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Abstract. Appropriate hierarchies are essential for the study of minimal or con-
structible inner models of set theory, in particular for proving strong combina-
torial principles in those models. We define a finestructural hierarchy (Fα) and
compare it to Jensen’s well-known Jα-hierarchy for Gödel’s constructible uni-
verse L.

1 Introduction

Under the axioms of Zermelo-Fraenkel set theory (ZF) the universe V
of all sets can be layered into a hierarchy of initial segments which is
indexed by the ordinal numbers. John von Neumann made the following
recursive definition: V0 := ∅, Vα+1 := P(Vα), and Vλ :=

⋃

α<λ Vα, for
limit ordinals λ. The axiom schema of foundation (among others) implies
that this hierarchy exhausts the set theoretical universe: V :=

⋃

α∈Ord Vα.
A set x is of ordinal rank α if x ∈ Vα+1\Vα. The rank function measures
the complexity of x in terms of the membership relation.
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Transfinite induction along the ordinals is essentially the only method
to carry out involved arguments and constructions on infinite sets. Via the
von Neumann hierarchy, some inductive arguments can be applied to all
sets in the universe V.

In his fundamental work on the relative consistency of the axiom of
choice and of the generalised continuum hypothesis, Kurt Gödel defined
the constructible universe L which is the smallest inner model of ZF. The
model L has become the prototype for a canonical model of set theory.
The constructible universe is defined and analysed through definability
hierarchies.

The present paper illustrates that there exists a variety of appropri-
ate hierarchies for L. We briefly recall the two classical examples: the
Lα-hierarchy by Gödel and the Jα-hierarchy by Jensen. We shall then
introduce a new hierarchy (Fα) for L and relate it to Jensen’s hierarchy.
The main technical result will be that the Jensen-hierarchy consists of
the limit levels of the Fα-hierarchy which underlines again the canonical
nature of the Jensen-hierarchy.

Gödel [Göd39] defined the hierarchy (Lα)α∈Ord by iterating a defin-
able powerset operation instead of the unrestricted powerset operation.
Denoting the collection of all first-order definable subsets of (X,∈) by
Def(X), the hierarchy is defined by: L0 := ∅, Lα+1 := Def(Lα), and
Lλ :=

⋃

α<λ Lα, for limit ordinals λ. The sets formed in the various lev-
els of this hierarchy are called the constructible sets, L :=

⋃

α∈Ord Lα is
defined to be the constructible universe.

The elements in Lα+1 = Def(Lα) can be classified according to their
defining formulas over (Lα,∈) and to the parameters used. The formulas
can be indexed by natural numbers, and the parameters have already been
located in some earlier level. This allows to denote every set in L by a
finite sets of ordinals or, indeed, by one ordinal so that the methods of
induction and recursion can be applied to all elements of L. In this way,
Gödel proved that the class L is a model of set theory, the inner model
of constructible sets, in which the axiom of choice and the generalized
continuum hypothesis hold.

The constructible universe satisfies many combinatorial properties
and allows involved constructions that cannot be carried out under the
ZFC axioms alone. Ronald Jensen analysed the process of set formation
in the constructible universe in his paper The fine structure of the con-
structible hierarchy [Jen72] for which he received the 2003 AMS Steele
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Prize for a Seminal Contribution to Research. The theory is based on the
analysis of first-order formulas which define a set in Lα+1 \ Lα. Jensen’s
approach requires a thorough syntactical study of formulas of arbitrary
quantifier complexity.

For his work, Jensen introduced the J-hierarchy for L, whose levels
are closed with respect to rudimentary functions. These are the functions
generated by the scheme:

– constant functions and projection functions are rudimentary;
– the formation of unordered pairs is rudimentary;
– if f(x0, . . . , xn−1) and g0(~y), . . . , gn−1(~y) are rudimentary functions

then the composition f(g0(~y), . . . , gn−1(~y)) is rudimentary;
– if g is a rudimentary function then f(y, ~x) =

⋃

z∈y g(z, ~x) is rudi-
mentary.

The smallest, rudimentary closed set containing X is denoted by
rud(X). Then the J-hierarchy is defined recursively as follows: J0 :=
∅, Jα+1 := rud(Jα ∪ {Jα}), and Jλ :=

⋃

α<λ Jα for limit ordinals λ.
The finestructure theory augments the structures Jα with a host of

additional components like canonical well-orders, Skolem functions and
truth predicates in order to reduce arbitrary definability over some Jα to
Σ1-definability over the augmented structure. The fundamental lemmas
of the theory ensure that the additional components are preserved under
various operations in the hierarchy. We state some properties of the J-
hierarchy. Proofs can be found in [Dev84, Chap. VI].

Lemma 1. There exists a ΣΣΣ1(Jα) map from ωα onto ωα× ωα.

Lemma 2. There exists a ΣΣΣ1(Jα) map from ωα onto Jα.

Theorem 1. For every α ≥ 1, P(Jα)∩ Jα+1 = ΣΣΣω(Jα). So in particular
ΣΣΣω(Jα) ⊆ Jα+1 for every α ≥ 1.

Recently, some variants of finestructure theory have been proposed
which try to keep the “model theoretic” intuitions of Jensen’s theory
whilst reducing the syntactical complexities. S. D. Friedman and the first
author [FrKo97] e.g. modified the standard Lα-hierarchy in a way which
allows to use the combinatorics of Silver machines [Sil] in combinatorial
proofs whilst retaining Gödel’s iterated definability approach.

In this note, we present yet another fine structural hierarchy (Fα). The
central idea is to incorporate canonical well-orders and Skolem functions
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directly into the hierarchy, so that these do not have to be defined over
the structures. The F-hierarchy is defined via quantifier-free definability,
which simplifies fine structural arguments. It has been used by the first
author to provide a simple proof of the Jensen covering theorem. Details
and proofs will be published in [Koe∞]. In the present article we prove
that the F-hierarchy is a refinement of the J-hierarchy; the J-hierarchy
consists of the limit structures of the F-hierarchy, hence the F-hierarchy
is an adequate hierarchy for the constructible universe. The proof uses
the fact that sufficiently much of the recursion for the F-hierarchy can be
carried out inside the structures Jα.

The original motivation for introducing the F-hierarchy was core
model theory. The F-hierarchy can be used nicely for structuring the
Dodd-Jensen core model K, but there are problems with higher core mod-
els so far.

2 The F-hierarchy

We introduce the F-hierarchy and state some basic properties. We ap-
proximate the constructible universe by a hierarchy (Fα)α∈Ord of struc-
tures Fα = (Fα, Iα, <α, Sα,∈). Each Fα will be a transitive set and
⋃

α∈Ord Fα = L. The functions Iα and Sα are the restrictions to F<ω
α

of a global interpretation function I and a global Skolem function S de-
fined on L<ω. The relation <α is the restriction of a ternary guarded con-
structible well-order < to F3

α. Let us first define a “Skolem” language S
adequate for the structures Fα:

Definition 1. Let S be the first-order language with the following com-
ponents:

– variable symbols v̇n for n < ω;
– logical symbols =̇ (equality), ∧̇ (conjunction), ¬̇ (negation), ∃̇ (exis-

tential quantification), (, ) (brackets);
– function symbols İ (interpretation), Ṡ (Skolem function) of variable

finite arity;
– a binary relation symbol ∈̇ (set-membership) and a ternary relation

symbol ≺̇ (guarded well-order).

The syntax and semantics of S are defined as usual. The variable
arity of İ and Ṡ is handled by bracketing: if n < ω and t0, . . . , tn−1 are
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S-terms then İ(t0, . . . , tn−1) and Ṡ(t0, . . . , tn−1) are S-terms. If t0, t1,
t2 are S-terms then t0∈̇t1 and t0≺̇t1t2 are atomic S-formulas. We also
denote the set of first-order S-formulas by S .

We assume that S is Gödelized in an effective way: the set of for-
mulas satisfies S ⊆ ω<ω, and the usual syntactical operations of S are
recursively definable over Vω. This includes the simultaneous substitu-
tion ϕ

~t
~w

of terms ~t for variables ~w in ϕ. The notation ϕ(v̇0, . . . , v̇n−1)
indicates that the free variables of ϕ are contained in {v̇0, . . . , v̇n−1}. By
S0 we denote the collection of quantifier-free formulas of S . The for-
mulas of S are interpreted in S-structures in the obvious way. If A =
(A, İA, ≺̇A

, ṠA, ∈̇A
) is an S-structure, ϕ(v̇0, . . . , v̇n−1) ∈ S and a0, . . . ,

an−1 ∈ A then A |= ϕ[a0, . . . , an−1] says that A is a model of ϕ under
the variable assignment v̇i 7→ ai for i < n.

The Fα-hierarchy is defined by iterated S0-definability:

Definition 2. The fine hierarchy consists of a monotone sequence of S-
structures

Fα = (Fα, I,≺, S,∈) = (Fα, I ¹ Fα,≺¹ Fα, S ¹ Fα,∈)

where Fα, I ¹ Fα,≺¹ Fα, S ¹ Fα are defined by recursion on α ∈ Ord:
For α ≤ ω let Fα = Vα and ∀~x ∈ Fα : I(~x) = S(~x) = 0. Let <ω be
a recursive binary relation which well-orders Fω = Vω in ordertype ω
and which extends the ∈-relation on {Vn | n < ω}. Define the ternary
relation ≺ on Fα by: x ≺z y iff (z = Fn for some n < α, x, y ∈ z and
x <ω y). This defines the structures Fα for α ≤ ω.

Assume that α ≥ ω and that Fα = (Fα, I,≺, S,∈) has been defined.
For ϕ(v̇0, . . . , v̇n) ∈ S0 and ~p ∈ Fα set

I(Fα, ϕ, ~p) = {x ∈ Fα | Fα |= ϕ[x, ~p ]}. (*)

In this case, (Fα, ϕ, ~p) is a name for its interpretation I(Fα, ϕ, ~p) in the
fine hierarchy. The next fine level is defined as

Fα+1 = {I(Fα, ϕ, ~p) | ϕ ∈ S0, ~p ∈ F<ω
α }.

We have to define I(~z) for “new” vectors ~z ∈ (Fα+1)
<ω \ F<ω

α . Certain
assignments were made in (*); in all other cases set I(~z) = 0.

Define the ternary relation ≺¹ Fα+1 extending ≺¹ Fα by adjoining
the following triples: x ≺Fα

y iff x, y ∈ Fα and there is a name (Fβ, ϕ, ~p)
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for x such that every name (Fγ, ψ, ~q) for y is lexicographically greater
than (Fβ, ϕ, ~p), where coordinates are well-ordered from left to right by
∈, <ω and ≺Fmax(β,γ)

respectively.
The Skolem function S finds witnesses of existential statements. We

only need to define S(~z) for ~z ∈ (Fα+1)
<ω \ F<ω

α . Set S(~z) = 0 except
when ~z = (Fα, ϕ, ~p), where ϕ ∈ S0, ~p ∈ F<ω

α and I(Fα, ϕ, ~p) 6= ∅. In
that case let S(~z) be the ≺Fα

-least element of I(Fα, ϕ, ~p).
This defines Fα+1 = (Fα+1, I,≺, S,∈).
Assume that λ > ω is a limit ordinal and that Fα is defined for α <

λ. Then the limit structure Fλ = (Fλ, I,≺, S,∈) is defined by unions:
Fλ =

⋃

α<λ Fα, I ¹ Fλ =
⋃

α<λ I ¹ Fα, ≺¹ Fλ =
⋃

α<λ ≺¹ Fα,
S ¹ Fλ =

⋃

α<λ S ¹ Fα.

The fine hierarchy satisfies some natural hierarchical properties some
of which were already tacitly assumed in the previous definition:

Proposition 1. For every γ ∈ Ord:

1. α ≤ γ → Fα ⊆ Fγ;
2. α < γ → Fα ∈ Fγ;
3. Fγ is transitive.

First-order definability can be emulated in S0:

Proposition 2. For every ∈-formula ϕ(v̇0, . . . , v̇n−1) one can uniformly
define a quantifier free formula ϕ∗(v̇0, . . . , v̇n−1, v̇n, . . . , v̇n+k) ∈ S0 such
that for all α ≥ ω and for all a0, . . . , am ∈ Fα:

(Fα, ε) |= ϕ[a0, . . . , an−1] ⇐⇒

Fα+k |= ϕ∗[a0, . . . , an−1,Fα,Fα+1, . . . ,Fα+k].

Proposition 3. Every Fωα is closed with respect to first order definabil-
ity.

Theorem 2.
⋃

α∈Ord Fα = L.

So we have defined a hierarchy for the constructible universe. Proofs
of the above theorem and propositions can be found in [Koe∞].

We show that the Fα-hierarchy is a refinement of the Jα-hierarchy:

Theorem 3. For every α ∈ Ord, Fωα = Jα.
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Proof. The proof of this result occupies the rest of this paper and consists
of a sequence of lemmas. Using Proposition 3 one can easily prove one
inclusion.

Lemma 3. For every α ∈ Ord, Jα ⊆ Fωα.

Proof. By induction on α. For α = 0 and α = 1 this is true by definition,
so assume Jγ ⊆ Fωγ for every γ < α. Jα is the rudimentary closure
of the Jγ’s. As rudimentary functions are first-order definable, Fωα is
rudimentarily closed by Proposition 3. Hence Fωα includes Jα.
qed (Lemma 3).

For the other inclusion, we show that the F-hierarchy is absolute
for each Jα where α > 1, i.e., the above recursive definition of the F-
hierarchy can be carried out within Jα and will define the same sequence
as the recursive definition in V for all ordinals in Jα. Since Jα is rudi-
mentary closed and contains the language S as an element, we see by in-
spection that the recursive conditions in the definition of the F-hierarchy
are absolute for Jα. Properties like

I(Fγ, ϕ, ~p) = {x ∈ Fγ | Fγ |= ϕ[x, ~p ]}

or
Fγ+1 = {I(Fγ, ϕ, ~p) | ϕ ∈ S0, ~p ∈ F<ω

γ }

refer to a quantifier-free satisfaction relation. Evaluating this within Jα

involves evaluating finite sequences of values of terms and truth-values
according to the structure of the formula ϕ considered. These finite se-
quences exist in the structure Jα just like they exist in the universe V. The
other recursive conditions in Definition 2 are absolute for similar reasons.
So the recursion can indeed be carried out absolutely in Jα provided we
can prove the following
Claim. All ordinals α satisfy ∀µ < ωα (Fν | ν < µ) ∈ Jα.
This can be shown by induction on α. The limit case is trivial: if α is
a limit ordinal the inductive hypothesis implies that for all β < α, all
initial segments of the F-hierarchy of length < ωβ are in Jβ . This yields
the property for Jα.

Now consider the successor case: assume that α = β + 1 and that
∀µ < ωβ (Fν | ν < µ) ∈ Jβ . Then (Fν | ν < ωβ) is definable over Jβ

by the recursion formula and is thus an element of Jα. To show that the
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sequences (Fν | ν < µ) for ωβ < µ < ωα are elements of Jα it suffices
to show by induction on ν, ωβ ≤ ν < ωα that Fν ∈ Jα.

Since the claim holds for β, (Fν | ν < ωβ) is recursively definable
over Jβ . Then the structure Fωβ is definable over Jβ as the union of that
tower of structures. Thus Fωβ ∈ Jβ .

For the successor step of this inner induction, we use a surjection
h ∈ Jβ+1 from ωβ onto Fωβ+n to define an Fωβ+n-like structure over
ωβ, hence over Jβ . We can then define the next level of the F-hierarchy
within Jβ+1. We start with some technical lemmas.

Lemma 4. Let x ∈ Jβ+1 and let h ∈ Jβ+1 be a surjection from ωβ onto
x. Then x<ω ∈ Jβ+1.

Proof. The set (ωβ)<ω = {s | Func(s) ∧ dom(s) ∈ ω ∧ ran(s) ⊆
ωβ} is a definable subset of Jβ . Hence (ωβ)<ω ∈ Jβ+1. Since Jβ+1 is
rudimentarily closed:

x<ω = {h ◦ s | s ∈ (ωβ)<ω}

=
⋃

s∈(ωβ)<ω

h ◦ s

∈ Jβ+1.

qed (Lemma 4).

For a surjection h from ωβ onto x we denote by ~h the surjection from
(ωβ)<ω onto x<ω induced by h: for any ~s = (ξ0, . . . , ξn−1) set

~h(~s) := h ◦ ~s = (h(ξ0), . . . , h(ξn−1)).

Then h ∈ Jβ+1 implies that ~h ∈ Jβ+1.

Lemma 5. For every α > 1, S0 ∈ Jα.

Proof. In [Dev84, VI, 1.14], a language similar to S is defined over J1.
Therefore, S0 is definable over J1 and an element of Jα for α > 1.

qed (Lemma 5).

The following lemma then concludes the proof of our theorem:
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Lemma 6. Let ν = ωβ + n, Fν = (Fν , I,≺, S,∈) ∈ Jβ+1, hν a surjec-
tion from ωβ onto Fν and hν ∈ Jβ+1. Then Fν+1 ∈ Jβ+1 and there is a
surjection hν+1 from ωβ onto Fν+1 such that hν+1 ∈ Jβ+1.

Proof. Define a structure F̄ν = (F̄ν , iν ,≺ν , sν , εν) over ωβ which is anal-
ogous to Fν :

F̄ν := {γ ∈ ωβ | hν(γ) ∈ Fν}

iν(ϕ,~s) := {γ ∈ ωβ | hν(γ) ∈ Iν(ϕ,~hν(~s))}

≺ν := {(γ, δ) | (hν(γ), hν(δ)) ∈ <ν}

εν := {(γ, δ) | hν(γ) ∈ hν(δ)}

These are all subsets of Jβ and elements of Jβ+1, hence definable over
Jβ . We complete the structure by defining:

iν :=
⋃

ϕ∈S0

~s∈(ωβ)<ω

{((ϕ,~s), iν(ϕ,~s))}

sν :=
⋃

~s∈(ωβ)<ω

{(~s, sν(~hν(~s)))}

fν := (fν , iν ,≺ν , sν , εν).

The latter definitions are compositions of rudimentary functions and ele-
ments of Jβ+1, hence fν ∈ Jβ+1.
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We can now extend fν to a structure fν+1 = (fν+1, iν+1,≺ν+1, sν+1)
in a similar way as in the F-hierarchy:

iν+1(ϕ,~s) := {γ ∈ ωβ | fν |= ϕ[γ,~s]}

iν+1 :=
⋃

ϕ∈S0

~s∈(ωβ)<ω

{((ϕ,~s), iν+1(ϕ,~s))}

fν+1 :=
⋃

ϕ∈S0

~s∈(ωβ)<ω

{iν+1(ϕ,~s)}

≺ν+1 :=≺ν ∪{(γ, δ) | γ ∈ fν ∧ δ ∈ fν+1 \ fν}

∪ {(γ, δ) | ∃ϕ,~s ∀ψ,~t(γ = iν+1(ϕ,~s)

∧ δ = iν+1(ψ,~t) ∧ (ϕ ∈ ψ ∨ (ϕ = ψ ∧ ~s <lex ~t)))

sν+1(~s) :=



















sν(~s) if ~s ∈ dom(sν),

the ≺ν-least of iν+1(ϕ,~t) if ~s /∈ dom(sν) and
~s is of the shape (ν, ϕ,~t),

∅ otherwise.

sν+1 :=
⋃

~s∈(ωβ)<ω

{(~s, sν+1(~s))}

We look closer at the definitions to show that the structure fν+1 is an ele-
ment of Jβ+1. First we remark that similarly to ordinary Σ0-satisfaction,
the f -satisfaction relation for quantifier-free formulae is rudimentary. For
ordinary Σ0-satisfaction this carried out in detail in [Dev84]. Therefore
iν+1 ∈ Jβ+1 and fν+1 ∈ Jβ+1.

To see that ≺ν+1∈ Jβ+1 we note first that the first part of the definition
is an element of Jβ+1 by assumption and the second as well as we know
fν+1 ∈ Jβ+1. For the third part we note that

~s <lex ~t ⇐⇒

~s 6= ~t ∧ (dom(~s) < dom(~t) ∨ (dom(~s) = dom(~t)∧

((∀n ∈ dom(~s))~s(n) > ~t(n) → (∃m < n) s(m) ≺β t(m))))

Finally the Skolem function sν+1 is readily definable from ≺ν and
iν+1, hence is an element of Jβ+1. So fν+1 := (fν+1, iν+1,≺ν+1, sν+1) ∈
Jβ+1.
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We now define

Fν+1 :=
⋃

γ∈fν+1

hν(γ)

i′ν+1(ϕ,~s) := {hν(γ) | γ ∈ iν+1}

Iν+1 :=
⋃

ϕ∈S0

~s∈(ωβ)<ω

{((ϕ,~hν(~s)), i
′

ν+1(ϕ,~s))}

<ν+1 := {(hν(γ), hν(δ) | (γ, δ) ∈≺ν+1}

Sν+1 := {(~hν(~s), hν(γ)) | (~s, γ) ∈ sν+1}

Fν+1 := (Fν+1, Iν+1, <ν+1, Sν+1)

By a now familiar argument we find Fν+1 ∈ Jβ+1

We still need to construct a surjection hν+1 from ωβ onto Fν+1. We
can define a surjection g from ωβ onto ω<ω × (ωβ)<ω (see for example
[Dod82]). Let g′ be its restriction to S0×(ωβ)<ω. Then we define hν+1 :=
hν ◦ iν+1 ◦ g

′. It is easily seen this is a surjection and by construction we
have g′ ∈ Jβ+1, hence hν+1 ∈ Jβ+1. qed (Lemma 6).
In all, we have proved Theorem 3. QED.



References
[Dev84] Keith Devlin, Constructibility, Berlin 1984 [Perspectives in Mathematical

Logic]
[Dod82] A. J. Dod d, The Core Model, London Mathematical Society Lecture

Notes Series 61, Cambridge 1982
[FrKo97] S. D. Friedman, P. Koepke, An elementary approach to the fine structure

of L, Bulletin of Symbolic Logic 3, No.4 (1997), pp. 453-468
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