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AN ELEMENTARY APPROACH TO THE FINE STRUCTURE OF L

SY D. FRIEDMAN AND PETER KOEPKE

We present here an approach to the fine structure of L based solely on
elementary model theoretic ideas, and illustrate its use in a proof of Global
Square in L. We thereby avoid the Lévy hierarchy of formulas and the sub-
tleties of master codes and projecta, introduced by Jensen [3] in the original
form of the theory. Our theory could appropriately be called “Hyperfine
Structure Theory”, as we make use of a hierarchy of structures and hull op-
erations which refines the traditional L,- or J,-sequences with their Z,-hull
operations.

§1. Introduction. In 1938, K. Godel defined the model L of set theory
to show the relative consistency of Cantor’s Continuum Hypothesis. L is
defined as a union

of initial segments which satisfy: L, = 0, L, = |J,_, L, for limit ordinals
A, and, crucially, L,,, = the collection of 1st order definable subsets of L,.
Since every transitive model of set theory must be closed under 1st order
definability, L turns out to be the smallest inner model of set theory. Thus it
occupies the central place in the set theoretic spectrum of models.

The proof of the continuum hypothesis in L is based on the very uniform
hierarchical definition of the L-hierarchy. The Condensation Lemma states
thatifn : M — L, is an elementary embedding, M transitive, then M = L5
for some @ ; the lemma can be proved by induction on «. If a real, i.e.,
a subset of w, is definable over some L,, then by a Lowenheim-Skolem
argument it is definable over some countable M as above, and hence over
some Ly, @ < w;. This allows one to list the reals in L in length w, and
therefore proves the Continuum Hypothesis in L.

This type of argument has been refined in a striking way in R. Jensen’s Fine
Structure Theory [3]. Roughly speaking, Jensen was able to find, uniformly,
a Skolem function for X,-formulae over L, which itself has a X,-definition
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over L,. If an interesting phenomenon like the collapse or the singularisa-
tion of an ordinal is X,-definable over L, we can use the X,-Skolem function
to achieve that effect canonically. Simultaneously, the X,-Skolem function
produces substructures which condense down to Lz’s, preserving the defi-
nition of the Skolem function. So the construction over L, will “cohere”
nicely with an analogous construction over L which is essential for the
coherence properties in Jensen’s principles O and “morass”. These princi-
ples have proved to be central to the resolution of a number of important
questions in set theory, not necessarily connected to the constructible uni-
verse.

The method of Jensen presents a veritable tour de force even by today’s
standards of set theoretical sophistication. The L,’s, or rather the J,,’s, have
to be expanded by (iterated) projecta, standard parameters, mastercodes and
reducts to ensure the preservation of higher levels of the Lévy-hierarchy of
formulae in condensation arguments. Only after understanding those fine-
structural notions can one turn to the combinatorial aspects of a O-proof,
for example. These complications have motivated attempts to simplify fine
structure theory. Silver and then Magidor [4] work with Skolem functions
for X,-formulae which are not quite X,-definable but are still preserved in
condensations. Such “approximations” to fine structure theory were partic-
ularly successfull in mild applications of the theory as, e.g., in the proof of
the famous Jensen Covering Theorem. Earlier, Silver had employed “ma-
chines” on ordinals which compute the truth predicate for the L,-hierarchy
and which allow one to concentrate on the combinatorics of Jensen’s con-
structions (Silver [6], Devlin [1] and Richardson [5]). The approach of
Friedman [2], based on Jensen’s £* approach, eliminates certain unnatu-
ral parameters, but is otherwise very close in spirit to Jensen’s original fine
structure theory.

In this article we present a natural alternative to fine structure theory,
employing elementary concepts from model theory rather than ideas derived
from recursion theory. The approach shares some technical properties with
Silver machines but we are solely working on the basis of the familiar L,,-
hierarchy which we shall expand by restricted Skolem functions.

As a motivation let us consider the process of singularisation of an ordinal
pin L. Suppose L = f is singular. Let y be minimal such that over L, we
can define a cofinal subset C of f of smaller ordertype; we can assume that
C takes the form

C ={z€p|3Ix<a:zis<,-minimal such that L, = ¢(z, p,x)}

where a < f, ¢ is a first order formula, p'is a parameter sequence from L, .
If

S, (7, x) = the <;-minimal z such that ¢(z, 7/, x)
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is the term for the Skolem function for ¢, then
oL =~
C=S;{p x|x<a}

and f is singularised by S: " restricted to arguments lexicographically smaller
than the tuple 7~ ca, where the lexicographical order <'** is derived from the
< -order. The foregoing suggests saying that f is singularised at the location
(y, ¢, (P,a)), and that the right singularising structure for f is of the form

Lipsa =Ly € <py...,SE SE L SE 1 {@ | @ <™ jral,...);

where ¢y, ¢;,... 1s a fixed w-enumeration of the €-formulae, and where
¢, = ¢. The inclusion of the Skolem functions for all subformulae of ¢,
will ensure the condensation property for such singularising structures.

These structures provide us with a very fine interpolation between succes-
sive L,-levels:

The enriched hierarchy satisfies Condensation and a Finiteness Property
which is reminiscent of the key property of Silver machines.

In the present article we apply the method to establish a Global Square
principle in L, incorporating ideas of J. Silver (see Devlin [1]) and S. Fried-
man [2] into the proof. We have also found very natural arguments for
(k, 1)-morasses and for the Covering Theorem which we plan to publish in
a subsequent article.

It is our hope that our approach will make the Fine Structure of L more
accessible to a wide audience of set-theorists, and separate definability issues
from the combinatorial content of Jensen’s arguments.

§2. Names and locations. For any o € ORD, ¢(u, v) a first-order formula
with n + 1 free variables, and X a sequence from L, of length n, let I (, ¢, X)
denote {y € L, | L, = ¢(y,X)}. Thus we can think of the above triples
(o, ¢, X) as names for elements of L. A central idea in our theory is to
also view (o, @, X) as a location for the structure L, v in the fine hierarchy
with an associated hull operation L, {-} which approximates the usual
Skolem hull operation on subsets of L,. Before we define these notions we
first discuss the ordering of names (=locations) and prove a condensation
result for “constructibly-closed” subsets of L,.

Wellorder names and constructible sets in the standard way as follows:
Consider e-formulae built using —, A, V and the existential quantifier 3.
We agree that every formula ¢ has a distinguished variable used for the
I-operation and for existential quantifications. When we write ¢ (u, X), we
intend that u is distinguished in ; then Juyp with any choice of distinguished
variable is a new permitted formula. Let ¢y, ¢y, ¢, ... be an w-ordering of
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permitted formulas, subformulas appearing earlier, which we assume to be
fixed throughout this article.

We take <, to be the vacuous ordering on Ly = (). If <, is defined
as a wellordering of L, then order sequences from L, by ¥ <! j iff ¥
is lexicographically less then y, using <, on the components of X and y.
Names (B, ¢, X) where 8 < « are ordered by:

(B, om, X) < (7,00, 7) iff (B<)
V (B=yAm<n)
V (B=yAm=nAZ< 7).
Andfory € L., let N(y) denote the < -least (S, ¢, ¥) such that I (8, ¢, X) =
y. Then define y <., z iff N(y) <N(z). Finally for limit 1 set <;=
Ua<; <a. Thus we obtain a wellordering <;= (J,corp <a Of L and a
wellordering < of names (a, ¢, ¥) used to denote elements of L.

By an a-location we understand a location s of the form s = (a, ¢, X).
The < -smallest a-location is (e, o, 0) with 0 a vector of 0s of appropriate
length. The < -successor of s is denoted by s+.

2.1. Constructible operations and basic constructible closures. The basic
constructible operations are / and N as defined above and a Skolem function:

Interpretation. For a name (a, ¢, ¥), set (o, p, %) = {y € L, | Lo E
¢(y,X)}.

Naming. For y € L, let N(y) be the < -least name (a, ¢, ¥) such that
I(a, 0, %) = y.

Skolem Function. For a name (a, ¢, ¥), let S(a, ¢, X) be the <, -least
y € L, such that L, = ¢(y, ¥), and set S(a, ¢, X) = 0if such a y does not
exist.

As we do not assume that « is a limit ordinal and therefore do not have
pairing, we make the following nonstandard definition.

DEerINITION. For X C L and X a finite sequence we write X € X if each
component of X belongs to X. If (a, ¢, X) is a name we write (a, p, X) € X
tomeanthata € X and ¥ € X,

A set or class X C L is constructibly closed, written X <1 L, iff X is closed
under I, N and S, i.e.,

(, 0, X) € X — I(o,p, %) € X and S(o, o, %) € X,
yeX — N(y)eX

For X C Llet L{X} denote the C-smallest ¥ 2 X such that Y < L.

Clearly each L, is constructibly closed.
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PROPOSITION 1. Let X be constructibly closed and let n: X = M be the
Mostowski collapse of X onto the transitive set M. Then there is an ordinal o
such that M = L, and n preserves I, N, S and <:

U (X) e) <L) I) N9 S) = (La9 e) <L) I) N9 S)‘

PrOOF. We prove this for X C L,, by induction on y. The cases y = 0
and y limit are easy. Lety = f+ 1and X C Ly, but X ¢ Ly. Closure
under N and [ implies that X = {I(B, ¢, %) | ¥ from X N L;}. Inductively
letn: XN Ly = L,. Closure under S and the fact that § belongs to X imply
that X N Ly is elementary in Lg. It follows that 7 extends to #: X = L,,,.
Preservationof I, N, S and <, follows also from the elementarity of X N L
in L/;. —

2.2. The fine hierarchy.

DEFINITION. Let s be a location, s = (a, ¢,,, X). Set

_ L, Lo L, v d
Ly = (La,€,<,I,N,S, S5, Sk, ..., S 1 %,0,0,...)

wo Pm
La(3) — 2 la } 23 : ; La
where SJ(7) = S(a, ¢, 7), Sk | X is the restricted Skolem function S’ |
{7 |7 < x}and 0,0,... are empty functions.
(L, | s is a location) is the fine constructible hierarchy.

Each structure of the fine hierarchy possesses an associated hull operator.

DEFINITION. Let s = (o, ¢,,, X) be a location. A set Y C L, is closed in
L, written Y < L,, if Y is an algebraic substructure of L,, i.e., if Y is closed
under I, N, S, Sle, Ske,..., Sk [ .

Foraset X C L, let L;{X } be the C-smallest set ¥ such that ¥ <1 L, and
Y D X. Wecall L,{X} the L,-hull of X.

The fine hierarchy is a very slow growing hierarchy which nonetheless sat-
isfies full condensation. This is the basis for its applications to fine structure
theory.

ProposITION 2 (Condensation). Let s = (o, ¢,,, X) be a location and sup-
pose X is a set such that X < L.
Then there is a unique isomorphism
n : (X,€,<,,LN,S, Sk, Sk, ..., Sk 1X,0,...)

> ;= (L, €,<1,I,N,S, Sk, Sk=, ..., Sl 1'X,0,...).

wo 2

PrROOF. Let n: X = L; be given by Proposition 1. Note that X is ;-
elementary in L, for i < m, since X is closed under the Skolem func-
tions for every proper subformula of ;. Hence n~!': Ly — L, is ¢;-
elementary for i < m. Let r = (@, p;, @) be a location such that z=!(r) :=
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(o, 1, 77! (1)) < (@, o, X). Then z := Skte(n~'(w)) belongs to X and
L, E pi(z,n~ (@) iff Ly E o;(n(z), 7). Moreover, if there is 7 € Ly
such that Ly | ¢,(Z,), then n(z) is the <;-minimal such element, be-
cause 7 <; n(z) and Ly = ¢,(z,@) imply L, | ¢;(z~(Z),z~!(w)) and
n~1(Z) <. z, contradicting the definition of S,,. Hence

n(z) = (St (n~(@))) = S5 (@)

as required. The location 5 of the condensed structure is defined as the < -
smallest strict upper bound of all r such that #~!(r) <s and s = <-sup{r |
n'(r)<s}. -

Usually, we shall have 77 = m in the proposition, except when for every
W € Ly of the right length

7 () < 7.
In that case we have mm =m + l and X = 0, i.e., 5 = (&, Q1) 0) and

L?= (LE’E’(\L’I,N;S;SLO_ SLE ,S:;f,@,)

wo 2 T ?

observing that S’z | 0=0.

The condensation situation in Proposition 2 is often writtenas 7: X = L;.

The slow growth of the L -hierarchy is expressed by a finiteness property
which says that at successor locations at most one more point enters the
hulling process, and by continuity properties saying that at limit locations
we just collect results of previous processes.

ProposITION 3 (Finiteness Property). Let s = (a, , X) be an a-location.
Then there exists z € L, such that for any X C L,:
Lo{X}C L{XuU{z}}.

ProoF. The expansion from L, to L,+ provides us with at most one new
Skolem value in forming hulls, namely S%(x). Take this S’ (X) to be z. -

PROPOSITION 4 (Monotonicity). (a) Suppose that s, and s, are a-locations
such that sy < s,. Then L.YO{X} CL, {X}for allX C L,.

(b) Suppose that oy and o, are ordinals such that oy < c. If s, 51 are op-
and ay-locations, respectively, and X C L,, then L‘\.O{X } CL, {X U {ao}}.

ProOOF. Clear from the definitions. =

For the continuity property we have to distinguish between three kinds of
limit locations:
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PROPOSITION 5 (Continuity). (a) If « is a limit ordinal, s = (e, ¢,,0), and
X C L, then

L{x} =L{X} = |J Lyn{X NLs}.

P<a
(b) If s = (e +1,¢,0) and X C L, then
L{Xxu{a}}nL, = L{XU{a}}NL,
= U{L.{X} | r is an a-location}.

() If s = (a, , %) is a < -limit, s # (&, @y, 0), and X C L, then
L{X}= U{L,{X} | r is an a-location, r < s}.

PRrROOF. (a)is clear from the definitions since the hull operators considered
only use the functions 7, N, S.

(b) The first equality is clear. The other is proved by two inclusions.

(D) If z is an element of the right hand side, z is obtained from elements
of X by successive applications of I, N, S and S} for n < w. Since
Skt (7) = S(a, ¢n, 7), z is also obtainable from elements of X U {«} using
only the I, N and S operations. Hence z belongs to the left hand side.

(C) Conversely, consider z € L{X U{a}}NL,. Thereis a finite sequence
computing z in L{X U {a}}:

Yo, Y1, -+ s Yk =2z
such that each y; is an element of X U{a} or y, is obtained from {y; | i < j}
by using I, N, S:
y;i =1(B,pn,7) or y;=S(B,p,7) or y;isacomponentofN(y)
fOI' Someﬁ’)_;’y € {yl ll< J}
We show by induction on j < k:
ify; € Lo theny; € U = U{L,{X} | r is an a-location }.

Case 1: y; € X U{a}. Then our claim is obvious.

Cast 2: y; = I(B,¢n, ¥) (as in the first of the three ways of obtaining
y; from 7 € {y;|i < j}, displayed above). If f < «, then ,7 € U by
the induction hypothesis and hence y; € U. If f = «, then ' € U by the
induction hypothesis. Setting

w(v, W) =Vu (u € v — @,(u,0))

with distinguished variable v we obtain y; = S’+(7) € U.

CaSE 3: y; = S(B, ¢n, 7) (the second way of obtaining y;). If f < «, then
ByeUandy, € U. If f=a,then y€ Uand y; = Si(7) € U.
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Cast 4: y; is a component of N(y;) for some i < j (the third way of
obtaining y;).

Case4.1: y; € L,. Then y; € U by the induction hypothesis. As U is
closed under N, we get N(y,;) € U, i.e., each component of N (y;) belongs
toU.

Case4.2: y; € Ly;1 \ Ly. Then y; = a, or y; = I(a,y, y) for some
7 € {yi|h < i}. Since @ = I(e, “u is an ordinal”, §), we may assume the
latter. N (y;) will be of the form (, y, (co, ..., cm—1)). We obtain ¢y in U as
follows: If

yo(vo, W) = Fvy ... Jv,_Vu (x(u,v0,v1, ... s Vm_1) > w(u,0))

with distinguished variable v, then ¢, = S)ﬁ;' (¥) € U, since, inductively,
¥ € U. We obtain ¢, in U as follows: If

(v, W) = Fvy ... Jv, Vu (x(u,v,v1, ... , V1) —— w(u,w))
with distinguished variable v, then ¢, = SZL;’ (co”7) € U. Proceeding like

this we see that y; € U.
(c) is again obvious from the definitions. -

This completes our list of basic properties of the hull operations associated
with the fine hierarchy. They are sufficient to establish Jensen’s Square
Principle in L, which we consider next.

83. A proof of square.

THEOREM (Jensen). Assume V = L. There exists asequence ( Cy | B singular )
such that

(a) Cy is closed unbounded in f,

(b) Cy has ordertype less than p,

(c) if B is a limit point of Cy then B is singular and Cz=Cgn .

ProOF. Let § be singular. The following claim gives a reformulation of
the singularity of g:

CLaM 1. There is a location s = (y,p,X), y > B, and a finite set p C L,
such that . . .
{B<B|B=BNL{BUp}}
is bounded in f.
ProOF. Choose « less than f and a function f': o — f cofinally. Choose
y € ORD such that f € L,. Set p = {f}and s = (y, p.;1,0) where n is

a natural number choosen such that ¢, = vy = v, (v,) with distinguished
variable vy. If @ < f < 8 then

FNL{pUp}2BNL{aUp}2 f'a
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Hence N L,{B U p} is cofinal in B, andso BN L, {fU p} # B.4(Claim 1)

Let s = s(B) be <-minimal satisfying Claim 1, together with the finite set
p C L,. Weshow that s isa < -limit which can be nicely approximated from
below.

CLAIM 2. s is a limit location.

PROOF. Assume that s = r'. By the Finiteness Property (Proposition 3)
there exists a z € L, such that if § is less than f then

L{fup} CL{Bfupu{z}}.

So
{(B<p|Bp=pnL{fupu{z}}} C{B<B|B=BNL{BUP}}.

Hence {f < | f=BNL,{BUpU{z}}} is bounded in B, contradicting
the minimality of s. -(Claim 2)
Cram 3. s # (B, o, 0).
PROOF. Assume that s = (f, ©0,0). Choose f, less than § such that
p C Ly If fy < B < f then

BCBNL{BUp} CBNL{BUpP} CBNLz=p,

contradicting the fact that s and p satisfy the requirements in Claim 1.4(Claim 3)
CLaM 4. s # (3, 0,0) for limit y.

PROOE. Assume that there is a limit ordinal y such that s = (y, <p0,(:):).

Choose y, less than y such that p C L, and y, > 7, and set 5o = (yo, 0, 0).
Then

{(B<p|B=BnL{Bup}}C{B<p|F=BNL{BUP}}.

Hence {f < B | B = BN L,{BUp}} is bounded below f, contradicting
the minimality of s. -(Claim 4)

In defining C; we shall consider three special cases and a generic case. In
the special cases, f will have cofinality w and we can pick any w-sequence
cofinal in f as Cy.

SPECIAL CASE 1. s = (a + 1, 0, 0) for some a.

Every element of L,,; can be “named” by « and finitely many elements of
L,. So we may assume that p is of the form p = g U {a} withq C L,.
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Define a strictly increasing sequence (B,
recursively: Let

Bo :max{F<,3 | F=ﬂﬁLs{—/?Up}} < p.
Given f, choose f, | greater than f, least such that

i =pN L(a,%,m{ﬁnﬂ U 4}~

Since s = (a, ., 0) < (a + 1,¢,0), the definition of s implies that .
exists below f. Let f, = U, . Then

BNLAB,Up} = BNL{B,UqU{a}}
= BNU{L,{B.Ugq} | risan a-location}

n < w) of ordinals less than

= Un<(o ﬁ N L(a,wn,6){ﬂw U q}
= Un<w ﬂ N L(ﬂvtpnﬁ){ﬂ”*’l U q}
= Un<w ﬂ"‘” = ﬁ‘“’

the second equality uses Proposition 5(b), the third and fourth use the
monotonicity property of our hulls (Proposition4(a)). Now by the definition
of f, we must have f,, = . Hence setting

Cy = {p

we get a cofinal subset of . This finishes Special Case 1.

n<w}

Now assume that s = (y, ¢, %) # (7, ¢, 0).
CLAIM 5. There is a finite p C L, such that L {,B U ﬁ} =1L,

Proor. By condensation (Proposition 2), there are a unique function n
and a unique location ¥ such that n: L,{f U p} = L;. Then we have
L; = L;{ﬁ Up} where p = n"p. As = | f = id, we can conclude that
BNL,{BUp}=pBNL:{BUP} holds for all § less than 8. Hence

{(B<B|B=BNL{BUP}}={B<B|B=BNL{BUP}}

is bounded below . Then 5 = s by the <-minimality of s, and so L, =
L{BuUp}=L,. -(Claim 5)

Let <* be the canonical wellorder of finite subsets of L derived from <;:
po <* p1 «— po # pi and the <;-maximal element of p; A p, belongs to
p1. Choose a <*-minimal p(8) C L, such that p(f) satisfies Claim 5. Since
in particular the old parameter p is generated by 8 U p(f) we have

CLAM 6. {ﬁ < B | p = BN LA.{FUp(,B)}} is bounded below B. Let
Po < B be the maximum of this set.
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By Claim 6, p(p) satisfies the requirements in Claim 1 and we may denote
p(B) by p without danger of confusion.

We have to examine which locations below s are computed in L, { X }: for
Y C L, wewriter = (y,y,7) € Yif y € Y. We say that a subset Y of L,
is bounded below s, if there is sy < s such thatif r < s and r € Y, then r < s,.
The < -least such s, is called the < -least upper bound of Y below s. Note
that if in addition Y = L,{Z} then we get L,{Z} = L, {Z}.

SPECIAL CASE 2. L,{a U p} is bounded below s for every o < 8.

Define a strictly increasing sequence (,B,, n < co) of ordinals less than S
recursively: Let fy be defined as in Claim 6. Given f,, set

Bu = J(BNLA(B, + D Up}).
By Special Case 2, there is r < s such that
LB +1)Up}=L{(B.+1)Up}.

The minimality of s implies that § N L,{(B, + 1) U p} cannot be cofinal in
f, and so ., is less than g. Let f, = |, B»- Then

Bo CBNLAB,Up} C|JBNLAB+1DUP}C Bt = Bo

n<w n<w

and since S, is greater than f, we have 8, = . Hence setting

C/; = {,Bn | n< Cl)}
we get a cofinal subset of . This finishes Special Case 2.

Now assume that L {ao U p} is unbounded below s for some oy less than
B. Choose oy = () least with this property. We would like to use « to
steer the singularisation of # and obtain ordertype(Cy) < max{ay,w} < f.
If oy is neither a limit ordinal nor zero we have to look for another steering
ordinal. In this case we write oy = o) + 1, and we choose a least a; = ()
less than « such that

L{eqUpU{eg}}

is unbounded below s. If a; = o + 1, then we choose a least a; = o, (f)
less than «; such that

L{onUpU{agai}}

is unbounded below s. Continuing this way we find a natural number
k = k() such that o = a(f) = ax(p) is a limit ordinal or zero.

SPECIAL CASE 3. a = 0.
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One easily sees that L, { pU{ay, ... ,a_, }} is a countable set. Since o =0,
it is unbounded below s. So s has “cofinality »” in the ordering of locations
and we can find a strictly increasing sequence (s, | n < w) of y-locations

converging towards s. Define a strictly increasing sequence (f, | n < w) of
ordinals less than g recursively: Let f; be defined as in Claim 6. Given S,,
choose f, ;1 greater than f, minimal such that

lﬂ+l:= ﬁ‘j<L&H1{ﬁ;+1LJP}'
B.+1 exists, since s, <s. Let B, =, B.- Then

w = U,Bn+l = U:BnLA‘Hl{ﬁnJrl Up} =,BﬂL.v{ﬁw UP}’

n<w n<w

hence the definition of f, implies S, = . Setting
C% = {ZL

we get a cofinal subset of . This finishes Special Case 3.

n<w}

So, finally, we arrive at the generic case:

GENERIC CASE. s = (7,9, %) # (7, %0,0), and L{aUpu{aj,... ,a;_}}
is unbounded below s where « is a limit ordinal less than /.

Define sequences (f;(8) | i < a) and (s; | 0 < i < a) recursively: Let
By < B be defined as in Claim 6. For each 0 < i < « let s; be the < -least
upper bound of L,{i Up U {a(,... ,a;_,}} below s, and let §; = B;(58) be
the least ordinal greater than f, such that

Bi=p ﬂL.\,,{ﬂ,» UpU{ag,..., o }}
If i < a then f; < f because s; < s; also s, = s, B, = B and
Cam7. If0<i< j<a« thens,-gsj and B; < B;.
CramM 8. {Bi | i < a} is closed unbounded in B.

PrROOF. Let @ < « be a limit ordinal. We only have to show that f; =
U5 B and since Bz > p; for i < @ it suffices to see that

Us = UBnL{Bupufas.. . }}

i<a i<a
- /mLxc..{U/f,-uPu{aa,... ,a,z_l}}
i<a
so that | J,_ f3: satisfies the defining property of f. —(Claim 8)

C; will now be defined as an endsegment of such f;’s for which important
elements of the preceding construction are visible below f; or s;. Let I(f)
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be the set of those ordinals i that satisfy the following properties (1)—(5):
()0<i<a,andif/ <k then f; > «.
(2) s; is a y-location,
(3)j<Bifori <j<a.
(4)If/ < kand isthe < -least upper bound of L, {ajUpU{ey, ... ,a;_}}
below s then s; > ¢.

(5)If p<ythenp e L, {B Up}.
Using the following facts (i)—(iv) the reader can easily show that there is i,
less than « such that an ordinal i less than « satisfies the conditions (1)—(5)
if and only if i > iy, i.e., () is a final segment of c.

(i) Ly{aU pU{af,... ,a;_,}} is unbounded below s.

(i) « < Band B = J{Bi|i < a} where (B; | i < a) is (weakly) increasing.

(iii) Ly{aj U p U {a,... ,o)_,}} is bounded below s forall / < k.

(iv)Iff<ythenf e L,{fUp} =1L,
So set

Co={B |icI(p)}.

Then

CLAM 9. Cj is closed unbounded in f and ordertype(Cy) < a < f.

This completes the definition of the system (Cj | § singular), and we are
left with proving the coherence property. Fix f less than f such that f is
a limit point of C;. We have to show that f is singular and G =GN b
p falls under the Generic Case, as ordertype(C;) > w. Let @ be the least
ordinal # such that g = B,- Then @ is a limit ordinal and p is singular since
cf(Bs) < @ < B. By condensation there is an isomorphism

n: L {BUp} =L
Letg = n”pand 7 = «(5).
Cram 10. z [ f=id. Ifsisa B-location then's is a B-location while if s
is a y-location and y > f then n(f) = .
Proor. Ify > Bthenp € L, {fUp}andf = fN L, {B U p}.-(Claim10)

Cramm 11. 5 = s(B).

ProOF. If fy <5 < Bthend # BN L, {sUpU{a}...a}_,}} and there-
fored # BN L:{dUqU{aj...c_}}. It follows that s(§) <5.

Conversely if r <5 and 7 is a finite subset of L,(, then z~'(r) <s; and
n~1"qg C Ly {p; U p} for sufficiently large i less than @, since the s,’s are
unbounded below s, the f;’s are unbounded in f and L;{f U g} = Lu).
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As B, = BNL{BUp} weget f; = BNL,{B; UG} for B’s cofinal in B
and so r < s(B). Therefore 5 < s(B). -(Claim 11)

CrLaM 12. B does not fall under Special Case 1.
Cramm 13. g = p(B).

PrOOF. As L;{f Uq} = L;, we get g >* p(B). Assume g >* p(B). As
p(B) satisfies the requirements in Claim 5 at 8, we get ¢ C L;:{B U p(B)},
hence p = n7!"q C L{BUn"""p(B)}. Son'"p(B) <* p=n"'"g
and ! " p(B) satisfies the requirements in Claim 5, contrary to the minimal
choice of p = p(pB). -(Claim 13)

Now L, {aUp} = L,{a U p} is unbounded below sz. Hence Ls{a Uq}
is unbounded below 5, and @ < f. Hence

CLaM 14. B does not fall under Special Case 2.

Proor. By induction on j < k.

By definition, a;(f) is the smallest v s.t. L,{v U p U {a/|i < j}} is un-
bounded below s. Now L, {@UpU{ey, ... ,a;_,}} is unbounded below sz,
so Ly{a Uq U {ag,... ,a_,}} is unbounded below 5. Hence L:{c;(f) U
qU{eg,... ,a}_}} is unbounded below 5, as @ U {a}...a;_,} C a;(B).
Conversely, the definition of () implies that L, {a} U p U{ag,... ,a/_ }}
is bounded below s by some s’ < s, hence by some locationin L, {f U p}.
So Ly{ajUqU{ay,...,a;_,}} is bounded below 5 by some location less
thans. So a;(f) = a;(B). -(Claim 15)

CLam 16. ai(B) = @.

PrOOF. The set Ly{aUqU{ay,... ,0;_,}} is unbounded below 5. If we
take o’ less than @, then L,_{o/ U pU{ay, ... ,a;_,}} is bounded below sz,
by the minimality of @. So we have oy (f) = @. -(Claim 16)

CLaM 17. B does not fall under Special Case 3,
since @ # 0. So we are again in the Generic Case.
Cramv 18. Ifi < @ then B;(B) = Bi(B).

ProOF. By definition, Sy = Bo(B) is the largest J less than § such that =
BN L{6U p}. From the definition of 8 = f we infer that f, is the largest

d less than B such that6 = BN L, {0Up}. As L, {fUp} = L:{BfUq}
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by a map which is the identity on B, we see that f, is the largest ¢ less than
p such that§ = B N Lz{6 U ¢}, which is the definition of Sy(8).

Now consider 0 < i < @. Then

5;(B) is the < -least upper bound of L,{i U p U {ey,... ,a;_,}} below s.
By the definition of s; we get that
5;(B) is the < -least upper bound of L,_{i UpU{ay,... ,a;_,}} below s.
Moreover,

5;(B) is the < -least upper bound of L:{i Uq U {ay,... ,a;_,}} below 5.
Now S;(B) is the minimal ordinal greater than S, such that

Bi(B)=BNLABBIUPpU{e,... ,_}}

foralls’ < sz(B) with s’ & L, {iUpU{c ... _,}}, and B;(B) is the minimal
ordinal greater than f, such that

Bi(B) = ﬁﬂLs'{ﬂi(ﬁ) UgU{ag...,oq }}

forall 3’ <s withs & Ls{iUqU{ag...a;_ }}.
By the above and the fact that 7 | B = id we have B;(f) = B;(B) as
required. -(Claim 18)

Now one easily checks that each ordinal i less than @ satisfies the defining
properties of I(f) (cf. (1)-(5) above) if and only if it satisfies the corre-
sponding defining properties of (). So we get I(8) = I(B) N, and this
immediately implies the coherence property. -
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