
PURITY FOR THE BRAUER GROUP

KĘSTUTIS ČESNAVIČIUS

Abstract. A purity conjecture due to Grothendieck and Auslander–Goldman predicts that the
Brauer group of a regular scheme does not change after removing a closed subscheme of codimension
ě 2. The combination of several works of Gabber settles the conjecture except for some cases that
concern p-torsion Brauer classes in mixed characteristic p0, pq. We establish the remaining cases by
using the tilting equivalence for perfectoid rings. To reduce to perfectoids, we control the change of
the Brauer group of the punctured spectrum of a local ring when passing to a finite flat cover.
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1. The purity conjecture of Grothendieck and Auslander–Goldman

Grothendieck predicted in [Gro68b, §6] that the cohomological Brauer group of a regular scheme X
is insensitive to removing a nowhere dense closed subscheme Z Ă X, with some exceptions for Z
of codimension 1. Later examples suggested restricting this purity conjecture to Z of codimension
ě 2: by [DF84, Rem. 3], the Brauer group of A2

C does not agree with that of the complement of
the coordinate axes. In turn, for Z of codimension ě 2, such purity is known in many cases (as we
discuss in detail below), for instance, for cohomology classes of order invertible on X. In this paper,
we finish the remaining cases, that is, we complete the proof of the following theorem.

Theorem 1.1 (§5.5). For a scheme X and a closed subscheme Z Ă X such that for every z P Z the
local ring OX, z of X at z is regular of dimension ě 2, we have

H2
étpX,Gmq

„
ÝÑ H2

étpX ´ Z,Gmq and H3
étpX,Gmq ãÑ H3

étpX ´ Z,Gmq.

The purity conjecture of Grothendieck builds on an earlier question of Auslander–Goldman pointed
out in [AG60, 7.4]. Due to a result of Gabber [Gab81, II, Thm. 1], that is, due to the agreement of
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the Brauer group of an affine scheme with its cohomological counterpart, a positive answer to their
question amounts to the affine case of the following consequence of Theorem 1.1.

Theorem 1.2 (§5.6). For a Noetherian, integral, regular scheme X with the function field K,

H2
étpX,Gmq “

Ş

xPX of height 1H
2
étpOX,x,Gmq in H2

étpK,Gmq.

The global Theorems 1.1 and 1.2 are known to readily reduce to the following key local purity result.

Theorem 1.3 (Theorem 5.3). For a strictly Henselian, regular, local ring R of dimension ě 2,

H2
étpUR,Gmq “ 0, where UR is the punctured spectrum of R.

In turn, as we now summarize, many cases of Theorem 1.3 are already known.

(i) The case dimR “ 2 follows from the equivalence of categories between vector bundles on
SpecpRq and on UR, see [Gro68b, 6.1 b)].

(ii) The case dimR “ 3 was settled by Gabber in [Gab81, I, Thm. 2].

(iii) The vanishing of H2
étpUR,Gmqrp

8s for the primes p that are invertible in R follows from the
absolute purity conjecture whose proof, due to Gabber, is given in [Fuj02] or [ILO14, XVI]
(special cases also follow from earlier [Gro68b, 6.1], [SGA 4III, XVI, 3.7], [Tho84, 3.7]).

(iv) The vanishing of H2
étpUR,Gmqrp

8s in the case when R is an Fp-algebra is given by [Gab93, 2.5]
(and, under further assumptions, also by the earlier [Hoo80, Cor. 2]).

(v) The case when R is formally smooth over a discrete valuation ring is given by [Gab93, 2.10].

(vi) Gabber announced further cases in an Oberwolfach abstract [Gab04, Thm. 5 and Thm. 6]
whose proofs have not been published: the case dimR ě 5 and the case when R is of dimension
4, of mixed characteristic p0, pq, and contains a primitive p-th root of unity.

An example of an R that is not covered by these published or announced results is

R “ pW pFpqJx1, x2, x3, x4Kq{px1x2x3x4 ´ pq.

For proving Theorem 1.3, we will use its known cases (i)–(iii) but not (iv)–(vi).

Our proof has two main steps. The first is to show that the validity of Theorem 1.3 for R of dimension
ě 4 is insensitive to replacing R by a regular R1 that is finite flat over R. Such a reduction has also
been announced in [Gab04, Thm. 4], but our argument seems simpler and gives a more broadly
applicable result. More precisely, we argue in §2 that passage to R1 is controlled by the UR-points
of a certain homogeneous R-space X, show that X is affine, and then conclude by deducing that
XpURq “ XpRq; the restriction dimR ě 4 comes from using the vanishing of the Picard group of the
punctured spectrum of the local complete intersection R1 bR R1 that intervenes in reducing to X. In
comparison, the argument sketched for loc. cit. uses deformation theory and a local Lefschetz theorem
from [SGA 2new, X] to eventually obtain passage to R1 from the known cases of Theorem 1.3. Since
the p-primary Brauer group of a perfect Fp-algebra vanishes, the first step suffices in characteristic p.

The second step is to use the tilting equivalence of Scholze introduced in [Sch12] (which, in turn, is a
version of the almost purity theorem of Faltings [Fal02]) to show that for a p-torsion free perfectoid
ring A, the p-primary cohomological Brauer group H2

étpAr
1
p s,Gmqrp

8s vanishes (see Theorem 4.10).
This vanishing ultimately comes from the fact that the étale p-cohomological dimension of an
affine, Noetherian scheme of characteristic p is ď 1. The intervening comparisons between the étale
cohomology of (non-Noetherian) affinoid adic spaces and of their underlying coordinate rings add to
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the technical details required for the second step but not much to the length of the overall argument
because, modulo limit arguments, the comparisons we need were proved by Huber in [Hub96].

The flexibility of the first step leads to a finer result that seems new even for the ` ‰ p parts:

Theorem 1.4 (§5.4). For a Henselian, regular, local ring R of dimension ě 2 whose residue field is
of dimension ď 1 (in the sense recalled in Definition A.1) and an R-torus T , we have

H1pUR, T q “ H2pUR, T q “ 0.

The vanishing of H1pUR, T q, included here for completeness, follows already from [CTS79, 6.9].

1.5. Notation and conventions. For a semilocal ring R, we let

UR Ă SpecpRq

be the open complement of the closed points. For most schemes S that we consider, we have
H2pS,Gmq “ H2pS,Gmqtors (see Lemma 3.2), so we phrase our results about the (cohomological)
Brauer group in terms of étale cohomology. Other than in the proof of Lemma 3.1, we do not use
the relationship with Azumaya algebras. For a scheme morphism S1 Ñ S, we let p´qS1 denote base
change to S1 and let ResS1{Sp´q denote the restriction of scalars. For a field k, we let k denote
a fixed choice of its algebraic closure. We let W p´q denote the p-typical Witt vectors. When no
confusion seems likely, we let O abbreviate the structure sheaf OS of a scheme S.

Acknowledgements. I thank Peter Scholze for several very helpful conversations. I thank Bjorn
Poonen and Daniel Loughran for helpful correspondence.

2. Passage to a finite flat cover

The perfectoid approach to the purity conjecture hinges on the ability to pass to an infinitely ramified
cover of a regular local ring R without killing Brauer classes of its punctured spectrum. The results
of the present section facilitate this. To highlight the inputs to their proofs, we chose an axiomatic
approach when presenting the key Propositions 2.2 and 2.3. Concrete situations in which these
propositions apply are described in Corollaries 2.4 and 2.5 and Remarks 2.6 and 2.7.

Lemma 2.1. For a finite, locally free scheme morphism π : S1 Ñ S and an S-affine S-group scheme
G, the homogeneous space X :“ pResS1{SpGS1qq{G is representable by an S-affine scheme that is
smooth if so is G. In addition, if π has a section, then

ResS1{SpGS1q – GˆS X (2.1.1)

as S-schemes and, in the case when G is commutative, even as S-group schemes.

Proof. Both the representability by an S-affine scheme and the smoothness are properties that are
fppf local on S, so, by base change along π, we assume that π has a section:

S
s // S1

π

��

S.

Then the adjunction map i : G ãÑ ResS1{SpGS1q has a section j : ResS1{SpGS1q � ResS{SpGq – G,
which is a group morphism. It follows that X – Ker j over S, compatibly with group structures if G
is commutative. Since ResS1{SpGS1q is an S-affine S-group scheme (see [BLR90, 7.6/4 and its proof]),
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the representability of X by an S-affine scheme and the decomposition (2.1.1) follow. If G is smooth,
then so is ResS1{SpGS1q, and hence X is, too (see [BLR90, 7.6/5] and [SGA 3I new, VIB, 9.2 (xii)]). �

Proposition 2.2. For a finite, flat map R Ñ R1 of local rings, an open subscheme V Ă SpecR,
and an affine, smooth R-group scheme G, if

(1) ΓpSpecR,Oq – ΓpV,Oq via pullback; and

(2) every G-torsor is trivial over R;

then the following pullback is injective:

H1
étpV,Gq ãÑ H1

étpVR1 , Gq. (2.2.1)

Proof. By Lemma 2.1, the homogeneous space X :“ pResR1{RpGR1qq{G is an affine R-scheme. Thus,
due to (1), we have XpRq – XpV q via pullback. However, due to (2), every element of XpRq
lifts to pResR1{RpGR1qqpRq. Consequently, every element of XpV q lifts to pResR1{RpGR1qqpV q, so, by
[Gir71, III.3.2.2], the map

H1
étpV,Gq Ñ H1

étpV,ResR1{RpGR1qq (2.2.2)
is injective. However, the projection π : VR1 Ñ V is finite, so, as may be checked on strict Henseliza-
tions at points of V , the étale sheaf R1π˚pGVR1 q vanishes. By [Gir71, V.3.1.3], this implies that
H1

étpV,ResR1{RpGR1qq – H1
étpVR1 , Gq, so the injectivity of (2.2.1) follows from that of (2.2.2). �

Proposition 2.3. For a finite, flat map R Ñ R1 of local rings, an open subscheme V Ă SpecR,
and an R-torus T that splits over R1, if

(1) ΓpSpecR,Oq – ΓpV,Oq via pullback;

(2) every ppResR1{RpTR1qq{T q-torsor is trivial over R; and

(3) PicpVR1bRR1q “ 0;

then the following pullback is injective:

H2
étpV, T q ãÑ H2

étpVR1 , T q; (2.3.1)

if instead of (3) we have

(31) PicpVR1bRR1q is torsion free and PicpVR1q is torsion;

(in addition to (1) and (2)), then the pullback is injective on the torsion subgroups:

H2
étpV, T qtors ãÑ H2

étpVR1 , T qtors. (2.3.2)

Proof. By Lemma 2.1, the quotient G :“ pResR1{RpTR1qq{T is representable by an affine, smooth R-
group scheme and GR1 is a direct factor R1-group scheme of pRespR1bRR1q{R1pGmqq

rkT . In particular,
(1)–(2) ensure that Proposition 2.2 applies to G, and we conclude the injectivity of the maps

H1
étpV,Gq ãÑ H1

étpVR1 , Gq ãÑ
ÀrkT

i“1 H
1
étpVR1 ,RespR1bRR1q{R1pGmqq – pPicpVR1bRR1qq

rkT ,

where the identification follows from the exactness in the étale topology of the pushforward along a
finite morphism (see [SGA 4II, VIII, 5.5]). The assumption (3) then gives H1

étpV,Gq “ 0 and hence,
due to the cohomology sequence

. . .Ñ H1
étpVR1 , T q Ñ H1

étpV,Gq Ñ H2
étpV, T q Ñ H2

étpVR1 , T q Ñ . . . , (2.3.3)

implies the claimed (2.3.1). In addition, since T splits over R1, we have H1
étpVR1 , T q – pPicpVR1qq

rkT .
Thus, if (31) holds instead, then H1

étpV,Gq is torsion free and injects into H2
étpV, T q, to the effect

that then (2.3.3) implies (2.3.2). �
4



Corollary 2.4. For a Henselian, regular, local ring R of dimension ě 2 whose residue field k is of
dimension ď 1, a finite étale R-algebra R1, and an R-torus T , the following pullbacks are injective:

H1
étpUR, T q ãÑ H1

étpUR1 , T q and H2
étpUR, T q ãÑ H2

étpUR1 , T q.

Proof. We set V :“ UR, so that, due to the R-finiteness of R1, we have VR1 “ UR1 . We lose no
generality by enlarging R1, so we assume that R1 is local and T splits over R1. Thus, the claim follows
from Propositions 2.2 and 2.3 once we explain why their assumptions (1)–(2) and (1)–(3) hold.

The assumption (1) holds because R is Noetherian of depth ě 2 (see [EGA IV2, 5.10.5]). Since R1{R
is finite étale, pResR1{RpTR1qq{T and T are both tori, so, by Lemma A.2, their torsors are trivial
over k. Thus, since R is Henselian, the same is true over R (see [EGA IV4, 18.5.17]), so (2) holds.
Finally, (3) holds because R1 bR R1 is a product of regular local rings of dimension ě 2. �

Corollary 2.5. For a finite, flat map f : R Ñ R1 of strictly Henselian, regular, local rings of
dimension ě 4, the following pullback is injective:

H2
étpUR,Gmq ãÑ H2

étpUR1 ,Gmq.

Proof. We apply Proposition 2.3 with V “ UR. Its assumption (1) holds because R is of depth ě 2.
Since R is strictly Henselian and pResR1{RppGmqR1qq{Gm is R-smooth and affine (see Lemma 2.1), the
assumption (2) holds, too. Since R and R1 are regular, f is necessarily a local complete intersection
morphism (see [SP, 0E9K]), so the local ring R1 bR R1 is a local complete intersection of dimension
ě 4 (see [SP, 069I, 07D3, 09Q7]). However, by [SGA 2new, XI, 3.13 (ii)], the Picard group of the
punctured spectrum of a local complete intersection of dimension ě 4 vanishes, so (3) holds. �

Remarks.

2.6. As is clear from its proof, one may strengthen Corollary 2.5 by assuming instead that f is a
finite, flat, local complete intersection morphism of strictly Henselian, Noetherian, local rings
that are local complete intersections of dimension ě 4.

2.7. A conjecture of Gabber [Gab04, Conj. 3] predicts that PicpUAq is torsion free for any
Noetherian local ring A that is a local complete intersection of dimension 3. Thanks to (31)
and the proof above (as well as Lemma 3.2 below), this conjecture implies that the dimension
requirement in Corollary 2.5 may be weakened to ě 3.

3. Passage to the completion

We will need the flexibility of replacing a Henselian ring by its completion without killing Brauer
classes. The following standard results achieve this. Their general theme goes back at least to [Elk73]
and they rely on the work of Gabber [Gab81] and Gabber–Ramero [GR03].

Lemma 3.1. For a ring R that is Henselian along a principal ideal pfq Ă R generated by a
nonzerodivisor f P R, the following pullback, where pR denotes the f -adic completion of R, is injective:

H2
étpRr

1
f s,Gmqtors ãÑ H2

étp
pRr 1

f s,Gmqtors. (3.1.1)

Proof. By [GR03, 5.4.41], for every n ě 0, the following pullback is bijective:

H1
étpRr

1
f s,GLnq

„
ÝÑ H1

étp
pRr 1

f s,GLnq.

In addition, for any two pPGLnqRr 1
f
s-torsors X and X 1, their isomorphism functor IsoPGLnpX,X

1q

is representable by an affine, smooth Rr 1
f s-scheme (which étale locally on Rr 1

f s is isomorphic to
5
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pPGLnqRr 1
f
s). Consequently, by [GR03, 5.4.21], if X and X 1 are not isomorphic, they cannot become

isomorphic over pRr 1
f s, to the effect that the following pullback map is injective:

H1
étpRr

1
f s,PGLnq ãÑ H1

étp
pRr 1

f s,PGLnq.

Thus, the nonabelian cohomology exact sequences of [Gir71, IV.4.2.10] that result from the central
extension 1 Ñ Gm Ñ GLn Ñ PGLn Ñ 1 fit into the commutative diagram

H1
étpRr

1
f s,GLnq

o
��

// H1
étpRr

1
f s,PGLnq //

� _

��

H2
étpRr

1
f s,Gmq

��

H1
étp

pRr 1
f s,GLnq // H1

étp
pRr 1

f s,PGLnq // H2
étp

pRr 1
f s,Gmq.

This diagram shows that no nonzero element of the image of H1
étpRr

1
f s,PGLnq in H2

étpRr
1
f s,Gmq

maps to zero in H2
étp

pRr 1
f s,Gmq. By [Gab81, II, Thm. 1], as n varies, these images sweep out

H2
étpRr

1
f s,Gmqtors, so the desired injectivity (3.1.1) follows. �

To deduce Proposition 3.3 from Lemma 3.1, we will use the following widely-known result.

Lemma 3.2 ([Gro68a, 1.8]). For a Noetherian, integral, regular scheme X and its function field K,
the pullback

H2
étpX,Gmq ãÑ H2

étpK,Gmq

is injective; in particular, H2
étpX,Gmq is torsion. �

Proposition 3.3. For a Henselian, regular, local ring pR,mq, the following pullback, where pR denotes
the m-adic completion of R, is injective:

H2
étpUR,Gmq ãÑ H2pU

pR
,Gmq. (3.3.1)

Proof. Let f1, . . . , fdimpRq P m be a regular sequence that generates m, set R0 :“ R, and, for each
1 ď i ď dimpRq, let Ri be the fi-adic completion of Ri´1. Explicitly, each Ri is the pf1, . . . , fiq-adic
completion of R: indeed, by induction on i, this follows by forming lim

ÐÝn
of the short exact sequences

0 Ñ R{pfn1 , . . . , f
n
i´1q

fmi
ÝÝÑ R{pfn1 , . . . , f

n
i´1q Ñ R{pfn1 , . . . , f

n
i´1, f

m
i q Ñ 0 for i ą 1, m ě 1.

In particular, RdimpRq –
pR and each Ri is local, regular, and Henselian (see [SP, 0AGX, 07NY,

0DYD]). Consequently, for 1 ď i ď dimpRq, Lemmas 3.1 and 3.2 give the commutative diagram

H2
étpURi´1 ,Gmq� _

��

// H2
étpURi ,Gmq� _

��

H2
étpRi´1r

1
fi
s,Gmq

� � // H2
étpRir

1
fi
s,Gmq,

which shows the injectivity of its top horizontal map. Induction on i then gives (3.3.1). �
6
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4. The p-primary Brauer group in the perfectoid case

While §§2–3 facilitate passage to perfect or perfectoid rings, the present one investigates the p-primary
part of the Brauer group of such a ring. We begin with the simpler positive characteristic case.

Proposition 4.1. For a prime p and a perfect Fp-scheme X, we have

H i
étpX,Gmqrp

8s “ 0 for every i P Z.

Proof. Every étale X-scheme inherits perfectness from X (see [SGA 5, XV, §1, Prop. 2 c) 2)]).
Therefore, on the étale site of X, the p-power map is an automorphism of the sheaf Gm. �

A mixed characteristic analogue of Proposition 4.1 is Theorem 4.10 below, which concerns perfectoid
rings. The latter were introduced by Scholze in [Sch12] in the context of rigid geometry, with variants
in other contexts appearing afterwards. Their axiomatics that suit our purposes are captured by the
following definition and discussion, which are related to [BMS16, §3.2].

Definition 4.2. For a prime p, a p-torsion free ring R is perfectoid if R is p-adically complete and
the divisor ppq Ă R has a p-th root in the sense that there is a $ P R with p$pq “ ppq and

R{$ „

x ÞÑxp // R{p. (4.2.1)

(Since p$q Ă R is the preimage of the kernel of the Frobenius of R{p, it is uniquely determined.)

Remarks.

4.3. The p-torsion freeness, the p-adic completeness, and (4.2.1) imply that R is reduced.

4.4. The p-adic completeness of R implies that the reduction modulo p map

lim
ÐÝx ÞÑxp

R
„
ÝÑ lim

ÐÝx ÞÑxp
pR{pq

is an isomorphism of multiplicative monoids (see the proof of [Sch12, 3.4 (i)]). Thus, due to
the surjectivity of (4.2.1), there is a p-power compatible sequence p. . . , $2, $1q of elements
of R with $1 ” $ mod p. Since ppq “ p$pq, this gives

p$q “ p$1q Ă p$2q Ă . . . and p$pn

n q “ ppq for every n ą 0.

In particular, each p$nq Ă R is uniquely determined: by induction on n, it is the preimage of
the kernel of the pn-power Frobenius of R{p, so that

R{$n „

x ÞÑxp
n

// R{p. (4.4.2)

4.5. By (4.2.1), modulo p2 every element of R is of the form xp ` pyp or, equivalently, xp `$py1p.
In particular, modulo p$ every element of R is a p-th power (a special case of [BMS16, 3.9]).

4.6. By [BMS16, 3.10 (ii)], an R as in Definition 4.2 is perfectoid in the sense of the definition
[BMS16, 3.5]. Conversely, a p-torsion free ring that is perfectoid in the sense of loc. cit. is
perfectoid in the sense of Definition 4.2 due to [BMS16, 3.9 and 3.10 (i)].

The following simple lemma often helps to recognize perfectoid rings in nature.

Lemma 4.7. For a prime p and a p-torsion free ring R such that p$pq “ ppq for some $ P R, if R
is integrally closed in Rr1p s, then the map R{$ x ÞÑxp

ÝÝÝÝÑ R{p is injective; if, in addition, every element
of R{p is a p-th power, then the p-adic completion pR of R is perfectoid.
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Proof. If r P R represents a class in the kernel of R{$ x ÞÑxp
ÝÝÝÝÑ R{p, then rp “ $ps for some s P R.

Since Rr 1
$ s “ Rr1p s and R is integrally closed in Rr1p s, this implies that r

$ P R. Thus, r P p$q, and
the injectivity follows. Since pR{$ – R{$ and pR{p – R{p, the second assertion follows as well. �

To study the p-primary Brauer group of Rr1p s, we will use the tilting equivalence of Scholze
[Sch12, 7.12]. More precisely, since we do not wish to restrict to Rr1p s that are algebras over some
perfectoid field, we will use the version of this equivalence presented by Kedlaya and Liu in [KL15].
We will review its precise statement in §4.9, after discussing the following auxiliary reduction.

4.8. A reduction to the case R “ pRr1p sq
˝. We endow a p-torsion free perfectoid ring R with its

p-adic topology and Rr1p s with the unique ring topology for which R Ă Rr1p s is open, so that Rr1p s is
a Tate ring in the sense of Huber (see [Hub93]). Due to (4.4.2), if x P R is such that xpn P ppnR,
then x P pR; in particular, R contains the topologically nilpotent elements pRr1p sq

˝˝. Thus, since the
subring pRr1p sq

˝ Ă Rr1p s of powerbounded elements is the union of the open, bounded subrings of
Rr1p s that contain R (see [Hub93, 1.2–1.3]), we conclude that, in the notation of Remark 4.4,

each $n kills the cokernel of the inclusion R Ă pRr1p sq
˝ (4.8.1)

(a special case of [BMS16, 3.21]). In particular, the subring pRr1p sq
˝ Ă Rr1p s is bounded (that is, Rr1p s

is uniform), so pRr1p sq
˝ is p-adically complete. In fact, pRr1p sq

˝ is even perfectoid: indeed, the map

pRr1p sq
˝{$

x ÞÑxp
ÝÝÝÝÑ pRr1p sq

˝{p

is injective because xp “ $py in pRr1p sq
˝ implies x

$ P pRr
1
p sq

˝; it is also surjective because, by (4.8.1)
and Remark 4.5, for every x P pRr1p sq

˝ we have $1x “ yp`p$1z with y, z P R, so that y
$2
P pRr1p sq

˝.

In conclusion, by replacing R by pRr1p sq
˝, we reduce the study of Rr1p s to the case when R “ pRr1p sq

˝.
Then R is a ring of integral elements, so that pRr1p s, Rq is an affinoid Tate ring (see [Hub93, §3]).

4.9. The tilting equivalence. Let R be a p-torsion free perfectoid ring with R “ pRr1p sq
˝. The

norm function
x ÞÑ infpt2n |n P Z with pnx P Ruq (4.9.1)

makes Rr1p s a Banach Qp-algebra (in the sense of [KL15, 2.2.1]) whose unit ball is R. In particular,
the pair pRr1p s, Rq becomes a perfectoid Banach Qp-algebra in the sense of [KL15, 3.6.1] (see
[KL15, 3.6.2 (e)]). Its tilt is

pR5r 1
$5
s, R5q, where R5 :“ lim

ÐÝx ÞÑxp
pR{pq and $5

4.4
:“ p. . . , $2 mod p,$1 mod pq P R5,

so that $5 P R5 is a nonzerodivisor and R5 is a $5-adically complete, perfect Fp-algebra. We endow
R5 with its $5-adic topology and R5r 1

$5
s with the unique ring topology for which R5 Ă R5r 1

$5
s is

open. Due to the compatible multiplicative monoid isomorphisms

R5
4.4
– lim
ÐÝx ÞÑxp

R and R5r 1
$5
s – lim

ÐÝxÞÑxp
pRr1p sq,

R5 “ pR5r 1
$5
sq˝. The norm (4.9.1) with $5 in place of p makes pR5r 1

$5
s, R5q a Banach Fp-algebra.

By [KL15, 3.1.13, 3.6.15], the structure presheaves of the spaces

SpapRr1p s, Rq and SpapR5r 1
$5
s, R5q (4.9.2)
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are sheaves, that is, these spaces are adic. Moreover, by [KL15, 3.6.14], the two spaces in (4.9.2)
are naturally (and functorially in R) homeomorphic in such a way that rational subsets correspond
to rational subsets. In addition, by the almost purity theorem in this context [KL15, 3.6.23], this
homeomorphism extends to an equivalence of étale sites1

SpapRr1p s, Rqét – SpapR5r 1
$5
s, R5qét (4.9.3)

that identifies finite étale pRr1p sq-algebras and finite étale pR5r 1
$5
sq-algebras.

Theorem 4.10. For a p-torsion free perfectoid ring R and a commutative, finite, étale Rr1p s-group
scheme G of p-power order, we have

H i
étpRr

1
p s, Gq “ 0 for i ě 2, so also H i

étpRr
1
p s,Gmqrp

8s “ 0 for i ě 2. (4.10.1)

Proof. By §4.8, we may assume that R “ pRr1p sq
˝. Then [Hub96, 3.2.9] (granted that we explain

why it applies, as we do below; we choose U “ SpaA in loc. cit.) gives the identification

H i
étpRr

1
p s, Gq – H i

étpSpapRr1p s, Rq, Gq. (4.10.2)

Since the equivalence (4.9.3) identifies finite étale pRr1p sq-algebras and finite étale pR5r 1
$5
sq-algebras,

G determines a commutative, finite, étale pR5r 1
$5
sq-group scheme G5 of p-power order such that

H i
étpSpapRr1p s, Rq, Gq – H i

étpSpapR5r 1
$5
s, R5q, G5q. (4.10.3)

By [Hub96, 3.2.9] again (with the same caveat),

H i
étpSpapR5r 1

$5
s, R5q, G5q – H i

étpR
5r 1
$5
s, G5q. (4.10.4)

However, by [SGA 4III, X, 5.1], the étale cohomological p-dimension of an affine Noetherian Fp-scheme
is at most 1, so, by a limit argument, H i

étpR
5r 1
$5
s, G5q “ 0 for i ě 2. Due to (4.10.2)–(4.10.4), this

gives the desired H i
étpRr

1
p s, Gq “ 0 for i ě 2. The second part of (4.10.1) follows by choosing G “ µp.

In order to ensure that the structure presheaves of adic spectra are sheaves, the book [Hub96] is
written under a blanket Noetherianness assumption [Hub96, 1.1.1]. Thus, the deduction of (4.10.2)
and (4.10.4) above from [Hub96, 3.2.9] implicitly involves the following limit argument.

The ring R is a filtered direct limit of p-torsion free Zp-subalgebras Rj of finite type that are
integrally closed in Rjr1p s (to ensure the latter, we use the reducedness of R and [EGA IV2, 7.8.6 (ii),
7.8.3 (ii)–(iii)]). We may assume that G descends to each Rjr1p s, so, by [SGA 4II, VII, 5.9],

H i
étpRr

1
p s, Gq – lim

ÝÑj
H i

étpRjr
1
p s, Gq for every i. (4.10.5)

We equip each Rj with the p-adic topology and Rjr
1
p s with the unique ring topology for which

Rj Ă Rjr
1
p s is open. Then a valuation of Rjr1p s whose values on Rj are ď 1 is continuous if and only

if the values of tpnuną0 are not bounded below, and likewise for Rr1p s. In particular, the map

SpapRr1p s, Rq Ñ lim
ÐÝj

pSpapRjr
1
p s, Rjqq (4.10.6)

is a homeomorphism that respects rational subsets. In fact, by following the arguments of [Sch17, proof
of 6.4 (ii)], we see that (4.10.6) extends to an equivalence between the étale site SpapRr1p s, Rqét

and the 2-limit of the étale sites SpapRjr
1
p s, Rjqét granted that we restrict to quasi-compact and

1The étale sites are defined as in [Sch12, 7.1, 7.11]: e.g., a morphism to SpapRr 1
p

s, Rq is étale if and only if on an
open cover of the source it is an open immersion followed by a finite étale map to a rational subspace of SpapRr 1

p
s, Rq;

for stability of étale morphisms under compositions and fiber products, see [KL15, 8.2.17 (c)].
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quasi-separated adic spaces in these sites (this does not change the associated topoi). As in the
proof of [SGA 4II, VII, 5.7], generalities on projective limits of fibered topoi then imply2 that

H i
étpSpapRr1p s, Rq, Gq – lim

ÝÑj
H i

étpSpapRjr
1
p s, Rjq, Gq for every i. (4.10.7)

Since [Hub96, 3.2.9] applies to each pRjr1p s, Rjq and the definition of SpapRjr
1
p s, Rjqét that we are

using agrees with the one in op. cit. (see footnote 1 and [Hub96, 2.2.8]), the combination of (4.10.5)
and (4.10.7) gives (4.10.2). The proof for (4.10.4) is analogous: after expressing R5 as a filtered
direct limit of finite type Fp-subalgebras R1j that contain $5 and are integrally closed in R1jr

1
$5
s, one

repeats the same arguments. �

5. Passage to perfect or perfectoid towers

We are ready to combine the results of the previous sections into a proof of the remaining cases of the
purity conjecture for the Brauer group. We begin with auxiliary lemmas that build suitable towers.

Lemma 5.1. For a complete, regular, local ring pR,mq, there is a filtered direct system of finite, flat
R-algebras Ri such that each pRi,mRiq is a regular local ring and plim

ÝÑi
Ri,mplimÝÑi

Riqq is a regular
local ring with an algebraically closed residue field.

Proof. We set k :“ R{m and p :“ char k and begin with the case when R is of equicharacteristic. By
the Cohen structure theorem [Mat89, 29.7], then R » kJx1, . . . , xnK. We let ki range over the finite
subextensions of k{k and set Ri :“ kiJx1, . . . xnK. The m-adic completion of lim

ÝÑi
Ri is kJx1, . . . xnK,

so lim
ÝÑi

Ri is Noetherian (see [SP, 033E, 05UU, 00MK]), and hence also a regular local ring.

Now we turn to the case when R is of mixed characteristic and p P mzm2. Then, by [Mat89, 29.7]
again, R »W Jx1, . . . , xnK for some complete discrete valuation ring W with p as a uniformizer. By
[Mat89, proof of 29.1], there is an integral extension W 1{W of discrete valuation rings such that
W 1 has p as a uniformizer and k as the residue field. Letting Wi{W range over the finite discrete
valuation ring subextensions of W 1{W , we argue as in the equicharacteristic case that the local ring
plim
ÝÑi

pWiJx1, . . . , xnKq,mplimÝÑi
pWiJx1, . . . , xnKqqq has xW 1Jx1, . . . , xnK as its completion and is regular.

In the remaining case when R is of mixed characteristic and p P m2, by [Mat89, 29.3 and the proof of
29.8 (ii)], there is aW as above such that R »W Jx1, . . . , xnK{pp´fq with f P pp, x1, . . . , xnq

2. Then,
with the same W 1 and Wi as before, each Ri :“ WiJx1, . . . , xnK{pp ´ fq is a finite, flat R-algebra
that is a regular local ring. In addition, by the previous case, lim

ÝÑi
pWiJx1, . . . , xnKq is a regular local

ring with the maximal ideal generated by the system of parameters pp, x1, . . . , xnq, so lim
ÝÑi

Ri is a
regular local ring with the maximal ideal generated by the system of parameters px1, . . . , xnq. �

The following variant of [And16, 3.4.5 (3)] supplies the perfectoid covers we will need.

Lemma 5.2. For a mixed characteristic p0, pq, complete, regular, local ring pR,mq with a perfect
residue field k, there is a tower tRmumPZě0 of finite, flat R-algebras Rm each of which is a regular,
local ring such that the p-adic completion pR8 of R8 :“ lim

ÝÑm
Rm is perfectoid (see Definition 4.2).

Proof. We begin with the case when p P mzm2, in which, by the proof of Lemma 5.1 and the perfect-
ness of k, we have R »W Jx1, . . . , xnK with W –W pkq. We set Rm :“ pW rp1{pmsqJx1{pm

1 , . . . , x
1{pm

n K
and use Lemma 4.7 to confirm that the resulting pR8 is perfectoid.

2Alternatively and more concretely, one may use hypercoverings and [SP, 01H0] to deduce (4.10.7).
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In the remaining case when p P m2, we have R »W Jx1, . . . , xnK{pp´ fq with W –W pkq and some
f P pp, x1, . . . , xnq

2, and we set Rm :“ W Jx1{pm

1 , . . . , x
1{pm

n K{pp ´ fq. Due to Lemma 4.7, to show
that the p-adic completion of the local ring pR8,m8q is perfectoid, we only need to argue that for
some u P Rˆ8 the element up is a p-th power in R8. For this, we follow the argument of [Shi16, 4.9]:
every element of R8{p is a p-th power and p P m2

8, so, by writing p “
ř

ipps
p
i ` ptiqps

1p
i ` pt

1
iqq with

si, s
1
i P m8 and ti, t1i P R8, we find that p “ sp ` pt with s, t P m8 and may set u :“ 1´ t. �

The key purity conclusion for the Brauer group is the following result.

Theorem 5.3. For a strictly Henselian, regular, local ring pR,mq of dimension ě 2, we have

H2
étpUR,Gmq “ 0.

Proof. We set k :“ R{m and p :“ char k and use Proposition 3.3 to assume that R is complete. The
case dimR “ 2 follows from [Gro68b, 6.1 b)] and the case dimR “ 3 then follows from [Gab81, I,
Thm. 2], so we assume further that dimR ě 4. We then combine Corollary 2.5 with a limit
argument and Lemma 5.1 to reduce to the case when k “ k (to preserve completeness, we again use
Proposition 3.3). The absolute purity conjecture proved by Gabber, more precisely, [Fuj02, 2.1.1],
implies that for every prime ` ‰ p we have H2

étpUR, µ`q “ 0, so also H2
étpUR,Gmqr`s “ 0. Therefore,

since H2
étpUR,Gmq is torsion (see Lemma 3.2), we will focus on the vanishing of H2

étpUR,Gmqrps.

We may assume that p ą 0 and begin with the case when R is an Fp-algebra, so that, as in the proof
of Lemma 5.1, we have R » kJx1, . . . , xnK. Since k “ k, the pm-Frobenius of R is finite and flat for
every m ą 0, so, by combining Corollary 2.5 with a limit argument, we reduce to proving that the
perfection V of UR satisfies H2

étpV,Gmqrps “ 0. This, in turn, is a special case of Proposition 4.1.

In the remaining case when R is of mixed characteristic p0, pq, let tRmu be a tower supplied by
Lemma 5.2. By Corollary 2.5 and a limit argument, it suffices to show that H2

étpUR8 ,Gmqrps “ 0.
Each Rm is regular, so, by Lemma 3.2,

H2
étpUR8 ,Gmq ãÑ H2

étpR8r
1
p s,Gmq, and, by Lemma 3.1, H2

étpR8r
1
p s,Gmq ãÑ H2

étp
pR8r

1
p s,Gmq.

However, by Theorem 4.10, the group H2
étp

pR8r
1
p s,Gmq has no nonzero p-torsion. �

5.4. Proof of Theorem 1.4. We have a Henselian, regular, local ring R of dimension ě 2 whose
residue field is of dimension ď 1 and an R-torus T , and we need to show that

H1
étpUR, T q “ H2

étpUR, T q “ 0.

By passing to the limit over all the finite, étale, local R-algebras R1 and using Corollary 2.4, we
reduce to the case when R is strictly Henselian. In this case, T is split, H1

étpUR,Gmq “ 0 because
every line bundle on UR extends to R, and H2

étpUR,Gmq “ 0 by Theorem 5.3. �

The following standard arguments deduce Theorems 1.1 and 1.2 from Theorem 5.3.

5.5. Proof of Theorem 1.1. We have a scheme X and a closed subscheme Z Ă X such that each
local ring OX, z with z P Z is regular of dimension ě 2, and we need to show that

H2
étpX,Gmq

„
ÝÑ H2

étpX ´ Z,Gmq and H3
étpX,Gmq ãÑ H3

étpX ´ Z,Gmq.

By [SGA 4II, V, 6.5], for each X-étale X 1 and the preimage Z 1 Ă X 1 of Z, we have the exact sequence

. . .Ñ H2
Z1pX

1,Gmq Ñ H2
étpX

1,Gmq Ñ H2
étpX

1 ´ Z 1,Gmq Ñ H3
Z1pX

1,Gmq Ñ . . . , (5.5.1)
11



so it suffices to show that H2
ZpX,Gmq “ H3

ZpX,Gmq “ 0. Thus, letting Hq
Zp´,Gmq denote the étale

sheafification of the presheaf X 1 ÞÑ Hq
Z1pX

1,Gmq, the local-to-global spectral sequence

Hp
étpX,H

q
ZpX,Gmqq ñ Hp`q

Z pX,Gmq

of [SGA 4II, V, 6.4] reduces us to showing that Hq
Zp´,Gmq “ 0 for q ď 3. This, in turn, may be

checked on stalks: the sheaves Hq
Zp´,Gmq are supported on Z and, for each geometric point z of Z,

the direct limit of the exact sequences (5.5.1) gives the exact sequence

. . .Ñ H2
ZpX,Gmqz Ñ H2

étpOsh
X, z,Gmq Ñ H2

étpUOsh
X, z

,Gmq Ñ H3
ZpX,Gmqz Ñ . . . ,

so, since Osh
X, z is regular of dimension ě 2, the bijectivity of H0pOsh

X, z,Gmq
„
ÝÑ H0

étpUOsh
X, z

,Gmq, the

vanishing of H i
étpOsh

X, z,Gmq for i ą 0, and the vanishing of H i
étpUOsh

X, z
,Gmq for i “ 1, 2 supplied by

the extendability of line bundles and Theorem 5.3 give the desired Hq
ZpX,Gmqz “ 0 for q ď 3. �

5.6. Proof of Theorem 1.2. We have a Noetherian, integral, regular scheme X with the function
field K and, bearing Lemma 3.2 in mind, we need to show that

H2
étpX,Gmq

„
ÝÑ

Ş

xPX of height 1H
2
étpOX,x,Gmq in H2

étpK,Gmq.

Let α be an element of the intersection in the target. If U, V Ă X are open subschemes such that
α extends to an element of both H2

étpU,Gmq and H2
étpV,Gmq, then α extends to an element of

H2
étpU Y V,Gmq: indeed, this follows from the Mayer–Vietoris sequence

. . .Ñ H2
étpU Y V,Gmq Ñ H2

étpU,Gmq ‘H
2
étpV,Gmq Ñ H2

étpU X V,Gmq Ñ H3
étpU Y V,Gmq Ñ . . .

that results from the Čech-to-derived spectral sequence ȞpptU, V u, Hq
étp´,Gmqq ñ Hp`q

ét pUYV,Gmq

for the cover tU, V u of U Y V . Thus, α extends to an element of H2
étpU,Gmq for some open U Ă X

that covers all the height 1 points of X. Then, by Theorem 1.1, it also extends to H2
étpX,Gmq. �

Remark 5.7. For a discrete valuation ring O with the fraction field K and the residue field k, by
[Gro68b, 2.1], there is the residue sequence

0 Ñ H2
étpO,Gmq Ñ H2

étpK,Gmq Ñ H1
étpk,Q{Zq

that is exact granted that one excludes the pchar kq-primary parts in the case when k is imperfect
(this exclusion is necessary, see [Poo17, 6.8.2]). Therefore, Theorem 1.2 implies that, as predicted in
[Poo17, 6.8.4], for a Noetherian, integral, regular scheme X with the function field K, the sequence

0 Ñ H2
étpX,Gmq Ñ H2

étpK,Gmq Ñ
À

xPX of height 1H
1
étpkpxq,Q{Zq

is exact granted that one excludes the p-primary parts for every prime p for which some point x P X
of height 1 has an imperfect residue field kpxq of characteristic p.

Appendix A. Fields of dimension ď 1

The formulation of Theorem 1.4 above involves the following well-known class of fields.

Definition A.1 ([Ser02, II.§3.1, Prop. 5 and I.§3.1, Prop. 11]). A field k is of dimension ď 1 if

H i
étpk,Gq “ 0 for i ě 2 and every commutative, finite, étale k-group scheme G

and if also, when char k is positive, H2
étpK,Gmq “ 0 for every finite, separable extension K{k.

In this short appendix, we record Lemma A.2 in the form convenient for its use in the proof of
Corollary 2.4 and give an equivalent definition of a field of dimension ď 1 in Theorem A.3, which,
we believe, deserves to be known more widely.
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Lemma A.2. For a field k of dimension ď 1 and a k-torus T , we have

H i
étpk, T q “ 0 for every i ě 1. (A.2.1)

Proof. The strict cohomological dimension of k is ď 2 (see [Ser02, I.§3.2, Prop. 13]), so the i ě 3 case
follows. Thus, so does the case T “ Gm. Consequently, by choosing a finite Galois extension K{k
that splits T and considering the norm map ResK{kpTKq Ñ T , at the cost of changing T , we may
replace H i

ét by H i`1
ét in (A.2.1), and then likewise by H i`2

ét . Thus, the settled i ě 3 case suffices. �

Theorem A.3. A field k is of dimension ď 1 if and only if

H i
fppfpk,Gq “ 0 for i ě 2 and every commutative, finite k-group scheme G.

Proof. We may assume that p :“ char k is positive. The displayed condition implies that k is of
dimension ď 1: indeed, for K{k finite, separable, each H2

étpK,Gmq – H2
étpk,ResK{kpGmqq is torsion,

and hence vanishes as soon as H2
fppfpk, pResK{kpGmqqr`sq vanishes for every prime ` (including ` “ p).

For the converse, we assume that k is of dimension ď 1 and, by decomposing and filtering G, that G
is killed by p, connected, and with G_ that is either connected or étale. If G_ is also connected,
then, by [SGA 3II, XVII, 4.2.1 ii) ô iv)], the group G is a successive extension of the copies of the
Frobenius kernel αp of Ga. The vanishing of the coherent cohomology H ipk,Gaq “ 0 for i ě 1 then
gives the claim. If G_ is étale, then G is the kernel of a map of k-tori and Lemma A.2 suffices. �

Corollary A.4. A field k is of dimension ď 1 if and only if

H i
fppfpk,Gq “ 0 for i ě 2 and every commutative, finite type k-group scheme G.

Proof. We may focus on the ‘only if.’ In addition, by [SGA 3I new, VIIA, 8.3] and Theorem A.3, we
may assume that G is smooth, and then also connected. Then H i

fppfpk,Gq – H i
étpk,Gq is torsion for

i ě 1, so consideration of the `-torsion Gr`s settles the case when char k “ 0 or G is semiabelian.
Thus, the “anti-Chevalley theorem” [CGP15, A.3.9] reduces further to affine G. Grothendieck’s
theorem on maximal tori [SGA 3II, XIV, 1.1] then allows us to assume that G is unipotent (see
[SGA 3II, XVII, 4.1.1]). For unipotent G, the filtration of [SGA 3II, XVII, 3.5 ii)] suffices. �

Remark A.5. For vanishing results for H1pk,Gq with k of dimension ď 1, see [Ser02, III.§2.3].
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