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Summary. This article is part of a series of Mizar articles which constitute

a formal proof (of a basic version) of Kurt Gödel’s famous completeness theorem

(K. Gödel, “Die Vollständigkeit der Axiome des logischen Funktionenkalküls”,

Monatshefte für Mathematik und Physik 37 (1930), 349–360). The completeness

theorem provides the theoretical basis for a uniform formalization of mathematics

as in the Mizar project. We formalize first-order logic up to the completeness

theorem as in H. D. Ebbinghaus, J. Flum, and W. Thomas, Mathematical Logic,

1984, Springer Verlag New York Inc. The present article introduces a sequent

calculus for first-order logic. The correctness of this calculus is shown and some

important inferences are derived. The contents of this article correspond to

Chapter IV of Ebbinghaus, Flum, Thomas.

MML Identifier: CALCUL 1.

The notation and terminology used here are introduced in the following papers:

[18], [11], [20], [4], [9], [14], [15], [3], [1], [2], [8], [23], [12], [21], [13], [24], [10],

[17], [22], [16], [19], [6], [7], and [5].

1. Preliminaries

For simplicity, we adopt the following rules: a, b, c, d denote sets, i, j, m,

n denote natural numbers, p, q, r denote elements of CQC-WFF, x, y denote

bound variables, X denotes a subset of CQC-WFF, A denotes a non empty set,

1This research was carried out within the project “Wissensformate” and was finan-

cially supported by the Mathematical Institute of the University of Bonn (http://www.-

wissensformate.uni-bonn.de). Preparation of the Mizar code was part of the first author’s

graduate work under the supervision of the second author. The authors thank Jip Veldman

for his work on the final version of this article.
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J denotes an interpretation of A, v, w denote elements of V(A), S1 denotes a

CQC-substitution, and f , g denote finite sequences of elements of CQC-WFF.

Let g be a finite sequence and let N be a set. Observe that g↾N is finite

subsequence-like.

Let D be a non empty set and let f be a finite sequence of elements of D.

The functor Ant(f) yields a finite sequence of elements of D and is defined as

follows:

(Def. 1)(i) For every i such that len f = i+1 holds Ant(f) = f↾Seg i if len f > 0,

(ii) Ant(f) = ∅, otherwise.

Let D be a non empty set and let f be a finite sequence of elements of D.

Let us assume that len f > 0. The functor Suc(f) yielding an element of D is

defined as follows:

(Def. 2) Suc(f) = f(len f).

Let D be a non empty set, let p be an element of D, and let f be a finite

sequence of elements of D. We say that p is a tail of f if and only if:

(Def. 3) There exists i such that i ∈ dom f and f(i) = p.

Let us consider f , g. We say that f is a subsequence of g if and only if:

(Def. 4) There exists a subset N of N such that f ⊆ Seq(g↾N).

We now state several propositions:

(1) If f is a subsequence of g, then rng f ⊆ rng g and there exists a subset

N of N such that rng f ⊆ rng(g↾N).

(2) If len f > 0, then lenAnt(f) + 1 = len f and lenAnt(f) < len f.

(3) If len f > 0, then f = (Ant(f)) a 〈Suc(f)〉 and rng f = rng Ant(f) ∪

{Suc(f)}.

(4) If len f > 1, then lenAnt(f) > 0.

(5) Suc(f a 〈p〉) = p and Ant(f a 〈p〉) = f.

In the sequel f1, f2 are finite sequences.

We now state several propositions:

(6) len f1 ≤ len(f1
af2) and len f2 ≤ len(f1

af2) and if f1 6= ∅, then 1 ≤ len f1

and len f2 < len(f2
a f1).

(7) Seq((f a g)↾dom f) = (f a g)↾dom f.

(8) f is a subsequence of f a g.

(9) 1 < len(f1
a 〈b〉 a 〈c〉).

(10) 1 ≤ len(f1
a 〈b〉) and len(f1

a 〈b〉) ∈ dom(f1
a 〈b〉).

(11) If 0 < m, then len Sgm(Seg n ∪ {n + m}) = n + 1.

(12) If 0 < m, then dom Sgm(Seg n ∪ {n + m}) = Seg(n + 1).

(13) If 0 < len f, then f is a subsequence of (Ant(f)) a g a 〈Suc(f)〉.
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(14) 1 ∈ dom〈c, d〉 and 2 ∈ dom〈c, d〉 and (f a〈c, d〉)(len f +1) = c and (f a〈c,

d〉)(len f + 2) = d.

2. A Sequent Calculus

Let us consider f . The functor snb(f) yielding an element of 2BoundVar is

defined by:

(Def. 5) a ∈ snb(f) iff there exist i, p such that i ∈ dom f and p = f(i) and

a ∈ snb(p).

The set of CQC-WFF-sequences is defined as follows:

(Def. 6) a ∈ the set of CQC-WFF-sequences iff a is a finite sequence of elements

of CQC-WFF.

In the sequel P1, P2 denote finite sequences of elements of [: the set of CQC-

WFF-sequences, K :].

Let us consider P1 and let n be a natural number. We say that step n in P1

is correct if and only if:

(Def. 7)(i) There exists f such that Suc(f) is a tail of Ant(f) and P1(n)1 = f if

P1(n)2 = 0,

(ii) there exists f such that P1(n)1 = f a 〈VERUM〉 if P1(n)2 = 1,

(iii) there exist i, f , g such that 1 ≤ i and i < n and Ant(f) is a subsequence

of Ant(g) and Suc(f) = Suc(g) and P1(i)1 = f and P1(n)1 = g if P1(n)2 =

2,

(iv) there exist i, j, f , g such that 1 ≤ i and i < n and 1 ≤ j and

j < i and len f > 1 and len g > 1 and Ant(Ant(f)) = Ant(Ant(g)) and

¬Suc(Ant(f)) = Suc(Ant(g)) and Suc(f) = Suc(g) and f = P1(j)1 and

g = P1(i)1 and (Ant(Ant(f))) a 〈Suc(f)〉 = P1(n)1 if P1(n)2 = 3,

(v) there exist i, j, f , g, p such that 1 ≤ i and i < n and 1 ≤ j and j < i

and len f > 1 and Ant(f) = Ant(g) and Suc(Ant(f)) = ¬p and ¬Suc(f) =

Suc(g) and f = P1(j)1 and g = P1(i)1 and (Ant(Ant(f))) a 〈p〉 = P1(n)1
if P1(n)2 = 4,

(vi) there exist i, j, f , g such that 1 ≤ i and i < n and 1 ≤ j and j < i and

Ant(f) = Ant(g) and f = P1(j)1 and g = P1(i)1 and (Ant(f))a 〈Suc(f)∧

Suc(g)〉 = P1(n)1 if P1(n)2 = 5,

(vii) there exist i, f , p, q such that 1 ≤ i and i < n and p ∧ q = Suc(f) and

f = P1(i)1 and (Ant(f)) a 〈p〉 = P1(n)1 if P1(n)2 = 6,

(viii) there exist i, f , p, q such that 1 ≤ i and i < n and p ∧ q = Suc(f) and

f = P1(i)1 and (Ant(f)) a 〈q〉 = P1(n)1 if P1(n)2 = 7,

(ix) there exist i, f , p, x, y such that 1 ≤ i and i < n and Suc(f) = ∀xp

and f = P1(i)1 and (Ant(f)) a 〈p(x, y)〉 = P1(n)1 if P1(n)2 = 8,



36 patrick braselmann and peter koepke

(x) there exist i, f , p, x, y such that 1 ≤ i and i < n and Suc(f) = p(x,

y) and y /∈ snb(Ant(f)) and y /∈ snb(∀xp) and f = P1(i)1 and (Ant(f)) a

〈∀xp〉 = P1(n)1 if P1(n)2 = 9.

Let us consider P1. We say that P1 is a formal proof if and only if:

(Def. 8) P1 6= ∅ and for every n such that 1 ≤ n and n ≤ len P1 holds step n in

P1 is correct.

Let us consider f . The predicate ⊢ f is defined by:

(Def. 9) There exists P1 such that P1 is a formal proof and f = P1(lenP1)1.

Let us consider p, X. We say that p is formally provable from X if and only

if:

(Def. 10) There exists f such that rng Ant(f) ⊆ X and Suc(f) = p and ⊢ f.

Let us consider X, let us consider A, let us consider J , and let us consider

v. The predicate J, v |= X is defined as follows:

(Def. 11) If p ∈ X, then J, v |= p.

Let us consider X, p. The predicate X |= p is defined as follows:

(Def. 12) If J, v |= X, then J, v |= p.

Let us consider p. The predicate � p is defined as follows:

(Def. 13) ∅CQC-WFF |= p.

Let us consider f , A, J , v. The predicate J, v |= f is defined as follows:

(Def. 14) J, v |= rng f.

Let us consider f , p. The predicate f |= p is defined by:

(Def. 15) If J, v |= f, then J, v |= p.

One can prove the following propositions:

(15) If Suc(f) is a tail of Ant(f), then Ant(f) |= Suc(f).

(16) If Ant(f) is a subsequence of Ant(g) and Suc(f) = Suc(g) and Ant(f) |=

Suc(f), then Ant(g) |= Suc(g).

(17) If len f > 0, then J, v |= Ant(f) and J, v |= Suc(f) iff J, v |= f.

(18) If len f > 1 and len g > 1 and Ant(Ant(f)) = Ant(Ant(g)) and

¬Suc(Ant(f)) = Suc(Ant(g)) and Suc(f) = Suc(g) and Ant(f) |= Suc(f)

and Ant(g) |= Suc(g), then Ant(Ant(f)) |= Suc(f).

(19) If len f > 1 and Ant(f) = Ant(g) and ¬p = Suc(Ant(f)) and ¬Suc(f) =

Suc(g) and Ant(f) |= Suc(f) and Ant(g) |= Suc(g), then Ant(Ant(f)) |= p.

(20) If Ant(f) = Ant(g) and Ant(f) |= Suc(f) and Ant(g) |= Suc(g), then

Ant(f) |= Suc(f) ∧ Suc(g).

(21) If Suc(f) = p ∧ q and Ant(f) |= p ∧ q, then Ant(f) |= p.

(22) If Suc(f) = p ∧ q and Ant(f) |= p ∧ q, then Ant(f) |= q.

(23) J, v |= 〈〈p, S1〉〉 iff J, v |= p.
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In the sequel a is an element of A.

We now state several propositions:

(24) J, v |= p(x, y) iff there exists a such that v(y) = a and J, v(x↾a) |= p.

(25) If Suc(f) = ∀xp and Ant(f) |= Suc(f), then for every y holds Ant(f) |=

p(x, y).

(26) For every set X such that X ⊆ BoundVar holds if x /∈ X, then

v(x↾a)↾X = v↾X.

(27) For all v, w such that v↾ snb(f) = w↾ snb(f) holds J, v |= f iff J,w |= f.

(28) If y /∈ snb(∀xp), then v(y↾a)(x↾a)↾ snb(p) = v(x↾a)↾ snb(p).

(29) If Suc(f) = p(x, y) and Ant(f) |= Suc(f) and y /∈ snb(Ant(f)) and

y /∈ snb(∀xp), then Ant(f) |= ∀xp.

(30) Ant(f a 〈VERUM〉) |= Suc(f a 〈VERUM〉).

(31) Suppose 1 ≤ n and n ≤ len P1. Then P1(n)2 = 0 or P1(n)2 = 1 or

P1(n)2 = 2 or P1(n)2 = 3 or P1(n)2 = 4 or P1(n)2 = 5 or P1(n)2 = 6 or

P1(n)2 = 7 or P1(n)2 = 8 or P1(n)2 = 9.

(32) If p is formally provable from X, then X |= p.

3. Derived Rules

Next we state a number of propositions:

(33) If Suc(f) is a tail of Ant(f), then ⊢ f.

(34) If 1 ≤ n and n ≤ len P1, then step n in P1 is correct iff step n in P1
a P2

is correct.

(35) If 1 ≤ n and n ≤ len P2 and step n in P2 is correct, then step n + lenP1

in P1
a P2 is correct.

(36) If Ant(f) is a subsequence of Ant(g) and Suc(f) = Suc(g) and ⊢ f, then

⊢ g.

(37) If 1 < len f and 1 < len g and Ant(Ant(f)) = Ant(Ant(g)) and

¬Suc(Ant(f)) = Suc(Ant(g)) and Suc(f) = Suc(g) and ⊢ f and ⊢ g,

then ⊢ (Ant(Ant(f))) a 〈Suc(f)〉.

(38) If len f > 1 and Ant(f) = Ant(g) and Suc(Ant(f)) = ¬p and ¬Suc(f) =

Suc(g) and ⊢ f and ⊢ g, then ⊢ (Ant(Ant(f))) a 〈p〉.

(39) If Ant(f) = Ant(g) and ⊢ f and ⊢ g, then ⊢ (Ant(f))a〈Suc(f)∧Suc(g)〉.

(40) If p ∧ q = Suc(f) and ⊢ f, then ⊢ (Ant(f)) a 〈p〉.

(41) If p ∧ q = Suc(f) and ⊢ f, then ⊢ (Ant(f)) a 〈q〉.

(42) If Suc(f) = ∀xp and ⊢ f, then ⊢ (Ant(f)) a 〈p(x, y)〉.

(43) If Suc(f) = p(x, y) and y /∈ snb(Ant(f)) and y /∈ snb(∀xp) and ⊢ f, then

⊢ (Ant(f)) a 〈∀xp〉.
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(44) If ⊢ f and ⊢ (Ant(f)) a 〈¬Suc(f)〉, then ⊢ (Ant(f)) a 〈p〉.

(45) If 1 ≤ len f and ⊢ f and ⊢ f a 〈p〉, then ⊢ (Ant(f)) a 〈p〉.

(46) If ⊢ f a 〈p〉 a 〈q〉, then ⊢ f a 〈¬q〉 a 〈¬p〉.

(47) If ⊢ f a 〈¬p〉 a 〈¬q〉, then ⊢ f a 〈q〉 a 〈p〉.

(48) If ⊢ f a 〈¬p〉 a 〈q〉, then ⊢ f a 〈¬q〉 a 〈p〉.

(49) If ⊢ f a 〈p〉 a 〈¬q〉, then ⊢ f a 〈q〉 a 〈¬p〉.

(50) If ⊢ f a 〈p〉 a 〈r〉 and ⊢ f a 〈q〉 a 〈r〉, then ⊢ f a 〈p ∨ q〉 a 〈r〉.

(51) If ⊢ f a 〈p〉, then ⊢ f a 〈p ∨ q〉.

(52) If ⊢ f a 〈q〉, then ⊢ f a 〈p ∨ q〉.

(53) If ⊢ f a 〈p〉 a 〈r〉 and ⊢ f a 〈q〉 a 〈r〉, then ⊢ f a 〈p ∨ q〉 a 〈r〉.

(54) If ⊢ f a 〈p〉, then ⊢ f a 〈¬¬p〉.

(55) If ⊢ f a 〈¬¬p〉, then ⊢ f a 〈p〉.

(56) If ⊢ f a 〈p ⇒ q〉 and ⊢ f a 〈p〉, then ⊢ f a 〈q〉.

(57) (¬p)(x, y) = ¬p(x, y).

(58) If there exists y such that ⊢ f a 〈p(x, y)〉, then ⊢ f a 〈∃xp〉.

(59) snb(f a g) = snb(f) ∪ snb(g).

(60) snb(〈p〉) = snb(p).

(61) If ⊢ f a 〈p(x, y)〉a 〈q〉 and y /∈ snb(f a 〈∃xp〉a〈q〉), then ⊢ f a 〈∃xp〉a〈q〉.

(62) snb(f) =
⋃
{snb(p) :

∨
i
(i ∈ dom f ∧ p = f(i))}.

(63) snb(f) is finite.

(64) BoundVar = ℵ0 and BoundVar is not finite.

(65) There exists x such that x /∈ snb(f).

(66) If ⊢ f a 〈∀xp〉, then ⊢ f a 〈∀x¬¬p〉.

(67) If ⊢ f a 〈∀x¬¬p〉, then ⊢ f a 〈∀xp〉.

(68) ⊢ f a 〈∀xp〉 iff ⊢ f a 〈¬∃x¬p〉.
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[11] Czes law Byliński. Some basic properties of sets. Formalized Mathematics, 1(1):47–53,
1990.

[12] Agata Darmochwa l. Finite sets. Formalized Mathematics, 1(1):165–167, 1990.
[13] Agata Darmochwa l. A first–order predicate calculus. Formalized Mathematics, 1(4):689–

695, 1990.
[14] Piotr Rudnicki and Andrzej Trybulec. A first order language. Formalized Mathematics,

1(2):303–311, 1990.
[15] Andrzej Trybulec. Subsets of complex numbers. To appear in Formalized Mathematics.
[16] Andrzej Trybulec. Domains and their Cartesian products. Formalized Mathematics,

1(1):115–122, 1990.
[17] Andrzej Trybulec. Function domains and Frænkel operator. Formalized Mathematics,

1(3):495–500, 1990.
[18] Andrzej Trybulec. Tarski Grothendieck set theory. Formalized Mathematics, 1(1):9–11,

1990.
[19] Andrzej Trybulec. Tuples, projections and Cartesian products. Formalized Mathematics,

1(1):97–105, 1990.
[20] Zinaida Trybulec. Properties of subsets. Formalized Mathematics, 1(1):67–71, 1990.
[21] Edmund Woronowicz. Interpretation and satisfiability in the first order logic. Formalized

Mathematics, 1(4):739–743, 1990.
[22] Edmund Woronowicz. Many–argument relations. Formalized Mathematics, 1(4):733–737,

1990.
[23] Edmund Woronowicz. Relations and their basic properties. Formalized Mathematics,

1(1):73–83, 1990.
[24] Edmund Woronowicz. Relations defined on sets. Formalized Mathematics, 1(1):181–186,

1990.

Received September 5, 2004


