
An Enhanced Theory of Infinite Time Register

Machines

Peter Koepke1 and Russell Miller2

1 Mathematisches Institut, Universität Bonn, Germany
koepke@math.uni-bonn.de

2 Queens College and The Graduate Center, City University of New York, USA
Russell.Miller@qc.cuny.edu

Abstract. Infinite time register machines (ITRMs) are register ma-
chines which act on natural numbers and which are allowed to run for
arbitrarily many ordinal steps. Successor steps are determined by stan-
dard register machine commands. At limit times a register content is
defined as a lim inf of previous register contents, if that limit is finite;
otherwise the register is reset to 0. (A previous weaker version of in-
finitary register machines, in [6], would halt without a result in case of
such an overflow.) The theory of infinite time register machines has sim-
ilarities to the infinite time Turing machines (ITTMs) of Hamkins and
Lewis. Indeed ITRMs can decide all Π1

1 sets, yet they are strictly weaker
than ITTMs.

Keywords: ordinal computability, hypercomputation, infinitary com-
putation, register machine.

1 Introduction

Joel D. Hamkins and Andy Lewis [3] defined infinite time Turing machines
(ITTMs) by letting an ordinary Turing machine run for arbitrarily many or-
dinal steps, taking appropriate limits at limit times. An ITTM can compute
considerably more functions than a standard Turing machine. In this paper
we introduce infinite time register machines (ITRMs) which may be seen as or-
dinary register machines running for arbitrarily many ordinal steps. Successor
steps are determined by standard register machine commands. At limit times
the register contents are defined as lim inf’s of the previous register contents, if
that limit is finite; otherwise the register is reset to 0.

Our ITRMs may be viewed as a specialization of the ordinal register machines
(ORMs) examined in [8]. The stages are still allowed to range over all ordinals,
but we now have a space bound of ω on the contents of the registers. Of course,
this requires a rule for the action of the machine when a register overflows. In
previous versions (see for example [6]), the machines halted or crashed when en-
countering an overflow; those machines exactly corresponded to hyperarithmetic
definitions. Our machines reset a register to 0 whenever it overflows. We view
this as a more natural rule, defining richer descriptive classes which are more

A. Beckmann, C. Dimitracopoulos, and B. Löwe (Eds.): CiE 2008, LNCS 5028, pp. 306–315, 2008.
c© Springer-Verlag Berlin Heidelberg 2008

An Enhanced Theory of Infinite Time Register Machines 307

in analogy with the ITTM-definable classes, and we believe that the theorems
in this paper support our view. Therefore, we propose to use the name infinite
time register machine to refer to our machines in this paper. The machines de-
fined in [6] by the first author could be called non-resetting infinite time register
machines .

Our ITRMs are to ORMs as the ITTMs of Hamkins and Lewis are to or-
dinal Turing machines, or OTMs, as defined in [7]. In both cases the ordinal
machines have unbounded time and space, whereas in the operation of tradi-
tional finite time machines, both time and space were bounded by ω. ITTMs
and ITRMs fall in between, with ω-much space but unbounded time, hence are
denoted as “infinite time” machines. With the bound on space, of course, the
ITRMs necessarily follow different procedures than the ORMs at limit stages.
(For ITTMs and OTMs the corresponding difference concerns head location, not
cell contents.)

Many results for ITRMs in this paper reflect this connection with ITTMs.
Notably, we show that ITRMs are Π1

1 -complete in the sense that for any lightface
Π1

1 -set A of reals there is an ITRM such that a given real x is accepted by the
machine iff x ∈ A (Theorem 2). In particular the class WO of codes for wellorders
is ITRM-decidable (Theorem 1), and likewise ITTM-decidable (by results in [3]).
On the other hand ITRMs are strictly weaker than ITTMs because the latter are
able to solve the halting problem for the former (Theorem 3). Moreover, for a
given number N of registers, the halting problem for ITRMs with N registers is
ITRM-decidable, using of course more registers (Theorem 4). In further research
we plan to develop the theory of ITRMs along the lines of the ITTMs in [3].

2 Infinite Time Register Machines

We base our presentation of infinite time machines on the unlimited register
machines of [1].

Definition 1. An unlimited register machine URM has registers R0, R1, . . .
which can hold natural numbers. A register program consists of commands to
increase or to reset a register. The program may jump on condition of equality
of two registers.

An URM program is a finite list P = I0, I1, . . . , Is−1 of instructions, each of
which may be of one of five kinds:

a) the zero instruction Z(n) changes the contents of Rn to 0, leaving all other
registers unaltered;

b) the successor instruction S(n) increases the natural number contained in Rn

by 1, leaving all other registers unaltered;
c) the oracle instruction O(n) replaces the content of the register Rn by the

number 1 if the content is an element of the oracle, and by 0 otherwise;
d) the transfer instruction T (m, n) replaces the contents of Rn by the natural

number contained in Rm, leaving all other registers unaltered;

308 P. Koepke and R. Miller

e) the jump instruction J(m, n, q) is carried out within the program P as follows:
the contents rm and rn of the registers Rm and Rn are compared, all registers
are left unaltered; then, if rm = rn, the URM proceeds to the qth instruction
of P ; if rm �= rn, the URM proceeds to the next instruction in P .

Since the program is finite, it can use only finitely many of the registers, and the
exact number of registers used will often be important. The instructions of the
program can be addressed by their indices which are called program states. At
each ordinal time τ the machine will be in a configuration consisting of a program
state I(τ) ∈ ω and the register contents which can be viewed as a function
R(τ) : ω → ω. R(τ)(n) is the content of the register Rn at time τ . We also write
Rn(τ) instead of R(τ)(n).

Definition 2. Let P = I0, I1, . . . , Is−1 be an URM program. Let Z ⊆ ω, which
will serve as an oracle. A pair

I : θ → ω, R : θ → (ωω)

is an (infinite time register) computation by P if the following hold:

a) θ is an ordinal or θ = Ord; θ is the length of the computation;
b) I(0) = 0; the machine starts in state 0;
c) If τ < θ and I(τ) �∈ s = {0, 1, . . . , s− 1} then θ = τ + 1; the machine halts if

the machine state is not a program state of P ;
d) If τ < θ and I(τ) ∈ s then τ + 1 < θ; the next configuration is determined by

the instruction II(τ), with I(τ + 1) = I(τ) + 1 unless otherwise specified:
i. if II(τ) is the zero instruction Z(n) then define R(τ + 1) : ω → Ord by

setting Rk(τ + 1) to be 0 (if k = n) or Rk(τ) (if not).
ii. if II(τ) is the successor instruction S(n) then define Rk(τ + 1) to be

Rk(τ) + 1 (if k = n) or Rk(τ) (if not).
iii. if II(τ) is the oracle instruction O(n) then define Rk(τ+1) to be Rk(τ) (if

k �= n); or 1 (if k = n and Rk(τ) ∈ Z); or 0 (if k = n and Rk(τ) /∈ Z).
iv. if II(τ) is the transfer instruction T (m, n) then define Rk(τ + 1) to be

Rm(τ) (if k = n) or Rk(τ) (if not).
v. if II(τ) is the jump instruction J(m, n, q) then let R(τ + 1) = R(τ), and

set I(τ + 1) = q (if Rm(τ) = Rn(τ)) or I(τ + 1) = I(τ) + 1 (if not).
e) If τ < θ is a limit ordinal, then I(τ) = lim infσ→τ I(σ) and

∀k ∈ ω Rk(τ) =
{

lim infσ→τ Rk(σ), if lim infσ→τ Rk(σ) < ω
0, if lim infσ→τ Rk(σ) = ω.

By the second clause in the definition of Rk(τ) the register is reset in case
lim infσ→τ Rk(σ) = ω.

The computation is obviously determined recursively by the initial register con-
tents R(0), the oracle Z and the program P . We call it the (infinite time register)
computation by P with input R(0) and oracle Z. If the computation halts then
θ = β + 1 is a successor ordinal and R(β) is the final register content. In this
case we say that P computes R(β)(0) from R(0) and the oracle Z, and we write
P : R(0), Z �→ R(β)(0).

An Enhanced Theory of Infinite Time Register Machines 309

Definition 3. An n-ary partial function F : ωn ⇀ ω is computable if there is
a register program P such that for every n-tuple (a0, . . . , an−1) ∈ dom(F) holds

P : (a0, . . . , an−1, 0, 0, . . .), ∅ �→ F (a0, . . . , an−1).

Here the oracle instruction is not needed.

Obviously any standard recursive function is computable.

Definition 4. A subset x ⊆ ω, i.e., a (single) real number, is computable if its
characteristic function χx is computable.

A subset A ⊆ P(ω) is computable if there is a register program P , and an
oracle Y ⊆ ω such that for all Z ⊆ ω:

Z ∈ A iff P : (0, 0, . . .), Y × Z �→ 1, and Z �∈ A iff P : (0, 0, . . .), Y × Z �→ 0

where Y × Z is the cartesian product of Y and Z with respect to the pairing
function

(y, z) �→ (y + z)(y + z + 1)
2

+ z.

Here we allow a single real parameter Y (or equivalently, finitely many such
parameters), mirroring the approach in [6].

3 Computing Π1
1 -Sets

We describe an ITRM-program to check the oracle Z for illfoundedness. Illfound-
edness will be witnessed by some infinite descending chain. Initial segments of
such a chain will be kept on a finite stack of natural numbers. Code a stack
(r0, . . . , rm−1) by r = 2m ·3r0 ·5r1 · · · prm−1

m where pi is the i-th prime number. In
the subsequent program we shall treat one register as a stack, with content stack
equal to r above, and with associated operations push, pop, length-stack,
stack-is-decreasing; this last predicate checks that the elements of the stack,
except possibly the bottom element, form a decreasing sequence in the oracle Z.
All of these are computable by an ITRM. The specific coding of stack contents
leads to a controlled limit behaviour:

Proposition 1. Let α < τ where τ is a limit ordinal. Assume that in some
ITRM-computation using a stack, the stack contains r = (r0, . . . , rm−1) for
cofinally many times below τ and that all contents in the time interval (α, τ)
are endextensions of r = (r0, . . . , rm−1). Then at time τ the stack contents are
r = (r0, . . . , rm−1).

The following program P on an ITRM outputs yes/no depending on whether the
oracle Z codes a wellfounded relation. The program is a backtracking algorithm
which searches for a “leftmost” infinite descending chain in Z. A stack is used to
organize the backtracking. We present the program in simple pseudo-code and
assume that it is translated into a register program according to Definition 1

310 P. Koepke and R. Miller

so that the order of commands is kept. Also the stack commands like push
are understood as macros which are inserted into the code with appropriate
renaming of variables and statement numbers. The ensuing Lemma explains the
operation of the program and proves its correctness.

push 1; %% marker to make stack non-empty
push 0; %% try 0 as first element of descending sequence
FLAG=1; %% flag that fresh element is put on stack

Loop: Case1: if FLAG=0 and stack=0 %% inf descending seq found
then begin; output ’no’; stop; end;

Case2: if FLAG=0 and stack=1 %% inf descending seq not found
then begin; output ’yes’; stop; end;

Case3: if FLAG=0 and length-stack > 1
%% top element cannot be continued infinitely descendingly

then begin; %% try next
pop N;
push N+1;
FLAG:=1; %% flag that fresh element is put on stack
goto Loop;
end;

Case4: if FLAG=1 and stack-is-decreasing
then begin;
push 0; %% try to continue sequence with 0
FLAG:=0; FLAG:=1; %% flash the flag
goto Loop;
end;

Case5: if FLAG=1 and not stack-is-decreasing
then begin;
pop N;
push N+1; %% try next
FLAG:=0; FLAG:=1; %% flash the flag
goto Loop;
end;

Notice that the program will always loop back to Loop until it halts.

Lemma 1. Let I : θ → ω, R : θ → (ωω) be the computation by P with oracle Z
and trivial input (0, 0, . . .). Then the computation satisfies:

a) Suppose the machine is in state Loop with stack contents (1, r0, . . . , rm−1)
so that (r0, . . . , rm−1) descend strictly in Z. Moreover suppose that Flag=1
and that Z is wellfounded below rm−1. Then the machine will reach the state
Loop with the same stack contents and Flag=0 after a certain interval of
time; during that interval, (1, r0, . . . , rm−1) will always be an initial segment
of the stack.

b) Suppose the machine is in state Loop with stack contents (1, r0, . . . , rm−1)
so that (r0, . . . , rm−1) descend strictly in Z. Moreover suppose that Flag=1

An Enhanced Theory of Infinite Time Register Machines 311

and that Z is illfounded below rm−1. Let rm be the smallest integer such
that rmZrm−1 and Z is illfounded below rm . Then the machine will reach
the state Loop with stack contents (1, r0, . . . , rm−1, rm) and Flag=1 after a
certain interval of time; during that interval, (1, r0, . . . , rm−1) will always be
an initial segment of the stack.

c) If Z is wellfounded then the computation stops with output ‘yes’.
d) If Z is illfounded then the computation stops with output ‘no’.

Proof. a) is proved by induction on rm−1 in the wellfounded part of Z. So con-
sider a situation (1, r0, . . . , rm−1) as in a) and assume that a) already holds
for all appropriate stacks (1, r′0, . . . , r

′
m′−1) with r′m′−1Zrm−1. By Case4, Case3,

and the inductive assumption, the machine will check through all extensions
(1, r0, . . . , rm−1, N) with N ∈ ω of the stack and always get to state Loop with
Flag=0. The limit of these checks is a stack (1, r0, . . . , rm−1) with Flag=0, as
required.

b) Consider the situation described in b). The program checks through all
extensions (1, r0, . . . , rm−1, N) with N < rm of the stack. Case5 rejects those
N which fail NZrm−1, and part (a) shows that the others are also rejected. So
Case3 finally puts rm on the stack, with Flag=1.

c) and d) follow from a) and b) resp.

Parts c) and d) of the Lemma imply immediately:

Theorem 1. The set WO = {Z ⊆ ω | Z codes a wellorder} is computable by
an ITRM.

Theorem 2. Every Π1
1 set A ⊆ P(ω) is ITRM-computable.

Proof. Let f be a recursive function so that Y ∈ A ↔ f(Y) ∈ WO. Given a real
Y an ITRM can decide whether Y ∈ A by letting the above WO-algorithm run
on f(Y). Note that the algorithm needs to decide whether certain integers stand
in the relation f(Y). This can be reduced to computing a certain digit of f(Y)
which is possible using the oracle Y and a fixed algorithm for computing f .

Since Π1
1 -sets can be decided, it is also possible to decide Boolean combinations

of Π1
1 -sets by ITRMs. By induction on ordertypes one can prove a running time

estimate for the WO-algorithm:

Lemma 2. For an oracle Z coding a well order of ordertype α the WO-program
runs at least α steps before it halts.

4 ITRMs, ITTMs, and Halting Problems

A computation by an ITRM can be simulated by an ITTM. If the register Rm

contains the number i this can be represented as an initial segment of i 1’s on
the m-th tape of an ITTM. If λ is a limit ordinal and the contents of the register
Rm yield lim infτ→λ Rm(τ) = i∗ � ω then the m-th tape will hold an initial

312 P. Koepke and R. Miller

segment of i∗ 1’s at time λ. If i∗ is finite, this is the correct simulation of the
ITRM. If i∗ = ω this may be checked by an auxiliary program which then resets
the register to 0. Thus every class of reals which is computable by an ITRM is
computable by an ITTM, and hence must be Δ1

2, by Theorem 2.5 in [3].
In fact ITRMs are strictly weaker than ITTMs. A configuration is a tuple

(I, R) of a program state I and register contents R : ω → ω where R(n) = 0 for
almost all n < ω. The following halting criterion for ITRMs uses a wellfounded
pointwise partial order of configurations:

(I0, R0) � (I1, R1) iff I0 � I1 and ∀n < ω R0(n) � R1(n).

Lemma 3. Let
I : θ → ω, R : θ → (ωω)

be the infinite time register computation by P with input (0, 0, . . .) and oracle
Z. Then this computation does not halt iff there are τ0 < τ1 < θ such that
(I(τ0), R(τ0)) = (I(τ1), R(τ1)) and

∀τ ∈ [τ0, τ1] (I(τ0), R(τ0)) � (I(τ), R(τ)).

Proof. Assume that the computation does not halt. Let A be the set of all
configurations which occur class-many times in this computation, and fix a stage
τ− after which only configurations in A occur. We claim that A is downwards
directed in the partial order of configurations: for (I0, R0), (I1, R1) ∈ A choose
an ascending ω-sequence τ− < τ0 < τ1 < · · · of stages such that each (Ii, Ri)
occurs at all stages of the form τ2·k+i with i < 2. Then the configuration (I, R)
occuring at stage τ = supn τn has (I, R) � (I0, R0) and (I, R) � (I1, R1), by the
rules for limit stages.

Let (I0, R0) be the unique �-minimal element of A. Choose stages τ0, τ1 such
that t− < t0 < t1 < θ and (I(τ0), R(τ0)) = (I(τ1), R(τ1)) = (I0, R0). This is the
situation required by the lemma.

For the converse assume that there are τ0 < τ1 < θ such that (I(τ0), R(τ0)) =
(I(τ1), R(τ1)) and

∀τ ∈ [τ0, τ1] (I(τ0), R(τ0)) � (I(τ), R(τ)).

Then one can easily show by induction, using the lim inf rules:

If σ � τ0 is of the form σ = τ0 + (τ1 − τ0) · α + β with β < τ1 − τ0 then

(I(σ), R(σ)) = (I(τ0 + β), R(τ0 + β)).

In particular the computation will not stop.

Theorem 3. The halting problem for ITRMs

{(P, Z) | P is a register program, Z ⊆ ω, and the computation by P

with input (0, 0, . . .) and oracle Z halts}
is decidable by an ITTM with oracle Z.

An Enhanced Theory of Infinite Time Register Machines 313

Proof. The criterion of Lemma 3 can be implemented on an ITTM with an
auxiliary tape on which we have one cell for each possible configuration of the
ITRM. We use the ITTM to simulate the ITRM computation by a program P
with input (0, 0, . . .) and oracle Z. At stage τ of the simulation we erase from
the auxiliary tape all 1’s for configurations which are not � (I(τ), R(τ)), and
put a 1 in the cell for the configuration (I(τ), R(τ)). If there was already a 1
in this cell, then we conclude from Lemma 3 that the computation never halts.
At limit stages the same procedure applies. (There may be infinitely many 1’s
on the auxiliary tape at a limit stage, of which cofinitely many will immediately
be erased. For an ITTM, this poses no difficulty.) These two processes continue
until either the simulated ITRM computation halts or we conclude as above that
it will never halt. By Lemma 3, one of these alternatives must happen.

For a fixed number of registers these ideas can be transfered to an ITRM (with
more registers).

Theorem 4. The restricted halting problem

{(P, Z) | P is a register program using at most N registers, Z ⊆ ω, and
the computation by P with input (0, 0, . . .) and oracle Z halts}

is decidable by an ITRM with oracle Z, for every N < ω.

Proof. We introduce some notation to handle configurations of the N register
machine. View a configuration (I, R) as the (N + 1)-sequence

(R(0), . . . , R(N − 1), I)

and use letters c, c′, . . . to denote configurations. Write c � c′ iff ∀m � N c(m) �
c′(m). Let I : θ → ω, R : θ → (ωω) be the infinite time resetting register
computation by P with input (0, 0, . . .) and oracle Z. The computation is a
sequence (c(τ)|τ < θ) of configurations.

By Lemma 3, the computation does not stop (θ = ∞) iff

∃σ < τ < θ (c(σ) = c(τ) ∧ ∀σ′ ∈ [σ, τ] c(σ) � c(σ′)).

This motivates the definition

C(τ) = {c(σ)|σ < τ ∧ ∀σ′ ∈ [σ, τ] c(σ) � c(σ′)}.
Then the halting criterion is simply

∃τ(c(τ) ∈ C(τ)).

Note that the initial configuration (0, . . . , 0) is an element of C(τ) for all τ > 0.
The Theorem will be proved by showing that (a code for) C(τ) can be easily

computed, and indeed by an ITRM. For technical reasons we introduce some
auxiliary sequences of configuration sets. For m � N let Cm(τ) be the finite set

Cm(τ) = {c(σ)|σ < τ ∧ ∀σ′ ∈ [σ, τ] c(σ) � c(σ′) ∧ ∀i � N c(σ)(i) � c(τ)(m)}.

314 P. Koepke and R. Miller

Obviously C(τ) = Cm0(τ) where c(τ)(m0) = maxi�N c(τ)(i). To handle sets of
the form Cm(τ) as natural numbers and register contents we assume that we
have a recursive enumeration or Gödelization c0, c1, . . . of configurations with N
registers. Finite sets C of configurations can be coded by the natural number

C∗ =
∏

ck∈C

pk ,

which can be stored in a machine register.
Consider a simulation of the computation (c(τ)|τ < θ) on some register ma-

chine with sufficiently many registers. We argue that the sequence (C(τ)∗|τ < θ)
can be uniformly computed alongside the simulation, which solves the halting
problem. We proceed by induction on τ < θ.

C(0) = {(0, . . . , 0)} only contains the initial configuration.
If C(τ), c(τ) and c(τ + 1) are given, then

C(τ + 1) =
{{c ∈ C(τ)|c � c(τ + 1)} ∪ {c(τ)}, if c(τ) � c(τ + 1);
{c ∈ C(τ)|c � c(τ + 1)}, else.

Hence C(τ + 1)∗ can be computed by an ordinary register machine from C(τ)∗,
c(τ), and c(τ + 1).

Finally consider the limit time λ < θ.
In case that c(λ) = (0, . . . , 0) then C(λ) = {(0, . . . , 0)}. C(λ)∗ is easily com-

putable, and moreover the criterion for divergence of the computation is fulfilled.
So consider the case that c(λ) �= (0, . . . , 0). Choose m0 such that

c(λ)(m0) = max
i

c(λ)(i) > 0.

Then Cm0(λ) = C(λ) and

(1) c(λ)(m0) = lim infτ→λ c(τ)(m0).
(2) lim infτ→λ Cm0(τ)∗ exists and is finite.

Proof . By (1) there is a cofinal subset T ⊆ λ such that

∀τ ∈ T c(τ)(m0) = c(λ)(m0).

For τ ∈ T we have

Cm0(τ) ⊆ {c | ∀i � N c(i) � c(λ)(m0)}.
The right-hand side is a fixed finite set. So for τ ∈ T , Cm0(τ)∗ is bounded by
some fixed integer. Thus the lim inf is finite. qed(2)
(3) Let ck � c(λ). Then pk|Cm0(λ)∗ iff pk| lim infτ→λ Cm0(τ)∗.

Proof . Let pk|Cm0(λ)∗. Then ck ∈ Cm0(λ). Take σ < λ with ck = c(σ) such
that for all σ′ ∈ [σ, λ], both ck � c(σ′) and c(σ′)(m0) ≥ c(λ)(m0). Then for all
τ ∈ (σ, λ) we have ck ∈ Cm0(τ) and pk|Cm0(τ)∗. Since lim infτ→λ Cm0(τ)∗ will
be equal to one of those Cm0(τ)∗ we get that pk| lim infτ→λ Cm0(τ)∗.

An Enhanced Theory of Infinite Time Register Machines 315

Conversely assume pk| lim infτ→λ Cm0(τ)∗. Take τ0 < λ such that ∀τ ∈ [τ0, λ]
c(τ) � c(λ). Take τ1 ∈ [τ0, λ) such that lim infτ→λ Cm0(τ)∗ = Cm0(τ1)∗. Then
pk|Cm0(τ1)∗, ck ∈ Cm0(τ1) and by the choice of τ0 also ck ∈ Cm0(τ) for all
τ ∈ [τ1, λ). Since ck � c(λ) we have ck ∈ Cm0(λ) and pk|Cm0(λ)∗. qed(3)

This means that Cm0(λ)∗ = C(λ)∗ can be computed from (Cm0 (τ)∗|τ <
λ) by a lim inf-operation. To compute the sequence (C(τ)∗|τ < θ) alongside
(c(τ)|τ < λ) we can use N + 1 new registers R0, . . . , RN to store the val-
ues C0(τ)∗, . . . , CN (τ)∗. Initially these registers are set to {(0, . . . , 0)}∗. Given
C0(τ)∗, . . . , CN (τ)∗, c(τ), and c(τ+1) one can compute C0(τ+1)∗, . . . , CN (τ+1)∗

by an ordinary register program on some extra registers and transfer these values
to R0, . . . , RN . For limit λ < θ the lim inf-rule sets R0, . . . , RN to

lim inf
τ→λ

C0(τ)∗, . . . , lim inf
τ→λ

CN (τ)∗.

By (3), an ordinary register program on further extra registers can compute the
value C(λ)∗ = Cm0(λ)∗, from which it can then compute

C0(λ)∗, . . . , CN (λ)∗

and transfer them to R0, . . . , RN .
This means for all τ ∈ [ω, θ), Cm(τ) will be the (τ +1)-st value transferred to

the register Rm, concluding the proof of Theorem 4.

The Theorem implies that the machines get eventually stronger by increasing
the number of registers. As a consequence there cannot be a universal ITRM.

References

1. Cutland, N.J.: Computability: An Introduction to Recursive Function Theory. In:
Perspectives in Mathematical Logic. Cambridge University Press (1980)

2. Dimitriou, I., Hamkins, J.D., Koepke, P.(eds.): BIWOC – Bonn International Work-
shop on Ordinal Computability. Bonn Logic Reports (2007)

3. Hamkins, J.D., Lewis, A.: Infinite Time Turing Machines. J. Symbolic Logic 65(2),
567–604 (2000)

4. Hamkins, J.D., Linetsky, D., Miller, R.: The complexity of quickly ORM-decidable
sets. In: Cooper, S.B., Löwe, B., Sorbi, A. (eds.) CiE 2007. LNCS, vol. 4497.
Springer, Heidelberg (2007)

5. Hamkins, J.D., Miller, R.: Post’s problem for ordinal register machines. In: Cooper,
S.B., Löwe, B., Sorbi, A. (eds.) CiE 2007. LNCS, vol. 4497, pp. 358–367. Springer,
Heidelberg (2007)

6. Koepke, P.: Infinite time register machines. In: Beckmann, A., Berger, U., Löwe, B.,
Tucker, J.V. (eds.) CiE 2006. LNCS, vol. 3988, pp. 257–266. Springer, Heidelberg
(2006)

7. Koepke, P.: Turing computations on ordinals. B. Symbolic Logic 11, 377–397 (2005)
8. Koepke, P., Siders, R.: Computing the recursive truth predicate on ordinal regis-

ter machines. In: Beckmann, A., et al. (eds.) Logical approaches to computational
barriers. Computer Science Report Series, vol. 7, pp. 160–169 (2006)

	Introduction
	Infinite Time Register Machines
	Computing 11-Sets
	ITRMs, ITTMs, and Halting Problems

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (Gray Gamma 2.2)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (ISO Coated)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Error
 /CompatibilityLevel 1.3
 /CompressObjects /Off
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJDFFile false
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends true
 /DetectCurves 0.1000
 /ColorConversionStrategy /sRGB
 /DoThumbnails true
 /EmbedAllFonts true
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 524288
 /LockDistillerParams true
 /MaxSubsetPct 100
 /Optimize true
 /OPM 1
 /ParseDSCComments true
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveDICMYKValues true
 /PreserveEPSInfo true
 /PreserveFlatness true
 /PreserveHalftoneInfo false
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts false
 /TransferFunctionInfo /Remove
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /CropColorImages true
 /ColorImageMinResolution 150
 /ColorImageMinResolutionPolicy /OK
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 600
 /ColorImageDepth 8
 /ColorImageMinDownsampleDepth 1
 /ColorImageDownsampleThreshold 1.01667
 /EncodeColorImages true
 /ColorImageFilter /FlateEncode
 /AutoFilterColorImages false
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /ColorImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasGrayImages false
 /CropGrayImages true
 /GrayImageMinResolution 150
 /GrayImageMinResolutionPolicy /OK
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 600
 /GrayImageDepth 8
 /GrayImageMinDownsampleDepth 2
 /GrayImageDownsampleThreshold 1.01667
 /EncodeGrayImages true
 /GrayImageFilter /FlateEncode
 /AutoFilterGrayImages false
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /GrayImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasMonoImages false
 /CropMonoImages true
 /MonoImageMinResolution 1200
 /MonoImageMinResolutionPolicy /OK
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 1200
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 2.00000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /CheckCompliance [
 /None
]
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile (None)
 /PDFXOutputConditionIdentifier ()
 /PDFXOutputCondition ()
 /PDFXRegistryName (http://www.color.org)
 /PDFXTrapped /False

 /SyntheticBoldness 1.000000
 /Description <<
 /DEU ()
 >>
>> setdistillerparams
<<
 /HWResolution [2400 2400]
 /PageSize [595.000 842.000]
>> setpagedevice

