
FORMALIZED MATHEMATICS

Volume 13, Number 1, 2005

University of Bia lystok

Coincidence Lemma and Substitution

Lemma
1

Patrick Braselmann

University of Bonn

Peter Koepke

University of Bonn

Summary. This article is part of a series of Mizar articles which constitute

a formal proof (of a basic version) of Kurt Gödel’s famous completeness theorem

(K. Gödel, “Die Vollständigkeit der Axiome des logischen Funktionenkalküls”,

Monatshefte für Mathematik und Physik 37 (1930), 349–360). The completeness

theorem provides the theoretical basis for a uniform formalization of mathematics

as in the Mizar project. We formalize first-order logic up to the completeness

theorem as in H. D. Ebbinghaus, J. Flum, and W. Thomas, Mathematical Logic,

1984, Springer Verlag New York Inc. The present article establishes further

concepts of substitution of a variable for a variable in a first-order formula. The

main result is the substitution lemma. The contents of this article correspond

to Chapter III par. 5, 5.1 Coincidence Lemma and Chapter III par. 8, 8.3

Substitution Lemma of Ebbinghaus, Flum, Thomas.

MML Identifier: SUBLEMMA.

The articles [13], [7], [15], [1], [4], [9], [8], [10], [3], [18], [6], [16], [19], [5], [12],

[17], [11], [14], and [2] provide the terminology and notation for this paper.

1. Preliminaries

For simplicity, we adopt the following rules: a, b are sets, i, k are natural

numbers, p, q are elements of CQC-WFF, x, y are bound variables, A is a non

empty set, J is an interpretation of A, v, w are elements of V(A), P , P ′ are

1This research was carried out within the project “Wissensformate” and was finan-

cially supported by the Mathematical Institute of the University of Bonn (http://www.-

wissensformate.uni-bonn.de). Preparation of the Mizar code was part of the first author’s

graduate work under the supervision of the second author. The authors thank Jip Veldman

for his work on the final version of this article.

17
c© 2005 University of Bia lystok

ISSN 1426–2630

18 patrick braselmann and peter koepke

k-ary predicate symbols, l1, l′1 are variables lists of k, l2 is a finite sequence of

elements of Var, S1, S′
1 are CQC-substitutions, and S, S2, S3 are elements of

CQC-Sub-WFF.

Next we state two propositions:

(1) For all functions f , g, h, h1, h2 such that domh1 ⊆ domh and domh2 ⊆

domh holds f+·g+·h = f+·h1+·(g+·h2)+·h.

(2) For every function v1 such that x ∈ dom v1 holds v1↾(dom v1 \

{x})+·(x7−→. v1(x)) = v1.

Let us consider A. A value substitution of A is a partial function from

BoundVar to A.

In the sequel v2, v1, v3 are value substitutions of A.

Let us consider A, v, v2. The functor v(v2) yields an element of V(A) and

is defined by:

(Def. 1) v(v2) = v+·v2.

Let us consider S. Then S1 is an element of CQC-WFF.

Let us consider S, A, v. The functor ValS(v, S) yielding a value substitution

of A is defined by:

(Def. 2) ValS(v, S) = (@(S2)) · v.

The following proposition is true

(3) If S is sub-verum, then CQCSub(S) = VERUM .

Let us consider S, A, v, J . The predicate J, v |= S is defined as follows:

(Def. 3) J, v |= S1.

The following propositions are true:

(4) If S is sub-verum, then for every v holds J, v |= CQCSub(S) iff

J, v(ValS(v, S)) |= S.

(5) If i ∈ dom l1, then l1(i) is a bound variable.

(6) If S is sub-atomic, then CQCSub(S) =

PredSym(S1)[CQC-Subst(SubArguments(S), S2)].

(7) If SubArguments(SubP(P, l1, S1)) = SubArguments(SubP(P ′, l′1, S
′
1)),

then l1 = l′1.

(8) SubArguments(SubP(P, l1, S1)) = l1.

Let us consider k, P , l1, S1. Then SubP(P, l1, S1) is an element of

CQC-Sub-WFF.

We now state three propositions:

(9) CQCSub(SubP(P, l1, S1)) = P [CQC-Subst(l1, S1)].

(10) P [CQC-Subst(l1, S1)] is an element of CQC-WFF.

(11) CQC-Subst(l1, S1) is a variables list of k.

Let us consider k, l1, S1. Then CQC-Subst(l1, S1) is a variables list of k.

One can prove the following propositions:

coincidence lemma and substitution lemma 19

(12) If x /∈ dom(S2), then v(ValS(v, S))(x) = v(x).

(13) If x ∈ dom(S2), then v(ValS(v, S))(x) = (ValS(v, S))(x).

(14) v(ValS(v,SubP(P, l1, S1))) ∗ l1 = v ∗ CQC-Subst(l1, S1).

(15) (SubP(P, l1, S1))1 = P [l1].

(16) For every v holds J, v |= CQCSub(SubP(P, l1, S1)) iff

J, v(ValS(v,SubP(P, l1, S1))) |= SubP(P, l1, S1).

(17) (SubNot(S))1 = ¬(S1) and (SubNot(S))2 = S2.

Let us consider S. Then SubNot(S) is an element of CQC-Sub-WFF.

We now state three propositions:

(18) J, v(ValS(v, S)) 6|= S iff J, v(ValS(v, S)) |= SubNot(S).

(19) ValS(v, S) = ValS(v,SubNot(S)).

(20) If for every v holds J, v |= CQCSub(S) iff J, v(ValS(v, S)) |= S, then for

every v holds J, v |= CQCSub(SubNot(S)) iff J, v(ValS(v,SubNot(S))) |=

SubNot(S).

Let us consider S2, S3. Let us assume that (S2)2 = (S3)2. The functor

CQCSubAnd(S2, S3) yielding an element of CQC-Sub-WFF is defined as follows:

(Def. 4) CQCSubAnd(S2, S3) = SubAnd(S2, S3).

Next we state several propositions:

(21) If (S2)2 = (S3)2, then (CQCSubAnd(S2, S3))1 = (S2)1 ∧ (S3)1 and

(CQCSubAnd(S2, S3))2 = (S2)2.

(22) If (S2)2 = (S3)2, then (CQCSubAnd(S2, S3))2 = (S2)2.

(23) If (S2)2 = (S3)2, then ValS(v, S2) = ValS(v,CQCSubAnd(S2, S3)) and

ValS(v, S3) = ValS(v,CQCSubAnd(S2, S3)).

(24) If (S2)2 = (S3)2, then CQCSub(CQCSubAnd(S2, S3)) = CQCSub(S2)∧

CQCSub(S3).

(25) If (S2)2 = (S3)2, then J, v(ValS(v, S2)) |= S2 and J, v(ValS(v, S3)) |= S3

iff J, v(ValS(v,CQCSubAnd(S2, S3))) |= CQCSubAnd(S2, S3).

(26) Suppose (S2)2 = (S3)2 and for every v holds J, v |= CQCSub(S2)

iff J, v(ValS(v, S2)) |= S2 and for every v holds J, v |=

CQCSub(S3) iff J, v(ValS(v, S3)) |= S3. Let given v. Then J, v |=

CQCSub(CQCSubAnd(S2, S3)) if and only if

J, v(ValS(v,CQCSubAnd(S2, S3))) |= CQCSubAnd(S2, S3).

In the sequel B is an element of [: QC-Sub-WFF, BoundVar :] and S4 is a

second q.-component of B.

The following proposition is true

(27) If B is quantifiable, then (SubAll(B,S4))1 = ∀B2
((B1)1) and

(SubAll(B,S4))2 = S4.

Let B be an element of [: QC-Sub-WFF, BoundVar :]. We say that B is

CQC-WFF-like if and only if:

20 patrick braselmann and peter koepke

(Def. 5) B1 ∈ CQC-Sub-WFF .

Let us observe that there exists an element of [: QC-Sub-WFF, BoundVar :]

which is CQC-WFF-like.

Let us consider S, x. Then 〈〈S, x〉〉 is a CQC-WFF-like element of

[: QC-Sub-WFF, BoundVar :].

In the sequel B denotes a CQC-WFF-like element of

[: QC-Sub-WFF, BoundVar :], x1 denotes a second q.-component of 〈〈S, x〉〉,

and S4 denotes a second q.-component of B.

Let us consider B. Then B1 is an element of CQC-Sub-WFF.

Let us consider B, S4. Let us assume that B is quantifiable. The func-

tor CQCSubAll(B,S4) yields an element of CQC-Sub-WFF and is defined as

follows:

(Def. 6) CQCSubAll(B,S4) = SubAll(B,S4).

We now state the proposition

(28) If B is quantifiable, then CQCSubAll(B,S4) is sub-universal.

Let us consider S. Let us assume that S is sub-universal. The functor

CQCSubScope(S) yielding an element of CQC-Sub-WFF is defined as follows:

(Def. 7) CQCSubScope(S) = SubScope(S).

Let us consider S2, p. Let us assume that S2 is sub-universal and p =

CQCSub(CQCSubScope(S2)). The functor CQCQuant(S2, p) yielding an ele-

ment of CQC-WFF is defined as follows:

(Def. 8) CQCQuant(S2, p) = Quant(S2, p).

The following two propositions are true:

(29) If S is sub-universal, then CQCSub(S) =

CQCQuant(S, CQCSub(CQCSubScope(S))).

(30) If B is quantifiable, then CQCSubScope(CQCSubAll(B,S4)) = B1.

2. The Substitution Lemma

The following propositions are true:

(31) If 〈〈S, x〉〉 is quantifiable, then CQCSubScope(CQCSubAll(〈〈S, x〉〉, x1)) =

S and CQCQuant(CQCSubAll(〈〈S, x〉〉, x1),CQCSub(CQCSubScope

(CQCSubAll(〈〈S, x〉〉, x1)))) = CQCQuant(CQCSubAll(〈〈S, x〉〉, x1),

CQCSub(S)).

(32) If 〈〈S, x〉〉 is quantifiable, then CQCQuant(CQCSubAll(〈〈S, x〉〉, x1),

CQCSub(S)) = ∀
S-Bound(@CQCSubAll(〈〈S, x〉〉,x1))

CQCSub(S).

(33) If x ∈ dom(S2), then v((@(S2))(x)) = v(ValS(v, S))(x).

(34) If x ∈ dom(@(S2)), then (@(S2))(x) is a bound variable.

(35) [:WFF, vSUB :] ⊆ dom QSub .

coincidence lemma and substitution lemma 21

In the sequel B1 denotes an element of [: QC-Sub-WFF, BoundVar :] and S5

denotes a second q.-component of B1.

We now state a number of propositions:

(36) If B is quantifiable and B1 is quantifiable and SubAll(B,S4) =

SubAll(B1, S5), then B2 = (B1)2 and S4 = S5.

(37) If B is quantifiable and B1 is quantifiable and CQCSubAll(B,S4) =

SubAll(B1, S5), then B2 = (B1)2 and S4 = S5.

(38) If 〈〈S, x〉〉 is quantifiable, then SubBound(CQCSubAll(〈〈S, x〉〉, x1)) = x.

(39) If 〈〈S, x〉〉 is quantifiable and x ∈ rng RestrictSub(x,∀x(S1), x1), then

S-Bound(@CQCSubAll(〈〈S, x〉〉, x1)) /∈ rng RestrictSub(x,∀x(S1), x1) and

S-Bound(@CQCSubAll(〈〈S, x〉〉, x1)) /∈ BoundVars(S1).

(40) If 〈〈S, x〉〉 is quantifiable and x /∈ rng RestrictSub(x,∀x(S1), x1), then

S-Bound(@CQCSubAll(〈〈S, x〉〉, x1)) /∈ rng RestrictSub(x,∀x(S1), x1).

(41) If 〈〈S, x〉〉 is quantifiable, then S-Bound(@CQCSubAll(〈〈S, x〉〉, x1)) /∈

rng RestrictSub(x,∀x(S1), x1).

(42) If 〈〈S, x〉〉 is quantifiable, then S2 =

ExpandSub(x, S1, RestrictSub(x,∀x(S1), x1)).

(43) snb(VERUM) ⊆ BoundVars(VERUM).

(44) snb(P [l1]) ⊆ BoundVars(P [l1]).

(45) If snb(p) ⊆ BoundVars(p), then snb(¬p) ⊆ BoundVars(¬p).

(46) If snb(p) ⊆ BoundVars(p) and snb(q) ⊆ BoundVars(q), then snb(p∧q) ⊆

BoundVars(p ∧ q).

(47) If snb(p) ⊆ BoundVars(p), then snb(∀xp) ⊆ BoundVars(∀xp).

(48) For every p holds snb(p) ⊆ BoundVars(p).

Let us consider A, let a be an element of A, and let us consider x. The

functor x↾a yields a value substitution of A and is defined as follows:

(Def. 9) x↾a = x7−→. a.

In the sequel a denotes an element of A.

The following propositions are true:

(49) If x 6= b, then v(x↾a)(b) = v(b).

(50) If x = y, then v(x↾a)(y) = a.

(51) J, v |= ∀xp iff for every a holds J, v(x↾a) |= p.

Let us consider S, x, x1, A, v. The functor NExVal(v, S, x, x1) yielding a

value substitution of A is defined as follows:

(Def. 10) NExVal(v, S, x, x1) = (@RestrictSub(x,∀x(S1), x1)) · v.

Let us consider A and let v, w be value substitutions of A. Then v+·w is a

value substitution of A.

One can prove the following propositions:

22 patrick braselmann and peter koepke

(52) If 〈〈S, x〉〉 is quantifiable and x ∈ rng RestrictSub(x,∀x(S1), x1), then

S-Bound(@CQCSubAll(〈〈S, x〉〉, x1)) = xupVar(RestrictSub(x,∀x(S1),x1),S1).

(53) If 〈〈S, x〉〉 is quantifiable and x /∈ rng RestrictSub(x,∀x(S1), x1), then

S-Bound(@CQCSubAll(〈〈S, x〉〉, x1)) = x.

(54) If 〈〈S, x〉〉 is quantifiable, then for every a holds

ValS(v(S-Bound(@CQCSubAll(〈〈S, x〉〉, x1))↾a), S) = NExVal(v(S-Bound

(@CQCSubAll(〈〈S, x〉〉, x1))↾a), S, x, x1)+·x↾a and

dom RestrictSub(x,∀x(S1), x1) misses {x}.

(55) Suppose 〈〈S, x〉〉 is quantifiable. Then for every a holds

J, v(S-Bound(@CQCSubAll(〈〈S, x〉〉, x1))↾a)(ValS(v(S-Bound(@CQCSubAll

(〈〈S, x〉〉, x1))↾a), S)) |= S if and only if for every a holds

J, v(S-Bound(@CQCSubAll(〈〈S, x〉〉, x1))↾a)(NExVal(v(S-Bound

(@CQCSubAll(〈〈S, x〉〉, x1))↾a), S, x, x1)+·x↾a) |= S.

(56) If 〈〈S, x〉〉 is quantifiable, then for every a holds

NExVal(v(S-Bound(@CQCSubAll(〈〈S, x〉〉, x1))↾a), S, x, x1) =

NExVal(v, S, x, x1).

(57) Suppose 〈〈S, x〉〉 is quantifiable. Then for every a holds

J, v(S-Bound(@CQCSubAll(〈〈S, x〉〉, x1))↾a)(NExVal(v(S-Bound

(@CQCSubAll(〈〈S, x〉〉, x1))↾a), S, x, x1)+·x↾a) |= S if and only if for every

a holds J, v(S-Bound(@CQCSubAll(〈〈S, x〉〉, x1))↾a)(NExVal(v, S, x, x1)

+·x↾a) |= S.

3. The Coincidence Lemma

The following propositions are true:

(58) If rng l2 ⊆ BoundVar, then snb(l2) = rng l2.

(59) dom v = BoundVar and dom(x↾a) = {x}.

(60) v ∗ l1 = l1 · (v↾ snb(l1)).

(61) For all v, w such that v↾ snb(P [l1]) = w↾ snb(P [l1]) holds J, v |= P [l1] iff

J,w |= P [l1].

(62) Suppose that for all v, w such that v↾ snb(p) = w↾ snb(p) holds J, v |= p

iff J,w |= p. Let given v, w. If v↾ snb(¬p) = w↾ snb(¬p), then J, v |= ¬p iff

J,w |= ¬p.

(63) Suppose that

(i) for all v, w such that v↾ snb(p) = w↾ snb(p) holds J, v |= p iff J,w |= p,

and

(ii) for all v, w such that v↾ snb(q) = w↾ snb(q) holds J, v |= q iff J,w |= q.

Let given v, w. If v↾ snb(p ∧ q) = w↾ snb(p ∧ q), then J, v |= p ∧ q iff

J,w |= p ∧ q.

coincidence lemma and substitution lemma 23

(64) For every set X such that X ⊆ BoundVar holds dom(v↾X) =

dom(v(x↾a)↾X) and dom(v↾X) = X.

(65) If v↾ snb(p) = w↾ snb(p), then v(x↾a)↾ snb(p) = w(x↾a)↾ snb(p).

(66) snb(p) ⊆ snb(∀xp) ∪ {x}.

(67) If v↾(snb(p) \ {x}) = w↾(snb(p) \ {x}), then v(x↾a)↾ snb(p) =

w(x↾a)↾ snb(p).

(68) Suppose that for all v, w such that v↾ snb(p) = w↾ snb(p) holds J, v |= p

iff J,w |= p. Let given v, w. If v↾ snb(∀xp) = w↾ snb(∀xp), then J, v |= ∀xp

iff J,w |= ∀xp.

(69) For all v, w such that v↾ snb(VERUM) = w↾ snb(VERUM) holds J, v |=

VERUM iff J,w |= VERUM .

(70) For every p and for all v, w such that v↾ snb(p) = w↾ snb(p) holds J, v |= p

iff J,w |= p.

(71) If 〈〈S, x〉〉 is quantifiable, then v(S-Bound(@CQCSubAll(〈〈S, x〉〉, x1))↾a)

(NExVal(v, S, x, x1)+·x↾a)↾ snb(S1) = v(NExVal(v, S, x, x1)+·x↾a)↾ snb(S1).

(72) If 〈〈S, x〉〉 is quantifiable, then for every a holds

J, v(S-Bound(@CQCSubAll(〈〈S, x〉〉, x1))↾a)(NExVal(v, S, x, x1)+·x↾a) |=

S iff for every a holds J, v(NExVal(v, S, x, x1)+·x↾a) |= S.

(73) dom NExVal(v, S, x, x1) = dom RestrictSub(x,∀x(S1), x1).

(74) If 〈〈S, x〉〉 is quantifiable, then v(NExVal(v, S, x, x1)+·x↾a) =

v(NExVal(v, S, x, x1))(x↾a).

(75) If 〈〈S, x〉〉 is quantifiable, then for every a holds

J, v(NExVal(v, S, x, x1)+·x↾a) |= S iff for every a holds

J, v(NExVal(v, S, x, x1))(x↾a) |= S.

(76) For every a holds J, v(NExVal(v, S, x, x1))(x↾a) |= S iff for every a holds

J, v(NExVal(v, S, x, x1))(x↾a) |= S1.

(77) Let given v, v2, v1, v3. Suppose for every y such that y ∈ dom v1

holds y /∈ snb(VERUM) and for every y such that y ∈ dom v3 holds

v3(y) = v(y) and dom v2 misses dom v3. Then J, v(v2) |= VERUM if and

only if J, v(v2+·v1+·v3) |= VERUM .

(78) Let given v, v2, v1, v3. Suppose for every y such that y ∈ dom v1 holds

y /∈ snb(l1) and for every y such that y ∈ dom v3 holds v3(y) = v(y) and

dom v2 misses dom v3. Then v(v2) ∗ l1 = v(v2+·v1+·v3) ∗ l1.

(79) Let given v, v2, v1, v3. Suppose for every y such that y ∈ dom v1

holds y /∈ snb(P [l1]) and for every y such that y ∈ dom v3 holds

v3(y) = v(y) and dom v2 misses dom v3. Then J, v(v2) |= P [l1] if and

only if J, v(v2+·v1+·v3) |= P [l1].

(80) Suppose that for all v, v2, v1, v3 such that for every y such that y ∈

dom v1 holds y /∈ snb(p) and for every y such that y ∈ dom v3 holds v3(y) =

24 patrick braselmann and peter koepke

v(y) and dom v2 misses dom v3 holds J, v(v2) |= p iff J, v(v2+·v1+·v3) |= p.

Let given v, v2, v1, v3. Suppose for every y such that y ∈ dom v1 holds

y /∈ snb(¬p) and for every y such that y ∈ dom v3 holds v3(y) = v(y) and

dom v2 misses dom v3. Then J, v(v2) |= ¬p if and only if J, v(v2+·v1+·v3) |=

¬p.

(81) Suppose that

(i) for all v, v2, v1, v3 such that for every y such that y ∈ dom v1 holds

y /∈ snb(p) and for every y such that y ∈ dom v3 holds v3(y) = v(y) and

dom v2 misses dom v3 holds J, v(v2) |= p iff J, v(v2+·v1+·v3) |= p, and

(ii) for all v, v2, v1, v3 such that for every y such that y ∈ dom v1 holds

y /∈ snb(q) and for every y such that y ∈ dom v3 holds v3(y) = v(y) and

dom v2 misses dom v3 holds J, v(v2) |= q iff J, v(v2+·v1+·v3) |= q.

Let given v, v2, v1, v3. Suppose for every y such that y ∈ dom v1

holds y /∈ snb(p ∧ q) and for every y such that y ∈ dom v3 holds

v3(y) = v(y) and dom v2 misses dom v3. Then J, v(v2) |= p ∧ q if and

only if J, v(v2+·v1+·v3) |= p ∧ q.

(82) If for every y such that y ∈ dom v1 holds y /∈ snb(∀xp), then for every y

such that y ∈ dom v1 \ {x} holds y /∈ snb(p).

(83) Let v1 be a function. Suppose for every y such that y ∈ dom v1 holds

v1(y) = v(y) and dom v2 misses dom v1. Let given y. If y ∈ dom v1 \ {x},

then (v1↾(dom v1 \ {x}))(y) = v(v2)(y).

(84) Suppose that for all v, v2, v1, v3 such that for every y such that

y ∈ dom v1 holds y /∈ snb(p) and for every y such that y ∈ dom v3

holds v3(y) = v(y) and dom v2 misses dom v3 holds J, v(v2) |= p iff

J, v(v2+·v1+·v3) |= p. Let given v, v2, v1, v3. Suppose for every y such

that y ∈ dom v1 holds y /∈ snb(∀xp) and for every y such that y ∈ dom v3

holds v3(y) = v(y) and dom v2 misses dom v3. Then J, v(v2) |= ∀xp if and

only if J, v(v2+·v1+·v3) |= ∀xp.

(85) Let given p and given v, v2, v1, v3. Suppose for every y such that

y ∈ dom v1 holds y /∈ snb(p) and for every y such that y ∈ dom v3 holds

v3(y) = v(y) and dom v2 misses dom v3. Then J, v(v2) |= p if and only if

J, v(v2+·v1+·v3) |= p.

Let us consider p. The functor RSub1 p yields a set and is defined by:

(Def. 11) b ∈ RSub1 p iff there exists x such that x = b and x /∈ snb(p).

Let us consider p, S1. The functor RSub2(p, S1) yielding a set is defined as

follows:

(Def. 12) b ∈ RSub2(p, S1) iff there exists x such that x = b and x ∈ snb(p) and

x = (@S1)(x).

Next we state several propositions:

(86) dom((@S1)↾RSub1 p) misses dom((@S1)↾RSub2(p, S1)).

coincidence lemma and substitution lemma 25

(87) @RestrictSub(x,∀xp, S1) =

(@S1) \ ((@S1)↾RSub1∀xp+·(@S1)↾RSub2(∀xp, S1)).

(88) dom(@RestrictSub(x, p, S1)) misses

dom((@S1)↾RSub1 p) ∪ dom((@S1)↾RSub2(p, S1)).

(89) If 〈〈S, x〉〉 is quantifiable, then @((CQCSubAll(〈〈S, x〉〉, x1))2) =

(@RestrictSub(x,∀x(S1), x1))+·(@x1)↾RSub1∀x(S1)+·(@x1)↾RSub2

(∀x(S1), x1).

(90) Suppose 〈〈S, x〉〉 is quantifiable. Then there exist v1, v3 such that

(i) for every y such that y ∈ dom v1 holds y /∈ snb(∀x(S1)),

(ii) for every y such that y ∈ dom v3 holds v3(y) = v(y),

(iii) dom NExVal(v, S, x, x1) misses dom v3, and

(iv) v(ValS(v,CQCSubAll(〈〈S, x〉〉, x1))) = v(NExVal(v, S, x, x1)+·v1+·v3).

(91) If 〈〈S, x〉〉 is quantifiable, then for every v holds J, v(NExVal(v, S, x, x1)) |=

∀x(S1) iff J, v(ValS(v,CQCSubAll(〈〈S, x〉〉, x1))) |= CQCSubAll(〈〈S,

x〉〉, x1).

(92) Suppose 〈〈S, x〉〉 is quantifiable and for every v holds J, v |=

CQCSub(S) iff J, v(ValS(v, S)) |= S. Let given v. Then J, v |=

CQCSub(CQCSubAll(〈〈S, x〉〉, x1)) if and only if J, v(ValS(v,CQCSubAll(〈〈S,

x〉〉, x1))) |= CQCSubAll(〈〈S, x〉〉, x1).

The scheme SubCQCInd1 concerns a unary predicate P, and states that:

For every S holds P[S]

provided the following condition is met:

• Let S, S′ be elements of CQC-Sub-WFF, x be a bound variable,

S4 be a second q.-component of 〈〈S, x〉〉, k be a natural number, l1
be a variables list of k, P be a k-ary predicate symbol, and e be

an element of vSUB. Then

(i) P[SubP(P, l1, e)],

(ii) if S is sub-verum, then P[S],

(iii) if P[S], then P[SubNot(S)],

(iv) if S2 = S′
2

and P[S] and P[S′], then P[CQCSubAnd(S, S′)],

and

(v) if 〈〈S, x〉〉 is quantifiable and P[S], then P[CQCSubAll(〈〈S,

x〉〉, S4)].

Next we state the proposition

(93) For all S, v holds J, v |= CQCSub(S) iff J, v(ValS(v, S)) |= S.

References

[1] Grzegorz Bancerek and Krzysztof Hryniewiecki. Segments of natural numbers and finite
sequences. Formalized Mathematics, 1(1):107–114, 1990.

[2] Patrick Braselmann and Peter Koepke. Substitution in first-order formulas: Elementary
properties. Formalized Mathematics, 13(1):5–15, 2005.

26 patrick braselmann and peter koepke

[3] Czes law Byliński. A classical first order language. Formalized Mathematics, 1(4):669–676,
1990.

[4] Czes law Byliński. Functions and their basic properties. Formalized Mathematics, 1(1):55–
65, 1990.

[5] Czes law Byliński. Functions from a set to a set. Formalized Mathematics, 1(1):153–164,
1990.

[6] Czes law Byliński. The modification of a function by a function and the iteration of the
composition of a function. Formalized Mathematics, 1(3):521–527, 1990.

[7] Czes law Byliński. Some basic properties of sets. Formalized Mathematics, 1(1):47–53,
1990.

[8] Czes law Byliński and Grzegorz Bancerek. Variables in formulae of the first order language.
Formalized Mathematics, 1(3):459–469, 1990.

[9] Piotr Rudnicki and Andrzej Trybulec. A first order language. Formalized Mathematics,
1(2):303–311, 1990.

[10] Andrzej Trybulec. Subsets of complex numbers. To appear in Formalized Mathematics.
[11] Andrzej Trybulec. Domains and their Cartesian products. Formalized Mathematics,

1(1):115–122, 1990.
[12] Andrzej Trybulec. Function domains and Frænkel operator. Formalized Mathematics,

1(3):495–500, 1990.
[13] Andrzej Trybulec. Tarski Grothendieck set theory. Formalized Mathematics, 1(1):9–11,

1990.
[14] Andrzej Trybulec. Tuples, projections and Cartesian products. Formalized Mathematics,

1(1):97–105, 1990.
[15] Zinaida Trybulec. Properties of subsets. Formalized Mathematics, 1(1):67–71, 1990.
[16] Edmund Woronowicz. Interpretation and satisfiability in the first order logic. Formalized

Mathematics, 1(4):739–743, 1990.
[17] Edmund Woronowicz. Many–argument relations. Formalized Mathematics, 1(4):733–737,

1990.
[18] Edmund Woronowicz. Relations and their basic properties. Formalized Mathematics,

1(1):73–83, 1990.
[19] Edmund Woronowicz. Relations defined on sets. Formalized Mathematics, 1(1):181–186,

1990.

Received September 5, 2004

