
LOCAL FACTORS VALUED IN NORMAL DOMAINS

KĘSTUTIS ČESNAVIČIUS

Abstract. We give an exposition of Deligne’s theory of local ε0-factors over fields and discrete
valuation rings under the assumption that the theory over the complex numbers is known. We then
employ standard techniques from algebraic geometry to deduce the theory of local ε0-factors over
arbitrary normal integral schemes.

1. Introduction

In [Del73, §4], Deligne presented an elegant argument proving the existence of the theory of ε-factors
of local Weil representations over the complex numbers; this theory had previously been predicted
by Langlands. For Weil representations of a nonarchimedean local field K of residue characteristic
p, Deligne proceeded to show in [Del73, §6] how to use the established F “ C case to deduce a
similar “mod l” theory over every field F of characteristic l different from p. Both the complex and
the mod l theories have subsequently been of significant importance, for instance, in considerations
concerning the local Langlands correspondence.

Deligne’s argument concerning the mod l theory is brief, with many details left to the reader.
Our goal here is to recall it in full and combine its ideas with standard techniques from algebraic
geometry to deduce the theory of local ε0-factors not only over fields but also over arbitrary normal
integral schemes on which p is invertible. In precise terms, assuming the theory of [Del73, §4] over
the complex numbers as known, we prove

Theorem 1.1. There is a unique assignment ε0 which to the data of

‚ A nonarchimedean local field K with the ring of integers OK and a finite residue field of
characteristic p,

‚ A separable closure Ks of K,

‚ A normal integral Zr1p s-scheme S,

‚ A continuous representation V of the Weil group W pKs{Kq over S (cf. §2.1 and §2.2),

‚ A nontrivial additive character ψ : pK,`q Ñ ΓpS,OˆS q (cf. §2.3), and

‚ A ΓpS,OSq-valued Haar measure C ÞÑ
ş

C dx on K such that
ş

OK dx P ΓpS,OˆS q (cf. §2.4)

associates ε0pV, ψ, dxq P ΓpS,OˆS q in such a way that

(i) The formation of ε0pV, ψ, dxq is compatible with base change: for a morphism f : S1 Ñ S of
normal integral Zr1p s-schemes and an S-representation V , abusing the f˚ notation one has

ε0pf
˚V, f˚ψ, f˚dxq “ f˚pε0pV, ψ, dxqq.
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(ii) Exactness of a sequence 0 Ñ V 1 Ñ V Ñ V 2 Ñ 0 entails

ε0pV, ψ, dxq “ ε0pV
1, ψ, dxqε0pV

2, ψ, dxq.

In particular, ε0pV, ψ, dxq depends only on the class of V in the Grothendieck group RSpW pKs{Kqq
and makes sense for every v P RSpW pKs{Kqq (see §2.2 for the definition of RSpW pKs{Kqq).

(iii) For a P ΓpS,OˆS q, one has

ε0pV, ψ, a ¨ dxq “ arkV ε0pV, ψ, dxq.

(iv) For a finite subextension Ks{L{K and a virtual representation v of W pKs{Lq of rank 0,

ε0

´

Ind
W pKs{Kq
W pKs{Lq v, ψ

¯

“ ε0pv, ψ ˝ TrL{Kq,

where Ind
W pKs{Kq
W pKs{Lq v :“ OSrW pK

s{Kqs bOSrW pKs{Lqs v. (Omitting dx is justified by (iii).)

(v) If V is of dimension 1 (i.e., a line bundle) and χ : W pKs{Kq Ñ ΓpS,OˆS q is the character
giving the Weil group action, then

ε0pχ, ψ, dxq “

ż

γ´1OˆK
χ´1pxqψpxqdx (‹)

where γ P Kˆ is an element of valuation Swpχq`npψq`1 (for the definition of the Swan con-
ductor Swpχq P Zě0, that of npψq P Z, and the meaning of the integral, see Proposition 2.11,
§2.3, and §2.4).

Remarks.

1.2. Restricting to the main case of interest, S “ SpecC, the existence and uniqueness of an
ε0 satisfying (ii)–(v) was envisioned by Langlands: the automorphic side of his conjectural
correspondence features decompositions of signs of functional equations of global L-functions
as products of local factors, and (ii)–(v) are the defining properties of the corresponding
local factor on the Galois side. In [Lan70], Langlands attempted to give a local proof of the
existence of ε0 but abandoned the project once Deligne found a short proof [Del73, §4], which,
however, uses global arguments. Publishing a complete local proof remains an outstanding
problem. For further and more accurate historical remarks, see the website of [Lan70].

1.3. For the purpose of proving Theorem 1.1, we will take the existence and uniqueness of an ε0
satisfying (ii)–(v) with S “ SpecC as known. Although existence is intricate, uniqueness
follows readily from a suitable version of Brauer’s induction theorem due to the imposed
(‹) in the 1-dimensional case: see [Tat79, 2.3.1] or the proof of Proposition 5.8 (b) below.
Tate’s thesis [Tat50], which has been a major influence for the ideas mentioned in Remark
1.2, motivates (‹) and also provides the main input for proving that (‹) results in a global
unit on S, as is implicit in Theorem 1.1 and will be argued in the course of the proof.

1.4. When S “ SpecF for a field F , e.g., when S “ SpecC, it is commonplace to work with

εpV, ψ, dxq :“ ε0pV, ψ, dxq detp´FrobK |V
IK q´1,

which is the local ε-factor of V (for the choice of ψ and dx); here FrobK is a geometric
Frobenius defined in §1.7. However, Theorem 1.1 concerns ε0 instead because the formation
of ε is not compatible with base change, i.e., the analogue of (i) fails for ε.

1.5. We collect formulas concerning ε0 in §3. The only one of these that exhibits phenomena not
observed when S “ SpecC is that for the inverse in the higher-dimensional case, see §3.4.
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1.6. The possibility of extending Deligne’s theory of ε0-factors for representations of W pKs{Kq
over fields to those over more general coefficient rings R has also been considered in [Yas09],
where such an extension is proposed for Noetherian local rings R that have an algebraically
closed residue field of characteristic different from p and satisfy Rˆp “ Rˆ. In the case of
an algebraically closed field of characteristic different from p, the ε0-factors of op. cit. agree
with those of Theorem 1.1 due to [Yas09, Thm. 1.1 (3)]. For general R as above that are also
normal domains, if the ε0-factors there are compatible with base change along not necessarily
local homomorphisms R Ñ R1, then one gets the similar agreement by taking an algebraic
closure of FracR for R1.

1.7. Notation. For a field F , its fixed choices of separable and algebraic closures are denoted by
F s Ă F . As mentioned above, K is a nonarchimedean local field, whereas OK and FK are its ring
of integers and residue field (so FK is a finite field); p “ charFK is the residue characteristic. A
geometric Frobenius is any FrobK PW pK

s{Kq Ă GalpKs{Kq whose inverse reduces to the Frobenius
automorphism x ÞÑ x#FK in GalpFK{FKq. For an integer n ě 1, a primitive nth root of unity is
denoted by ζn. For a scheme S, the local ring and the residue field of a point s P S are denoted by
OS,s and kpsq.

1.8. Conventions. The following assumptions are implicit throughout: all rings are commutative
and unital; all representations are of finite rank; all representations of IK or W pKs{Kq are trivial
on an open subgroup of IK .

Acknowledgements. I thank Pierre Deligne for explaining me the argument used to prove Propo-
sition 5.9. I thank Bjorn Poonen, Jack Thorne, Seidai Yasuda, and the referee for helpful comments
and suggestions. This note was written as a term paper for the course Topics in Automorphic Forms
that the author took in Fall 2013 at Harvard University. I thank Jack Thorne for an interesting and
useful course and for an opportunity to write up the results presented here.

2. Recollections

We gather several relevant concepts and constructions that are used freely in other sections.

2.1. The Weil group W pKs{Kq (see also [BH06, §28] if needed). It is the subgroup of those
elements of GalpKs{Kq that reduce to an integral power of Frobenius in GalpFK{FKq. Thus,

1 Ñ IK ÑW pKs{Kq Ñ ZÑ 1

is short exact, where IKCGalpKs{Kq is the inertia. The Weil group is topologized by insisting that
IK with its profinite topology be an open subgroup.

The open subgroups ofW pKs{Kq of finite index are precisely theW pKs{Lq for finite subextensions
Ks{L{K; normality of the subgroup corresponds to L{K being Galois. The natural map

W pKs{Kq{W pKs{Lq Ñ GalpKs{Kq{GalpKs{Lq

is bijective. In particular, W pKs{Kq Ă GalpKs{Kq is dense and the representations of W pKs{Kq
whose kernel is open and of finite index are identified with those of GalpKs{Kq. Such representations
of W pKs{Kq are called Galois.

Let W pKs{Kqab be the maximal abelian Hausdorff quotient of W pKs{Kq. Due to the ambiguity in
choosing Ks, the Weil group is determined by K only up to an inner automorphism of GalpKs{Kq;
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this ambiguity disappears for W pKs{Kqab, which is determined by K up to a unique isomorphism.
Local class field theory furnishes the local Artin homomorphism

ArtK : Kˆ ÑW pKs{Kqab, (2.1.1)

which is an isomorphism of topological groups. We choose to normalize it so that uniformiz-
ers are brought to geometric Frobenii. As usual, we identify continuous 1-dimensional characters
of W pKs{Kq valued in Hausdorff abelian groups with those of Kˆ by means of ArtK . We let
|¨|K : Kˆ Ñ Zr1p s

ˆ be the unramified character that takes the value p#FKq´1 on uniformizers.

2.2. Grothendieck groups. A representation of a discrete group G over a scheme S is an OS-
module V that is locally free of finite rank and is endowed with an OS-linear action of G. For the
topological groups IK and W pKs{Kq, one only considers continuous representations, i.e., those V
on which an open subgroup of IK acts trivially (some authors call such representations smooth).

Let RSpGq (resp., RSpIKq or RSpW pKs{Kqq) be the Grothendieck group of representations of G
(resp., continuous representations of IK or W pKs{Kq) over S, i.e., RSpGq is the quotient of the
free abelian group on the set trV su of isomorphism classes of representations of G over S by the
subgroup generated by the relations rV s “ rV 1s ` rV 2s for all exact sequences

0 Ñ V 1 Ñ V Ñ V 2 Ñ 0,

and likewise for IK or W pKs{Kq in place of G. A virtual representation is an element of a
Grothendieck group. The rank of V is an integer valued locally constant function on S; its ad-
ditivity in short exact sequences defines the notion of the rank of a virtual representation.

Letting J run over the open subgroups of IK that are normal in1 W pKs{Kq, one has

RSpIKq “ lim
ÝÑJ

RSpIK{Jq and RSpW pK
s{Kqq “ lim

ÝÑJ
RSpW pK

s{Kq{Jq. (2.2.1)

Due to the OS-flatness of V , the tensor product endows RSp´q with the structure of a commutative
ring with rOSs as the multiplicative unit. The subset R0

Sp´q Ă RSp´q of virtual representations
that are of rank 0 at every s P S is an ideal. Pullback along S1 Ñ S induces a ring homomorphism
RSp´q Ñ RS1p´q, which maps R0

Sp´q to R
0
S1p´q. If S “ SpecA, one often writes RAp´q for RSp´q.

2.3. Additive characters. For an integral Zr1p s-scheme S, an additive character

ψ : pK,`q Ñ ΓpS,OˆS q
is a locally constant abelian group homomorphism as indicated. Local constancy is equivalent to
the existence of an integer n such that ψ|π´nOK “ 1, where π P OK is a uniformizer, and forces the
values of ψ to be p-power roots of unity (if charK “ p, these values are even pth roots of unity).
If ψ is nontrivial, as we assume from now on, we let npψq be the maximal n as above. Since p is a
unit on S, a p-power root of unity in ΓpS,OˆS q has trivial image in kpsqˆ for an s P S if and only if
it is trivial to begin with. Consequently, npψq “ npψkpsqq for every s P S, and hence npψq is stable
under pullback along every f : S1 Ñ S with an integral S1.

The group Kˆ acts freely on the set of nontrivial ψ by setting paψqpxq :“ ψpaxq for a P Kˆ. If the
set is nonempty, then the action is also transitive: endowing S with a structure of an R-scheme,
where R “ Zrζp8s if charK “ 0 and R “ Zrζps if charK “ p, realizes every ψ as the pullback of an
additive character valued in Rˆ, and hence reduces the transitivity claim to the classical S “ SpecC
case treated, e.g., in [BH06, §1.7, Prop.]. In conclusion, if the set of nontrivial ψ is nonempty, then
it has a natural structure of a Kˆ-torsor.

1Every open J 1CIK contains such a J of the form
Şn´1
i“0 pFrob

i
K J

1 Frob´iK q for some n ě 1: indeed, J 1 corresponds to
a finite Galois L{Knr, which descends to a Galois extension of the degree n unramified extension of K for some n ě 1.
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2.4. Haar measures valued in abelian groups ([Del73, 6.1]). Fix a Zr1p s-module A and let
C range over the compact open subsets of K. An A-valued Haar measure on K is a function
C ÞÑ

ş

C dx P A that is translation invariant and additive in disjoint unions. Since every C is a
disjoint union of translates of balls centered at 0 P K and A is uniquely p-divisible, a choice of an
A-valued Haar measure amounts to that of the element

ş

OK dx P A. Once the choice is made, if A
is in addition a ring, one can integrate locally constant compactly supported f : K Ñ A and write
ş

K fpxqdx for the resulting finite sums; if f is implicitly multiplied by the characteristic function of
C, one writes

ş

C fpxqdx instead. Coupled with (2.1.1), this clarifies (‹), which takes A “ ΓpS,OSq.

2.5. Sufficiently large fields. Fix a finite group G and let m be the least common multiple of
the orders of elements of G. A field F is sufficiently large if it contains the mth roots of unity. A
separably closed F is sufficiently large for every G.

2.6. Virtual representations over fields. For a field F , thanks to the Jordan–Hölder theorem for
abelian categories [Ses67, Thm. 2.1], RF pGq of §2.2 is the free abelian group on the set of isomor-
phism classes of irreducible representations of G over F , and similarly for IK or W pKs{Kq and
representations that are trivial on an open subgroup of IK (cf. [Ser77, §14.1, Prop. 40] if needed).

If V and rV are nonisomorphic irreducible representations of a finite group G, then the extensions of
scalars VF 1 and rVF 1 to every overfield F 1{F have no common composition factors [CR81, Ex. 7.9].
Consequently, RF pGq Ñ RF 1pGq is injective. It is also surjective if F is sufficiently large, as is
clear from Brauer’s induction theorem 5.3 (a), whose proof does not use this surjectivity. Therefore,
for sufficiently large F , extension of scalars induces a bijection between the sets of isomorphism
classes of irreducible representations of G over F and those over F 1. If F contains the mth roots of
unity for every m, e.g., if F is separably closed, then this bijection remains in place for IK , because
RF pIKq Ñ RF 1pIKq is an isomorphism thanks to the previous discussion and (2.2.1).

2.7. The decomposition homomorphism. Fix a finite group G and a discrete valuation ring A
with the fraction field η of characteristic 0 and the residue field F “ A{m of characteristic l. For a
representation V of G over η, a choice of a G-stable A-lattice Λ Ă V gives rise to the representation
Λ{mΛ of G over F whose class in RF pGq does not depend on Λ [Ser77, §15.2, Thm. 32 and Rem. (1)]
(the l ą 0 assumption of loc. cit. is not used for this). The resulting decomposition homomorphism

dG : RηpGq Ñ RF pGq

preserves ranks and commutes with restriction and induction. If A is complete, then dG is surjective:
Cohen’s structure theorem [Mat89, 28.3 (ii)] settles the equicharacteristic case, whereas [Ser77, §16.1,
Thm. 33] treats the case l ą 0. As noted in [Ser77, Ex. 16.1], surjectivity also holds if η is sufficiently
large2 because dG commutes with RηpGq Ñ R

pηpGq, which is an isomorphism [Ser77, §12.3].

In the equicharacteristic 0 case, dG is injective without additional assumptions on A: for every
virtual character χ, one has xχ, χy P Zě0 ; moreover, xχ, χy “ 0 if and only if χ “ 0. Consequently,
if in this case A is complete or η is sufficiently large, then dG is an isomorphism.

2.8. The Swan representation. Let J be a continuous finite quotient of IK . Continuity means
the openness of KerpIK � Jq and is a nonvacuous condition, as we now explain in a digression.
By Krasner’s lemma, there are only countably many finite degree subextensions of Ks{K because
the same holds for global K. Applying this observation to finite unramified extensions of K, we
conclude that the same holds for Ks{Knr, in other words, that IK has only countably many open
subgroups of finite index. On the other hand, local class field theory applied to finite unramified

2However, dG is not surjective in general, see [Ser77, Ex. 16.2] or [CR81, p. 512, Ex. 21.4].
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extensions of K produces continuous surjections IK � pZ{pZqn for arbitrarily large n P Zą0. Thus,
À8

i“0 Z{pZ is a quotient of IK , so that IK has uncountably many distinct surjections onto Z{pZ.
For cardinality reasons, one of these surjections must have a kernel that is not open.

Let J “ J0 B J1 B ¨ ¨ ¨ be the ramification filtration in the lower numbering, so the Ji are normal in
J and J1 is the image of the wild inertia. The Artin character of J is the class function

aJ :“
8
ÿ

i“0

1

rJ0 : Jis
IndJ0Ji ui, (2.8.1)

where ui is the augmentation representation of Ji, i.e.,

uipjq “

#

´1, if j P Jizt1u,
#Ji ´ 1, if j “ 1,

so rJi “ 1Ji ‘ ui, where rJi is the regular representation.

The formula for the induced character shows that the sum in (2.8.1) is finite and aJ is Z-valued;
moreover, as the name suggests, aJ is the character of a complex representation [Ser79, VI.§2,
Thm. 1 and Prop. 2], namely, the Artin representation of J . The Swan character

SwJ :“
8
ÿ

i“1

1

rJ0 : Jis
IndJ0Ji ui

inherits these properties: a priori SwJ is a virtual character with xSwJ , χy ě 0 for every character χ
of J , and hence a posteriori the character of a complex representation, namely, the Swan represen-
tation of J . Moreover, SwJ vanishes on JzJ1, so whenever the Swan character can be realized as a
representation over the fraction field η of characteristic 0 of a Dedekind domain A with p P Aˆ, due
to [Swa63, Thm. 5], it can also be realized as a finite projective ArJs-module. Realizability over a
sufficiently large η is automatic (cf. §2.6); therefore, [Ser77, §16.3, Prop. 44] realizes SwJ uniquely
as a finite projective ZlrJs-module for every l ‰ p. We continue to write SwJ for its base change
to a Zl-algebra A, for instance, to a field of characteristic l; the resulting SwJ is a finite projective
ArJs-module.

If J 1 is a quotient of J , then aJ 1 – aJ bCrJs CrJ 1s [Ser79, VI.§2 Prop. 3]; the same relation holds
for the augmentation representations, so also SwJ 1 – SwJ bCrJsCrJ 1s. Moreover, uniqueness of the
realization of SwJ 1 as a projective ZlrJ 1s-module for l ‰ p entails the A “ Zl case of the isomorphism

SwJ 1 – SwJ bArJsArJ
1s for every Zl-algebra A, (2.8.2)

and the general case follows by base change to A.

2.9. The Swan conductor. Let V be a continuous representation of IK over a field F of charac-
teristic l with l ‰ p, and let J be a continuous finite quotient through which the IK-action on V
factors. The Swan conductor3 of V is

Sw V :“ dimF HomJpSwJ , V q, (2.9.1)

where in the l ą 0 case one uses the projective F rJs-module SwJ defined in §2.8, and in the l “ 0
case one writes χ for the character of V and interprets the right hand side of (2.9.1) as

xSwJ , χy “
1

#J

ÿ

jPJ

SwJpjqχpjq. (2.9.2)

Of course, if l “ 0 and SwJ is realizable over F , then (2.9.1) and (2.9.2) agree thanks to character
theory. Moreover, one can assume realizability for the purpose of the definition, because Sw V is

3Some authors call Sw V the exponent of the Swan conductor, reserving the term Swan conductor for the corre-
sponding power of the maximal ideal of OK .
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invariant under base change to an overfield F 1{F regardless of l. Likewise, Sw V is invariant under
change of J due to (2.8.2) and the adjunction ´bF rJsF rJ 1s % HomJ 1pF rJ

1s,´q. Since it is also addi-
tive in exact sequences due to projectivity of SwJ , it extends to a homomorphism Sw: RF pIKq Ñ Z.

To define Sw V , it is not necessary to restrict to representations over fields, as Proposition 2.11
below shows. For its proof, we recall a well-known Lemma 2.10, which will also be used later.

Lemma 2.10. For a locally Noetherian scheme S, a point s P S, and its specialization s1 ‰ s, there
is a complete discrete valuation ring A and a morphism SpecA Ñ S mapping the generic and the
closed points of SpecA to s and s1, respectively.

Proof. Replace a discrete valuation ring provided by [EGA II, 7.1.9] by its completion. �

Proposition 2.11. Let V be a continuous representation of IK over an integral Zr1p s-scheme S
(cf. §2.2). For varying s P S, the Swan conductor of the residual representation Vkpsq is constant.

The common value of the Sw Vkpsq is the Swan conductor of V . It has already been used in (v).

Proof. Since every two nonempty opens of S intersect, it suffices to treat the affine case S “ SpecA
and assume that V is free. Writing A as a filtered direct limit of finite type Zr1p s-subalgebras, one
uses limit arguments and invariance of Sw Vkpsq under base change to overfields to assume further
that A is Noetherian. Taking s in Lemma 2.10 to be the generic point, one finally reduces to the
case when A is a complete discrete valuation ring with the fraction field η and the residue field F .

In this case, if charF “ 0, then the claim follows from (2.9.2), which takes values in A. If, on
the other hand, charF “ l with l ą 0, then A is a Zl-algebra and the projectivity of the finite
ArJs-module SwJ realizes it as a direct summand of a finite free ArJs-module; consequently, the
A-module HomJpSwJ , V q is also finite free, and it remains to note that the rank of its pullback to
η (resp., F ) equals Sw Vη (resp., Sw VF ). �

3. Formulas involving ε0

For S “ SpecC, having proved the existence and uniqueness of ε0 in [Del73, §4], Deligne proceeds
to establish a formulary [Del73, §5] that details its properties and facilitates its computation. We
gather some of these formulas here with a twofold aim: their special cases will be used in the proof
of Theorem 1.1 to argue passage to more general bases S, and with little additional effort we will
establish (3.1.1), (3.2.1), and (3.2.2) for all normal integral S.

3.1. Change of additive character. As we have already observed in §2.3, Kˆ acts on the set of
possible choices of ψ. The effect that this action bears on ε0 is explicated by

ε0pV, aψ, dxq “ pdetV qpaq ¨ |a|´ rkV
K ¨ ε0pV, ψ, dxq, (3.1.1)

where pdetV qpaq is the element of ΓpS,OˆS q by which a acts on the line bundle
ŹrkV V .

3.2. Unramified twists. Twisting V by an unramified 1-dimensional character θ or, more gener-
ally, tensoring by an unramified W of arbitrary dimension changes ε0 as follows:

ε0pV θ, ψ, dxq “ θpFrobKq
Sw V`rkV ¨pnpψq`1qε0pV, ψ, dxq, (3.2.1)

ε0pV bW,ψ, dxq “ pdetW qpFrobKq
Sw V`rkV ¨pnpψq`1qε0pV, ψ, dxq

rkW . (3.2.2)
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3.3. Explicit inverse in the 1-dimensional case. Unlike the other formulas, we will deduce
(3.3.1) only for spectra of fields F of characteristic different from p from the known F “ C case4, and
this will be one of the key inputs in proving that the ε0 are global units as claimed in Theorem 1.1.

Given ψ and dx, the dual Haar measure xdx of dx with respect to ψ is defined by insisting that
ż

OK
dx ¨

ż

OK

xdx “ p#FKq´npψq.

The resulting xdx is well-defined thanks to the discussion of §2.4.

Suppose that S “ SpecC, and let C8c pKq be the space of locally constant compactly supported
C-valued functions on K. Then the composition of the Fourier transform on C8c pKq with respect
to ψ and dx with the Fourier transform with respect to5 ´ψ and xdx is the identity: compare,
e.g., [BH06, §23.1, proof of Prop.]6. Therefore, Tate’s local functional equation [Del73, 5.8.1] for a
continuous χ P HompKˆ,Cˆq gives

εpχ, ψ, dxqεpχ´1 |¨|K ,´ψ,xdxq “ 1,

where εpχ, ψ, dxq “ ´χpFrobKq
´ rkχI ε0pχ, ψ, dxq as in Remark 1.4. This proves the F “ C case of

ε0pχ, ψ, dxqε0pχ
´1 |¨|K ,´ψ,xdxq “ p#FKq´ rkχI , (3.3.1)

which is often helpful when reasoning about the inverse of ε0pχ, ψ, dxq.

3.4. Explicit inverse in the higher-dimensional case. Assume that S “ SpecF for a field F
of characteristic l with l ‰ p. If l “ 0, then set I 1 :“ I. If l ą 0, then set I 1 to be the preimage in
I of the compositum of the prime-to-l Sylow subgroups of the quotient of I by the wild inertia. In
both cases one may interpret I 1 as the minimal subgroup of I for which I{I 1 is pro-l. The closed
subgroup I 1 is normal in W pKs{Kq. Moreover, the finite quotients of I 1 are of order prime to l, so
the functor of taking I 1-invariants is exact. Therefore, this functor induces a homomorphism

p´qI
1

: RF pW pK
s{Kqq Ñ RF pW pK

s{Kq{I 1q.

Let V be a continuous representation of W pKs{Kq over F . If dimV “ 1, then the action of I on
V factors through a finite quotient of prime to l order; thus, V I 1 “ V I for such V . Consequently,

ε0pV, ψ, dxqε0pV
˚ |¨|K ,´ψ,xdxq “ p#FKq´ rkV I

1

, (3.4.1)

where V ˚ denotes the dual representation HomF pV, F q, is an extension of (3.3.1) beyond the 1-
dimensional case. We will prove (3.4.1) for all F at once in Corollary 5.11. The formula (3.4.1) will
not play a role in the proof of Theorem 1.1.

4. The case when S is restricted to spectra of fields of characteristic 0

As remarked in 1.2 and 1.3, for S “ SpecC there exists a unique ε0 satisfying (ii)–(v). Consequently,

(i) holds whenever f arises from an element of AutpCq. (:)

Proposition 4.1. Theorem 1.1 holds if one restricts to S of the form SpecF for a field F of
characteristic 0. Moreover, the resulting ε0 satisfies (3.1.1), (3.2.1), (3.2.2), and (3.3.1).

4One difficulty encountered over more general bases is the incompatibility of rkχI with reduction modulo l.
5Here ´ψ should be interpreted as p´1q ¨ ψ with ´1 P K, see §2.3.
6Beware that what loc. cit. calls the level of ψ is ´npψq in the notation used here.
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Proof. Since IK acts through a finite quotient, V – V 1 bF 1 F for a subfield F 1 Ă F of finite
transcendence degree over Q and a representation V 1 of W pKs{Kq over F 1. Enlarging F 1 if needed,
we assume further that ψ and the Haar measure are F 1-valued. Due to (i), a choice of an embedding
ι : F 1 ãÑ C forces us to set

ε0pV, ψ, dxq :“ ι´1pε0pV
1 bF 1,ι C, ι ˝ ψ, ι ˝ dxqq.

Once we check, as we do below, that the resulting ε0pV, ψ, dxq is independent of choices, (i)–(v) as
well as the claimed formulas will follow from the construction and the assumed F “ C case.

Firstly, ε0pV 1 bF 1,ι C, ι ˝ ψ, ι ˝ dxq P ιpF 1qˆ due to (:), because pCˆqAutpC{ιpF 1qq “ ιpF 1qˆ [BouA,
V.107, Prop. 10]. Moreover, AutpCq acts transitively on the set of embeddings of F 1 into C [BouA,
V.107, Cor. 2], so (:) also shows the independence of ε0pV, ψ, dxq of the choice of ι, and hence the
independence of enlarging F 1, as well. The independence of the choice of V 1 follows, too, because
any two choices are isomorphic over a larger F 1. �

5. The case when S is restricted to spectra of fields

To settle this case in stages in Propositions 5.8 and 5.9, we discuss the necessary representation-
theoretic preliminaries in 5.2–5.6. To prepare for those, we recall the following well known lemma.

Lemma 5.1. Fix a finite group G, and let F be a sufficiently large field. There exists a complete
discrete valuation ring A with the residue field F “ A{m and the field of fractions η that is sufficiently
large and of characteristic 0.

Proof. For F of characteristic 0, one takes A “ F JtK. For F of characteristic l ą 0, one lets m
be the least common multiple of the orders of elements of G, applies [Mat89, 29.1] to Qlpζmq, and
replaces the resulting discrete valuation ring A by its completion. �

5.2. Elementary groups. For a prime p, a finite group H is p-elementary if it is a product of a
p-group and a cyclic group of order prime to p. A finite group is elementary if it is p-elementary for
some prime p. An elementary H is the direct product of its Sylow subgroups; consequently, every
h P H is a product of commuting elements of prime power order that are powers of h. To conclude
that every H 1 ď H is again the direct product of its Sylow subgroups, and hence also elementary,
it remains to note that the latter are the intersections of H 1 with the Sylow subgroups of H.

Many subsequent arguments will be based on the following version of Brauer’s induction theorem.

Proposition 5.3 ([Del73, 1.5]). For a finite group G and a sufficiently large field F ,

(a) RF pGq is spanned by the elements of the form IndGHrχs for elementary H ď G and characters
χ P HompH,Fˆq, and

(b) R0
F pGq is spanned by the elements of the form IndGHprχs ´ r1Hsq for elementary H ď G and

characters χ P HompH,Fˆq.

Proof. Suppose initially that charF “ 0. By Brauer’s induction theorem [Ser77, §12.6, Thm. 27],

r1Gs “
ř

i IndGHi ai in RF pGq for some elementary Hi ď G and ai P RF pHiq.

After multiplying both sides of this equality by a v P RF pGq (resp., a v P R0
F pGq for (b)), the

projection formula reduces to the case when G is elementary itself. On the other hand, by [Ser77,
§12.3, proof of Thm. 24], RF pGq is spanned by the elements of the form IndGHrχs for subgroups
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H ď G and characters χ P HompH,Fˆq, so (a) follows because, as noted in §5.2, H is elementary
if so is G. As for (b), this expresses every v P R0

F pGq as

v “
ř

ini IndGHirχis “
ř

ini IndGHiprχis ´ r1Hisq `
ř

ini IndGHir1His, ni P Z

for elementary Hi ď G and characters χi P HompHi, F
ˆq, so the conclusion follows by induction

on #G because
ř

ini IndGHir1His P R
0
F pGq is the inflation of an element of R0

F pG{Zq where ZCG is
the center, which is nontrivial if so is the elementary G.

Suppose now that F is of characteristic l ą 0 and choose A as in Lemma 5.1. As observed in
§2.7, the decomposition homomorphism dG : RηpGq Ñ RF pGq is surjective, preserves ranks, and
commutes with induction, so we deduce (a) and (b) for F from the case of η established above. �

Proposition 5.4 ([Del73, 1.8]). For a finite group G and a discrete valuation ring A with the
residue field F “ A{m of characteristic l and the field of fractions η that is sufficiently large and of
characteristic 0, the elements of the form IndGHprχs ´ rχ

1sq for elementary H ď G and characters
χ, χ1 P HompH,Aˆq with χphq ” χ1phq mod m for all h P H generate KerpdG : RηpGq Ñ RF pGqq.

Proof. Passing to pη as in §2.7, one may for comfort reduce to the complete case. Also, dG is an
isomorphism if l “ 0 (see §2.7), so we assume for the remainder of the proof that l ą 0.

Using Proposition 5.3 (a) to write

r1Gs “
ř

ini IndGHirχis in RηpGq for some ni P Z, elementary Hi ď G, and χi P HompHi, η
ˆq,

for v P Ker dG we have
v “

ř

ini IndGHiprχis ¨ ResGHi vq.

Since ResGHi v P Ker dHi , we are reduced to the case of an elementary G.

An elementary G is a product G “ NˆP with l - #N and #P “ ln for some n ě 0. By [CR81, 10.33
and 17.1], the irreducible representations of G over η or F are precisely the tensor products of an
irreducible representation of N with a one of P . Consequently, dG takes the form

RηpGq – RηpNq bZ RηpP q
dNbdP
ÝÝÝÝÑ RF pNq bZ RF pP q – RF pGq.

Since dN is an isomorphism [Ser77, §15.5] and RηpNq is Z-free,

Ker dG – RηpNq bKer dP ,

so Proposition 5.3 (a) applied to N reduces further to the case G “ P .

However, if G is of l-power order, then every character χ P HompH, ηˆq of a subgroup H ď G takes
values in 1`mA Ă Aˆ, and the claim results from Proposition 5.3 (b). �

5.5. Weil representation types ([Del73, 4.10]). Fix a separably closed field F , and let l be its
characteristic. A continuous representation V of W pKs{Kq over F is said to have a type if FrobmK
acts on V as a scalar a P Fˆ for some m ě 1. When this is the case, FrobNmK acts on V as the
scalar aN for N ě 1, so the resulting element of the direct limit (which is indexed by the positive
integers ordered by the divisibility relation)

lim
ÝÑ
m|n

Fˆ with transition maps a ÞÑ a
n
m between the copies of Fˆ in positions m and n

is independent of the choice of m; it is the type of V . To argue that the type is also independent of
the choice of FrobK , let W be the quotient through which W pKs{Kq acts on V , let JCW be the
finite image of IK , and write FrobK P W for the image of FrobK . Since J is centralized by Frob

m
K
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for all sufficiently divisible m and changing FrobK changes Frob
m
K by an element of J , we see that

Frob
m¨#J
K is independent of FrobK , and hence so is the type.

Lemma 5.5.1. Every irreducible V has a type.

Proof. Indeed, EndW V is a finite dimensional division algebra over the separably closed F , so
EndW V – F 1 for a finite field extension F 1{F . Thus, every Frob

N
K that is central in W acts as a

scalar in F 1ˆ, and hence Frob
Nla

K acts as a scalar in Fˆ for large a. �

For a fixed type τ , let RF,τ pW pKs{Kqq be the subgroup of RF pW pKs{Kqq spanned by the classes
of representations of type τ . Due to Lemma 5.5.1 and the discussion of §2.6,

RF pW pK
s{Kqq “

À

τ RF,τ pW pK
s{Kqq. (5.5.2)

The representations of type 1 are precisely the Galois representations, see §2.1.

If F is in addition algebraically closed, then for every type τ there is an unramified character
χτ : W pKs{Kq Ñ Fˆ of this type. Twisting by χτ induces an isomorphism

RF,1pW pK
s{Kqq

´bχτ
„

// RF,τ pW pK
s{Kqq. (5.5.3)

Proposition 5.6. For an algebraically closed F , the elements of the form Ind
W pKs{Kq
W pKs{Lq prχs ´ rχ

1sq

for finite subextensions Ks{L{K and continuous χ, χ1 P HompW pKs{Lq, Fˆq span R0
F pW pK

s{Kqq.

Proof. For a v P R0
F pW pK

s{Kqq, let v “
ř

τ vτ be the decomposition provided by (5.5.2). For each
appearing τ , fix a χτ as in (5.5.3). Then

ř

τ rk vτ ¨ rχτ s is in the desired span (L “ K suffices), and
it remains to note that so is each vτ ´ rk vτ ¨ rχτ s thanks to Proposition 5.3 (b) and (5.5.3). �

Having settled the representation-theoretic preliminaries, we get back to studying ε0.

Lemma 5.7. Let A be a discrete valuation ring with the residue field F “ A{m of characteristic l
with l ‰ p and the fraction field η of characteristic 0. Adopt the setup of Theorem 1.1 for S “ SpecA.

(a) For the ε0 of Proposition 4.1, one has ε0pVη, ψη, pdxqηq P Aˆ.

(b) For a finite Galois subextension Ks{L{K with the Galois group G “ GalpL{Kq, the restric-
tion of the ε0 of Proposition 4.1 to the kernel of RηpGq Ñ RF pGq takes values in 1`mA Ă ηˆ.

Proof.

(a) Due to (i) and the existence of a discrete valuation prolonging the given one on η to any
finite extension η1{η [Mat89, Cor. to 11.7], we may replace η by any η1 if needed. Moreover,
for a W pKs{Kq-stable A-lattice in Vη, its intersection with a subrepresentation (resp. image
in a quotient) is a stable A-lattice, so any subquotient of Vη is realizable over A. There-
fore, we may assume that Vη is absolutely irreducible, there is an unramified character
θ : W pKs{Kq Ñ ηˆ with the same type as Vη, and the Galois representation Vηbθ´1 factors
through a continuous finite quotient G of W pKs{Kq for which η is sufficiently large. Since
scaling by θpFrobNKq is an automorphism of the A-lattice V Ă Vη if N is sufficiently divisible,
θ takes values in Aˆ. Thus, (3.2.1), Proposition 5.3 (b) applied to Vηbθ´1´ rkV ¨ r1Gs, and
(iv) reduce to the 1-dimensional case, in which the A-valued ε0 given by (v) has the A-valued
inverse provided explicitly by (3.3.1) and (v).
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(b) As in the proof of (a), we assume that η is sufficiently large. Proposition 5.4 then reduces to
proving that ε0pIndGHprχs ´ rχ

1sq, ψ, dxq P 1`mA for every subgroup H ď G and characters
χ, χ1 P HompH,Aˆq with χphq ” χ1phq mod m for all h P H. The additive character ψ
necessarily takes values in A. The property (iv) reduces further to proving that

ε0pχ, ψ ˝ TrLH{K , dxq ” ε0pχ
1, ψ ˝ TrLH{K , dxq mod m with both sides in A (5.7.1)

for a dx that also takes values in A. To obtain (5.7.1), apply (v) and note that Swpχq “
Swpχ1q, as can be checked over the closed point thanks to Proposition 2.11. �

Proposition 5.8. In Theorem 1.1, restrict to S of the form SpecF for an algebraically closed field F .

(a) An ε0 satisfying (ii)–(v), (3.1.1), (3.2.1), and (3.2.2) exists if it does when V , θ, and W are
restricted to Galois representations.

(b) If one restricts V to Galois representations, then an ε0 satisfying (ii)–(v) is unique if it
exists, in which case it also satisfies (i). The same conclusion holds if one restricts further
to representations that factor through a fixed finite quotient GalpL{Kq.

(c) There exists a unique ε0 satisfying (i)–(v). It also satisfies (3.1.1), (3.2.1), and (3.2.2).

Proof. For every A provided by Lemma 5.1, Hensel’s lemma (or, if one prefers, [EGA IV4, 18.5.15])
lifts every ψ valued in Fˆ to a unique additive character valued in Aˆ; lifting dx amounts to lifting
ş

OK dx P F
ˆ to Aˆ, see §2.4. We continue to denote these lifts by ψ and dx (although the latter is

not unique) and recall from §2.3 that npψq is invariant under reduction modulo m. Lifting is also
possible for unramified characters of Weil groups and 1-dimensional characters of finite groups.

(a) For each type τ , take an unramified character χτ : W pKs{Kq Ñ Fˆ of this type. To define
ε0 when its restriction to Galois representations v P RF,1pW pKs{Kqq is given, set

ε0pv b χτ , ψ, dxq :“ χτ pFrobKq
Sw v`rk v¨pnpψq`1q ¨ ε0pv, ψ, dxq (5.8.1)

and extend ε0 to RF pW pKs{Kqq using (5.5.2) and (5.5.3). Due to (3.2.1) for Galois repre-
sentations, the definition (5.8.1) does not depend on the choice of χτ .

The desired (ii), (iii), and (v) are immediate. So is (3.1.1), because npaψq “ npψq ` vKpaq
where vKpaq is the valuation of a. In checking (3.2.2), which includes (3.2.1), one restricts
to irreducible V and W , which share their types with unramified characters χV and χW .
Writing W –W 1bχW and V – V 1bχV , (3.2.2) results from its version for V 1bW 1, (5.8.1)
with χτ “ χV χW , and the relation detW “ χrkW

W detW 1.

We concentrate on the remaining (iv); it can be proved by a small computation, which,
however, can also be relegated to characteristic 0, as we now explain. Proposition 5.6
reduces to considering v P R0

F pW pK
s{Lqq of the form rχs ´ rχ1s for continuous χ, χ1 P

HompW pKs{Lq, Fˆq. For such a v, choose unramified θ, θ1 P HompW pKs{Kq, Fˆq for which
θ|L and θ1|L have the same types as χ and χ1. Let G be a continuous finite quotient of
W pKs{Lq through which χ´1 ¨ θ|L and χ1´1 ¨ θ1|L factor, and take A as in Lemma 5.1.
Lifting θ, θ1, χ´1 ¨ θ|L, χ1´1 ¨ θ1|L, ψ, and the involved Haar measures to A yields the de-
sired conclusion thanks to Proposition 4.1, as long as we exhibit ε0pInd

W pKs{Kq
W pKs{Lq χ, ψ, dxKq,

ε0pχ, ψ ˝ TrL{K , dxLq, and their χ1 analogues as reductions of the corresponding elements of
Aˆ (cf. Lemma 5.7 (a)).

To argue this, thanks to Proposition 2.11 and the unramified twist aspect of Proposition 4.1,
we only need to prove that the formation of ε0 is compatible with reduction modulo m for
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Galois representations. Having the liberty of replacing A by its normalization in a finite
extension of η, we deduce this compatibility from (iv), (v), and Proposition 5.3 (b).

(b) To show that the value of ε0 on V is uniquely determined, take a finite quotient GalpL{Kq
through which the W pKs{Kq-action factors and use Proposition 5.3 (b) to express

rV s ´ rkV ¨ r1Ks “
ÿ

Ind
W pKs{Kq

W pKs{rLq

`

rχs ´ r1
rL
s
˘

in RF pW pKs{Kqq

for suitable subextensions L{rL{K and characters χ P HompGalpL{rLq, Fˆq. The uniqueness,
as well as (i), follows immediately from (ii)–(v).

(c) Thanks to (b) and (a), we seek an ε0 satisfying (ii)–(v), (3.1.1), (3.2.1), and (3.2.2) for Galois
representations. Furthermore, we restrict to representations that factor through a fixed finite
quotient G “ GalpL{Kq, since the resulting ε0 for varying G will be compatible by (b).

For an A given by Lemma 5.1 and the ε0 constructed in Proposition 4.1, Lemma 5.7 (a) gives

ε0p´, ψ, dxq : RηpGq Ñ Aˆ Ă ηˆ.

Thus, due to Lemma 5.7 (b) and the surjectivity of dG (see §2.7), ε0p´, ψ, dxq mod m induces

ε0p´, ψ, dxq : RF pGq Ñ Fˆ,

which satisfies (ii)–(v), (3.1.1), (3.2.1), and (3.2.2) by construction and Proposition 2.11. �

Proposition 5.9. Theorem 1.1 holds if one restricts to S of the form SpecF for a field F . Moreover,
the resulting ε0 satisfies (3.1.1), (3.2.1), and (3.2.2).

We will show in Corollary 5.11 that ε0 also satisfies (3.3.1) and (3.4.1).

Proof. Since (i) forces ε0pV, ψ, dxq :“ ε0pVF , ψ, dxq P F
ˆ, thanks to Proposition 5.8 (c), we only

need to check that the resulting ε0 takes values in F . Also, (i) applied to f arising from the elements
of AutpF {F q reduces to the case of a separably closed F . We therefore assume that F is separably
closed and imperfect of characteristic l ą 0. We may and do further assume that V is irreducible
and, scaling dx if needed, that ψ and dx take values in Fl Ă F . If V is a Galois representation, then
the claim results from Proposition 5.3 (b), (iv), and (v).

Since IK is a normal subgroup, every element of W pKs{Kq maps every IK-stable subspace of V
to another such subspace. Consequently, the sum of the irreducible IK-subrepresentations of V is
W pKs{Kq-stable, so the irreducibility of V entails the semisimplicity of V |IK . Moreover,W pKs{Kq

acts transitively on the IK-isotypic components V 1 Ă V , so V – Ind
W pKs{Kq
W pKs{Lq V

1 for such a V 1 and
its stabilizerW pKs{Lq ďW pKs{Kq (compare [Ser77, §8.1, proof of Prop. 24] if needed). Therefore,
since Ind

W pKs{Kq
W pKs{Lq r1Ls is a Galois representation, induction on dimV by means of (iv) allows us to

assume that V |IK is isotypic.

Using §2.6, we let pρ,Xq be the irreducible representation of IK over Fl for which V |IK is a multiple
of XF . Since the isomorphism class of XF is preserved under FrobK-conjugation, so is that of X,
see §2.6. A choice of an Fl-isomorphism ι : pρ,Xq

„
ÝÑ pρ1, Xq where ρ1piq “ ρpFrobK iFrob´1K q for

i P IK extends X to a representation ofW pKs{Kq over Fl by letting FrobK act as ι. This extension,
still denoted by X, is a Galois representation because ι P GLpXq has finite order.

Since dimF EndIK pXF , XF q “ dimFl EndIK pX,Xq “ 1 (for the last equality, see the proof of
Lemma 5.5.1), EndIK pXF , XF q – F , so the canonical XF bF HomIK pXF , V q Ñ V is an isomor-
phism. Evidently, it is also W pKs{Kq-equivariant, so V decomposes over F as a tensor product of
the Galois representation XF and the unramified HomIK pXF , V q. It remains to apply (3.2.2). �
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We record the following strengthening of Lemma 5.7 (a) that will be used in §6.

Proposition 5.10. Let A be a discrete valuation ring with the residue field F of characteristic l
with l ‰ p and the fraction field η. Adopt the setup of Theorem 1.1 for S “ SpecA. For the ε0 of
Proposition 5.9, one has ε0pVη, ψη, pdxqηq P Aˆ with the image ε0pVF , ψF , pdxqF q in Fˆ.

Proof. The proof is similar to that of Lemma 5.7 (a). Namely, if needed we again replace η by a
finite extension and V by its subquotient to assume that V – V 1bχV for an Aˆ-valued unramified
character χV and a Galois representation V 1 that factors through a continuous finite quotient
G of W pKs{Kq for which η is sufficiently large. The formula (3.2.1) (together with §2.3 and
Proposition 2.11) then reduces to the case V “ V 1, and we can further assume that dimV “ 1
thanks to Proposition 5.3 (b), (iv), and the compatibility of the decomposition homomorphism with
induction (see §2.7). However, in the 1-dimensional Galois case, ε0pVη, ψη, pdxqηq P A thanks to
(‹), which also shows that this ε0 reduces to ε0pVF , ψF , pdxqF q in F . Since the latter is nonzero by
Proposition 5.9, the claim follows. �

Corollary 5.11. The ε0 of Proposition 5.9 also satisfies (3.3.1) and (3.4.1).

Proof. We begin with (3.3.1). Let χ0 P HompW pKs{Kq, Fˆq be the unramified character for which
χ0pFrobKq “ χpFrobKq. Replacing χ by χχ´10 , invoking (3.2.1), and passing to F , we may and
do assume that χ factors through a continuous finite quotient G for which F is sufficiently large.
We then use the remarks in the beginning of the proof of Proposition 5.8 to lift ψ, dx, and χ to
corresponding objects over an A provided by Lemma 5.1. Since the lift of χ is ramified if and only
if so is χ, Proposition 5.10 reduces to the charF “ 0 case, which was established in Proposition 4.1.

We now turn to (3.4.1), for which we set l :“ charF and also adopt other notation of §3.4. Both sides
of (3.4.1) define homomorphisms RF pW pKs{Kqq Ñ Fˆ: the left one due to (ii) and the exactness
of V ÞÑ V ˚, the right one due to the exactness of p´qI 1 noted in §3.4. Moreover, by (3.3.1), the two
homomorphisms agree on the classes of 1-dimensional representations. Passing to F and invoking
Proposition 5.6, we therefore reduce to showing that they also agree on the elements of the form
Ind

W pKs{Kq
W pKs{Lq prχs´rχ

1sq for finite subextensionsKs{L{K and continuous χ, χ1 P HompW pKs{Lq, Fˆq.
Taking duals commutes with induction,7 so the combination of (iii), (iv), and (3.3.1) shows that the
left hand side of (3.4.1) evaluates on Ind

W pKs{Kq
W pKs{Lq prχs ´ rχ

1sq to

ε0
`

rχs ´ rχ1s, ψ ˝ TrL{K
˘

ε0
`

rχ´1 |¨|Ls ´ rχ
1´1 |¨|Ls,´ψ ˝ TrL{K

˘

“ p#FLq´ rkχI
1
L`rkχ1I

1
L ,

where I 1L :“ I 1XW pKs{Lq, which equals the I 1 of W pKs{Lq. This agrees with what the right hand
side evaluates to thanks to the following Claim 5.11.1 (b).

Claim 5.11.1. For a representation V of W pKs{Lq over F , one has

(a)
´

Ind
W pKs{Kq
W pKs{Lq V

¯I 1

– Ind
W pKs{Kq{I 1

W pKs{Lq{I 1L
V I 1L ;

(b) p#FKq
rk
´

Ind
W pKs{Kq
W pKs{Lq

V
¯I1

“ p#FLqrkV
I1L in F .

Proof.

7This commutation follows from the self-duality of F rW pKs
{Kq{W pKs

{Lqs, which in turn follows from the
W pKs

{Kq-invariance of the nondegenerate bilinear pairing F rW pKs
{Kq{W pKs

{LqsˆF rW pKs
{Kq{W pKs

{Lqs Ñ F
for which the standard basis (indexed by the cosets) is its own dual basis.
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(a) The argument below imitates an argument in [Del73, proof of 3.8].

After consulting [BH06, §2.5, proof of Lemma] to reconcile with the definition of induction
given in (iv), we may identify

Ind
W pKs{Kq
W pKs{Lq V “ tf : W pKs{Kq Ñ V | fpyxq “ yfpxq for y PW pKs{Lqu,

with w PW pKs{Kq acting by wf : x ÞÑ fpxwq. Likewise,

Ind
W pKs{Kq{I 1

W pKs{Lq{I 1L
V I 1L “ tf : W pKs{Kq{I 1 Ñ V I 1L | fpyxq “ yfpxq for y PW pKs{Lq{I 1Lu,

with w PW pKs{Kq{I 1 acting by wf : x ÞÑ fpxwq.

Due to these descriptions, Ind
W pKs{Kq{I 1

W pKs{Lq{I 1L
V I 1L Ă

´

Ind
W pKs{Kq
W pKs{Lq V

¯I 1

. For the converse inclu-

sion, an f P
´

Ind
W pKs{Kq
W pKs{Lq V

¯I 1

is an inflation of an f : W pKs{Kq{I 1 Ñ V that must take

values in V I 1L , because fpxq “ fpyxq “ yfpxq for y P I 1L.

(b) We have rW pKs{Kq{I 1 : W pKs{Lq{I 1Ls “ rW pK
s{Kq : W pKs{LqI 1s, which, up to a power

of l if l ą 0, equals rFL : FKs. The combination of this and (a) gives the claim because the
power of l does not matter: p#FKql “ #FK in F if l ą 0. �

The agreement of the two homomorphisms RF pW pKs{Kqq Ñ Fˆ establishes (3.4.1). �

6. The general case

6.1. Normal integral schemes. Recall from [EGA I, §0, 4.1.4] or [EGA IV2, 5.13.5] that a scheme
S is normal if its local rings are integrally closed domains. For an integral S, normality is equivalent
to OSpUq being an integrally closed domain for every open U Ă S [EGA II, 8.8.6.1].

6.2. Universally Japanese rings. For an episodic appearance below, recall from [EGA IV2, 7.7.1]
that a ring R is universally Japanese if for every domain R1 that is a finite type R-algebra, the
integral closure of R1 in FracR1 is a finite R1-module. For our purposes it suffices to know that every
Dedekind domain whose fraction field has characteristic 0 is universally Japanese [EGA IV2, 7.7.4].

Proof of Theorem 1.1 and the formulas (3.1.1), (3.2.1), and (3.2.2). Proposition 5.9 and (i) force
us to define

ε0pV, ψ, dxq :“ ε0pVη, ψη, pdxqηq,

where η is the generic point of S. Once we check, as we do below, that the resulting ε0 is ΓpS,OˆS q-
valued and its image in kpsqˆ is ε0pVs, ψs, pdxqsq for every s P S, (i)–(v), as well as (3.1.1), (3.2.1),
and (3.2.2), will follow from Proposition 5.9.

The promised checking can be done locally on S, so we assume that S “ SpecA is affine and V is
free. Once we express A as a filtered direct limit of Noetherian normal Zr1p s-subalgebras containing
the values of ψ and dx, since W pKs{Kq acts on V through a finitely generated quotient, limit
arguments and the base change aspect of Proposition 5.9 will descend V to such a subalgebra and
permit to assume further that A is Noetherian. For such an expression, to capture the values of ψ,
endow A with a structure of an R-algebra, where R “ Zr1p srζp8s if charK “ 0 and R “ Zr1p srζps if
charK “ p; then ψ is the pullback of an Rˆ-valued additive character. The normal 1-dimensional
R Ă Zr1p srζp8s is a Dedekind domain because it is Noetherian due to Cohen’s theorem: every finite
prime l different from p is finitely decomposed and unramified in Qpζp8q, so every prime p Ă R
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is generated by the finitely generated p X Zr1p srζpns for some n ě 0. Consequently, as recalled in
§6.2, R is universally Japanese, so finite type R-subalgebras of A have Noetherian normalizations
in their fraction fields and contain the values of dx whenever they contain

ş

OK dx (see §2.4), which
completes the reduction to the Noetherian case.

In the Noetherian case, A is an intersection of discrete valuation rings [Mat89, 12.3 and 12.4 (i)]:

A “
č

htppq“1

Ap inside FracA,

for which Proposition 5.10 supplies the required checking, so the desired ε0pVη, ψη, pdxqηq P A
ˆ

follows. Lastly, for a nongeneric s1 P S the image of ε0pVη, ψη, pdxqηq in kps1qˆ is ε0pVs1 , ψs1 , pdxqs1q,
as one sees by taking s “ η in Lemma 2.10 and combining its conclusion with the base change
aspect of Proposition 5.9. �
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