ0, . . . , ξn−1]).

Computing a Model of Set Theory 231

Since all elements of Sθ can be defined from the truth function T and ordinals
< θ, the right-hand side can be evaluated in the structure (θ,<,G ∩ θ3, T) by
an LT -formula ϕ∗which can be recursively computed from ϕ. Hence

∀ξ0, . . . , ξn−1 ∈ θ((Ord,S, <,=,∈, G) � ϕ[ξ0, . . . , ξn−1] iff

(θ,<,G ∩ θ3, T) � ϕ∗[ξ0, . . . , ξn−1]).

So sets witnessing axioms (8) and (9) can be defined over (θ,<,G ∩ θ3, T) and
are thus elements of S.

The powerset axiom can be shown by a similar reflection argument.

7 Ordinal Computability Corresponds to Constructibility

Kurt Gödel [2] defined the inner model L of constructible sets as the union of
a hierarchy of levels Lα:

L =
⋃

α∈Ord

Lα

where the hierarchy is defined by: L0 = ∅, Lδ =
⋃

α<δ Lα for limit ordinals δ,
and Lα+1 =the set of all sets which are first-order definable in the structure
(Lα,∈). The model L is the ⊆-smallest inner model of set theory. The standard
reference for the theory of the model L is the monograph [1].

The following main result provides a characterization of ordinal computability
which does not depend on any specific machine model or coding of language:

Theorem 9. A set x of ordinals is ordinal computable from a finite set of ordinal
parameters if and only if it is an element of the constructible universe L.

Proof. Let x ⊆ Ord be ordinal computable by the program P from the finite set
{α0, . . . , αk−1} of ordinal parameters: P : χ{α0, . . . , αk−1} �→ χx. By the simple
nature of the computation procedure the same computation can be carried out
inside the inner model L:

(L,∈) � P : χ{α0, . . . , αk−1} �→ χx.

Hence χX ∈ L and x ∈ L.
Conversely consider x ∈ L. Since (Ord,S, <,=,∈, G) is a model of the theory

SO there is an inner model M of set theory such that

S = {z ⊆ Ord |z ∈ M}.

Since L is the ⊆-smallest inner model, L ⊆ M . Hence x ∈ M and x ∈ S. Let
x = T (µ, α). By the computability of the truth predicate, x is ordinal computable
from the parameters µ and α.

232 P. Koepke

References

1. Keith Devlin. Constructibility. Perspectives in Mathematical Logic. Springer-
Verlag, Berlin, 1984.

2. Kurt Gödel. The Consistency of the Continuum Hypothesis, volume 3 of Ann. of
Math. Studies. Princeton University Press, Princeton, 1940.

3. Joel David Hamkins and Andy Lewis. Infinite Time Turing Machines. J. Symbolic
Logic, 65(2):567–604, 2000.

4. Thomas Jech. Set Theory. The Third Millennium Edition. Springer Monographs
in Mathematics. Springer-Verlag, 2003.

5. Peter Koepke. Turing Computations on Ordinals. Submitted to the Bulletin of
Symbolic Logic. Preprint math.LO/0502264 at the e-print archive arXiv.org.

6. Peter Koepke and Martin Koerwien. The Theory of Sets of Ordinals. Preprint
math.LO/0502265 at the e-print archive arXiv.org.

	Introduction
	Ordinal Turing Machines
	Ordinal Algorithms
	A Recursive Truth Predicate
	The Theory SO of Sets of Ordinals
	T Codes a Model of SO
	Ordinal Computability Corresponds to Constructibility
	References

