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Abstract. For a proper, smooth scheme X over a p-adic field K, we show that any proper, flat,
semistable OK-model X of X whose logarithmic de Rham cohomology is torsion free determines the
same OK-lattice inside Hi

dR(X/K) and, moreover, that this lattice is functorial in X. For this, we
extend the results of Bhatt–Morrow–Scholze on the construction and the analysis of an Ainf -valued
cohomology theory of p-adic formal, proper, smooth OK-schemes X to the semistable case. The
relation of the Ainf -cohomology to the p-adic étale and the logarithmic crystalline cohomologies
allows us to reprove the semistable conjecture of Fontaine–Jannsen.
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1. Introduction

1.1. Integral relations between p-adic cohomology theories. For a proper smooth scheme
X over a complete discretely valued extension K of Qp with a perfect residue field k, comparison
isomorphisms of p-adic Hodge theory relate the p-adic étale, de Rham, and, in the case of semistable
reduction, also crystalline cohomologies ofX. For instance, they show that for i ∈ Z, the Gal(K/K)-
representation H i

ét(XK ,Qp) functorially determines the filtered K-vector space H i
dR(X/K). Even

though the “integral” analogues of these isomorphisms are known to fail in general, one may still
consider their hypothetical consequences, for instance, one may ask the following.

• For proper, flat, semistable OK-models X and X ′ of X endowed with their “standard” log
structures, do the images of H i

log dR(X/OK) and H i
log dR(X ′/OK) in H i

dR(X/K) agree?
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One of the main goals of the present paper is to show that the answer is positive if the logarithmic
de Rham cohomology of the models X and X ′ is torsion free (see (8.6.3) and Theorem 8.7). More
precisely, in this case we show that both H i

log dR(X/OK) and H i
log dR(X ′/OK) agree with the OK-

lattice in H i
dR(X/K) that is functorially determined by H i

ét(XK ,Zp). The good reduction case
of this result may be derived from the work of Bhatt–Morrow–Scholze [BMS16] on integral p-adic
Hodge theory, and our approach, as well as the bulk of this paper, is concerned with extending the
framework of op. cit. to the semistable case.

1.2. The Ainf-cohomology in the semistable case. To approach the question above, we set
C := K̂, let Ainf := W (O[C) be the basic period ring of Fontaine, and, for a semistable OK-model
X of X, similarly to the smooth case treated in [BMS16], construct the Ainf -cohomology

RΓAinf
(X ) ∈ D≥0(Ainf).

We show that various base changes of RΓAinf
(X ) recover other cohomology theories:

RΓAinf
(X )⊗L

Ainf
W (C[) ∼= RΓét(XK ,Zp)⊗L

Zp W (C[);

RΓAinf
(X )⊗L

Ainf , θ
OC ∼= RΓlog dR(X/OK)⊗L

OK OC ;

RΓAinf
(X )⊗L

Ainf
W (k) ∼= RΓlog cris(Xk/W (k))⊗L

W (k) W (k),

(1.2.1)

where RΓlog cris denotes the logarithmic crystalline (that is, Hyodo–Kato) cohomology, W (k) is
endowed with the log structure associated to N≥0

0−→ W (k), and Xk is endowed with the base
change of the “standard” log structure OX , ét ∩ (OX , ét[

1
p ])× of X .

If the cohomology of RΓlog dR(X/OK) is torsion free, then that of RΓAinf
(X ) is Ainf -free and the base

changes (1.2.1) hold in each individual cohomological degree (see §7.6). In this case, the Fargues
equivalence and the formalism of Breuil–Kisin–Fargues Gal(K/K)-modules allow us to prove that

the Gal(K/K)-representation H i
ét(XK ,Zp) determines H i

Ainf
(X ).

It follows that thenH i
ét(XK ,Zp) also determinesH i

log dR(X/OK) (together withH i
log cris(Xk/W (k))).

Since the same reasoning applies to another model X ′, this leads to the result claimed in §1.1.

The base changes (1.2.1) also allow us to extend the cohomology specialization results obtained in
the good reduction case in [BMS16]. Qualitatively, in Proposition 7.7 we show that H i

log dR(X/OK)

is torsion free if and only if so is H i
log cris(Xk/W (k)), in which case H i

ét(XK ,Zp) is torsion free.
Quantitatively, in Theorems 7.10 and 7.13 we show that for every n ≥ 0,

lengthZp((H
i
ét(XK ,Zp)tors)/p

n) ≤ lengthW (k)((H
i
log cris(Xk/W (k))tors)/p

n),

lengthZp((H
i
ét(XK ,Zp)tors)/p

n) ≤ 1

lengthOK (OK/p)
· lengthOK ((H i

log dR(X/OK)tors)/p
n).

1.3. The semistable comparison isomorphism. The analysis of RΓAinf
(X ), specifically, its

relation to the p-adic étale and the logarithmic crystalline cohomologies, permits us to reprove in
Theorem 9.5 the “semistable conjecture” of Fontaine–Jansen [Kat94a, Conj. 1.1]:

RΓét(XK ,Zp)⊗
L
Zp Bst

∼= RΓlog cris(Xk/W (k))⊗L
W (k) Bst. (1.3.1)

Other proofs of this conjecture have been given in [Tsu99], [Fal02], [Niz08], [Bha12], [Bei13a], and
[CN17], whereas [BMS16] used RΓAinf

(X ) to reprove the “crystalline conjecture.” Similarly to
[CN17], we establish (1.3.1) for a suitable class of proper, flat, “semistable” formal OK-schemes X .
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The key result that leads to (1.3.1) is the so-called absolute crystalline comparison isomorphism

RΓAinf
(X )⊗L

Ainf
Acris

∼= RΓlog cris(XOK/p/Acris) (1.3.2)

of Corollary 5.43, whose construction in §5 forms the technical core of this paper. This construction
is based on the “all possible coordinates” technique that is a variant of its analogue used to establish
(1.3.2) in the smooth case in [BMS16, §12]. The presence of singularities and log structures creates
additional complications that do not appear in the smooth case and are overviewed in §5.

Using the absolute crystalline comparison, in Corollary 6.7 we compare the Ainf -cohomology of X
with the B+

dR-cohomology of X defined by Bhatt–Morrow–Scholze in [BMS16, §13]:

RΓAinf
(X )⊗L

Ainf
B+

dR
∼= RΓcris(X

ad
C /B+

dR). (1.3.3)

The identification (1.3.3) is important for ensuring that our semistable comparison (1.3.1) is com-
patible with the de Rham comparison proved in [Sch13], and hence that it respects filtrations.

As for the question posed in §1.1, even though it only involves the étale and the de Rham cohomolo-
gies, the resolution of its “torsion free case” outlined in §1.2 uses both (1.3.2) and (1.3.3) (so also
the bulk of the material of this paper). This is because we need to ensure that the determination of
H i

dR(X/K) by H i
ét(XK ,Qp) via the de Rham comparison of p-adic Hodge theory is compatible with

the determination of H i
log dR(X/OK) and H i

log dR(X ′/OK) by H i
ét(XK ,Zp) via Ainf -cohomology and

Breuil–Kisin–Fargues modules. In fact, even for showing that the cohomology modules of RΓAinf
(X )

are Breuil–Kisin–Fargues, we already use the absolute crystalline comparison (1.3.2).

1.4. The object AΩX and its base changes. Even though above we have focused on schemes,
the construction and the analysis of RΓAinf

(−) works for any p-adic formal OC-scheme X that is
semistable in the sense described in §1.5 below (see (1.5.1)) and that, whenever needed, is assumed
to be proper. Specifically, for such an X, in §2.2 we use the (variant for the étale topology of the)
definition of Bhatt–Morrow–Scholze from [BMS16] to build an object

AΩX ∈ D≥0(Xét, Ainf), and to set RΓAinf
(X) := RΓ(Xét, AΩX).

As in the smooth case of [BMS16], the relation of RΓAinf
(X) to the p-adic étale cohomology of the

adic generic fiber Xad
C of X follows from the results of [Sch13] (see §2). In turn, the relations to the

logarithmic de Rham and crystalline cohomologies are the subjects of §4 and §5, respectively, and
rest on the following identifications established in Theorems 4.16 and 5.4:

AΩX ⊗L
Ainf , θ

OC ∼= Ω•X/OC , log and AΩX⊗̂
L
Ainf

Acris
∼= Ru∗(OXOC/p/Acris

), (1.4.1)

where u : (XOC/p/Acris)log cris → Xét is the forgetful map of topoi. The arguments for (1.4.1) are
built on the same general skeleton as in [BMS16] but differ, among other aspects, in handling the
interaction of the Deligne–Berthelot–Ogus décalage functor Lη used in the definition ofAΩX with the
intervening base changes and with the almost isomorphisms supplied by the almost purity theorem.
Namely, for this, the nonflatness over the singular points of X of the explicit perfectoid proétale
covers that we construct makes it difficult to directly adapt the arguments from op. cit. Instead, we
take advantage of several general results about Lη from [Bha16]. Verifying their assumptions in our
case amounts to the analysis in §3 of a number of continuous group cohomology modules built using
the aforementioned perfectoid cover. The typical conclusion of this analysis is that these modules
have no nonzero “almost torsion” and that the element µ ∈ Ainf kills their “nonintegral parts.”

Further and more specific overviews of our arguments are given in the beginning parts of the
sections that follow. In the rest of this introduction, we fix the precise notational setup for the rest
of the paper (see §1.5), discuss the logarithmic structure on X that we later use without notational
explication (see §1.6), and review the relevant general notational conventions (see §1.7).
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1.5. The setup. In what follows, we fix the following notational setup.

• We fix an algebraically closed field k of characteristic p > 0, let C be the completed algebraic
closure of W (k)[1

p ], and let m ⊂ OC be the maximal ideal in the valuation ring of C.

• For convenience, we fix an embedding pQ ⊂ C, that is, for every prime `, we fix a system of
compatible `n-power roots p1/`∞ := (p1/`n)n>0 of p in OC .

• We fix a p-adic formal scheme X over OC that in the étale topology may be covered by open
affines U which admit an étale OC-morphism

U = Spf(R)→ Spf(R�) with R� := OC{t0, . . . , tr, t±1
r+1, . . . , t

±1
d }/(t0 · · · tr − p

q) (1.5.1)

for some d ≥ 0, some 0 ≤ r ≤ d, and some q ∈ Q>0 (where d, r, and q may depend on U).

For example, C could be the completed algebraic closure of any discretely valued field K of mixed
characteristic (0, p) with a perfect residue field. In addition, no generality is gained by replacing pq
in (1.5.1) by any nonunit π ∈ OC \{0}. The role of the embedding pQ ⊂ C is to simplify arguments
with explicit charts for the log structure on X (defined in §1.6); this is particularly useful in §5,
especially in §§5.25–5.26. Our C is less general than in [BMS16], where any complete algebraically
closed nonarchimedean extension of Qp is typically allowed. One of the main reasons for this is
that we want to be able to apply, especially in §5, certain auxiliary results from [Bei13b] (besides,
relations t0 · · · tr − π in which π has, say, a transcendental valuation go beyond what is typically
understood by “semistable reduction”).

The existence of the étale local semistable coordinates (1.5.1) implies that each XOC/pn is locally of
finite type and flat over OC/pn and Xsm

OC/pn is dense in XOC/pn . By [SP, 04D1] and limit arguments,
the map (1.5.1) is the formal p-adic completion of the W (k)-base change of an étale O-morphism

U → Spec
(
O[t0, . . . , tr, t

±1
r+1, . . . , t

±1
d ]/(t0 · · · tr − pq)

)
(1.5.2)

for some discrete valuation subring O ⊂W (k) that contains pq. Loc. cit. and [GR03, 7.1.6 (i)] also
imply that R is R�-flat. In addition, if R/p is not OC/p-smooth, then R determines q.1

Any smooth p-adic formal OC-scheme X meets the requirements above: indeed, then the cover {U}
exists already for the Zariski topology with r = 0 and q = 1 for all U, see [FK17, I.5.3.18]. Another
key example is

X = X̂OC (1.5.3)
for some discrete valuation subring O ⊂ OC with a perfect residue field and a uniformizer π ∈ O
and a locally of finite type, flat O-scheme X that is semistable in the sense that XO/π is a normal
crossings divisor in X (as defined in [SP, 0BSF]), so that, in particular, X is regular at every point
of XO/π.2 Moreover, if X is even strictly semistable in the sense that XO/π is even a strict normal

1The following argument justifies this. Choose an n ∈ Z>q and let A be the local ring of Spec(R/pn) at some
singular point. Without loss of generality, all the ti with 0 ≤ i ≤ r are noninvertible in A, so, in particular, r ≥ 1.
The d-th Fitting ideal Fittd(Ω

1
(R�/pn)/(OC/p

n)
) ⊂ R�/pn is generated by the r-fold partial products t0 · · · t̂i · · · tr

with 0 ≤ i ≤ r, so the same holds for Fittd(Ω
1
A/(OC/p

n)) ⊂ A (see [SGA 7I, VI, 5.1 (a)]). Consequently, the quotient
(R�/pn)/(Fittd(Ω

1
(R�/pn)/(OC/p

n)
)) is faithfully flat over OC/(pq), and hence so is A/(Fittd(Ω

1
A/(OC/p

n))). It follows
that (pq) ⊂ OC is the preimage of Fittd(Ω

1
A/(OC/p

n)) ⊂ A, to the effect that R determines q.
2To justify that any X as in (1.5.3) meets the requirements, we first note that étale locally on X there exists a

regular sequence such that the product its r + 1 first terms cuts out XO/π. Thus, since any finite extension of O/π
is separable, the miracle flatness theorem [EGA IV2, 6.1.5] ensures that every x ∈ XO/π has an étale neighborhood
U → X that admits an étale O-morphism U → Spec(O[t0, . . . , td]/(t0 · · · tr − π)) or, equivalently, an étale morphism

U → Spec(O[t0, . . . , tr, t
±1
r+1, . . . , t

±1
d ]/(t0 · · · tr − π))). (1.5.4)
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crossings divisor in X (as defined in [SP, 0BI9]), then the étale maps (1.5.4) exist even Zariski
locally on X , and so also the cover {U} exists already for the Zariski topology of X.

• We let Xad
C denote the adic generic fiber of X. By (1.5.1) and [Hub96, 3.5.1], the adic space

Xad
C is smooth over C; by [Hub96, 1.3.18 ii)], if X is OC-proper, then Xad

C is C-proper.

• We let (Xad
C )proét denote the proétale site of Xad

C (reviewed in [BMS16, §5.1] and defined in
[Sch13, 3.9] and [Sch13e, (1)]) and let

ν : (Xad
C )proét → Xét (1.5.5)

be the morphism to the étale site of X that sends any étale U→ X to the constant pro-system
associated to its adic generic fiber. By [SP, 00X6], this functor indeed defines a morphism of
sites: by [Hub96, 3.5.1], it preserves coverings, commutes with fiber products, and respects
final objects. Thus, ν induces a morphism of topoi (ν−1, ν∗) (see [SP, 00XC]).

1.6. The logarithmic structure on X. Unless noted otherwise, we always equip

(1) the ring OC (resp., OC/pn or k) with the log structure OC \ {0} ↪→ OC (resp., its pullback);

(2) the formal scheme X (resp., XOC/pn or Xk) with the log structure given by the subsheaf
associated to the subpresheaf3 OX, ét∩(OX, ét[

1
p ])× ↪→ OX, ét (resp., its pullback log structure).

Both (1) and (2) determine the same log structure on Spf(OC), so the map X → Spf(OC) is that
of log formal schemes. Moreover, étale locally on X, the log structure may be made explicit: in
the presence of a coordinate morphism (1.5.1), Claims 1.6.1 and 1.6.3 below give an explicit chart
for the log structure of U, namely, the chart (1.6.2) in which we replace O by OC , replace U by
U, and set π := pq. This chart shows, in particular, that U and OC may be endowed with fine
log structures whose base changes along a “change of log structure” self-map of OC recover the log
structures described in (1)–(2). In practice this means that we may deal with the log structures in
(1)–(2) as if they were fine and, in particular, we may cite [Kat89] for certain purposes.

By the preceding discussion, all the log structures above are quasi-coherent and integral. Moreover,
by [Kat89, 3.7 (2)], each XOC/pn is log smooth over OC/pn, so that, by [Kat89, 3.10], the OX-module
Ω1
X/OC , log of logarithmic differentials is finite locally free. We set

Ωi
X/OC , log

:=
∧i Ω1

X/OC , log,

let Ω•X/OC , log denote the logarithmic de Rham complex, and set

RΓlog dR(X/OC) := RΓ(Xét,Ω
•
X/OC , log).

Claim 1.6.1. For a valuation subring O ⊂W (k) and an O-scheme U that has an étale morphism

U → Spec
(
O[t0, . . . , tr, t

±1
r+1, . . . , t

±1
d ]/(t0 · · · tr − π)

)
for some nonunit π ∈ O \ {0},

the log structure on U associated to OU, ét ∩ (OU, ét[
1
p ])× has the chart

Nr+1
≥0 tN≥0

(O \ {0})→ Γ(U,OU ) (1.6.2)

given by (ai)0≤i≤r 7→
∏

0≤i≤r t
ai
i on Nr+1

≥0 , the diagonal N≥0 → Nr+1
≥0 and N≥0

a7→πa−−−−→ (O \ {0}) on
N≥0, and the structure map (O \ {0})→ Γ(U,OU ) on O \ {0}.

3The subpresheaf and its associated subsheaf necessarily agree on every quasi-compact object U of Xét.
5
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Proof. Without loss of generality, U is affine, so, by a limit argument, we may assume that O is
discretely valued. Then U , endowed with the log structure associated to (1.6.2), is logarithmically
regular in the sense of [Kat94b, 2.1] (compare with [Bei12, §4.1, proof of Lemma]). Therefore, since
the locus of triviality of this log structure is U [1

p ], the claim follows from [Kat94b, 11.6]. �

Claim 1.6.3. For O as in Claim 1.6.1, a flat O-scheme U (resp., and its formal p-adic completion
U) endowed with the log structure associated to OU, ét ∩ (OU, ét[

1
p ])× (resp., OU, ét ∩ (OU, ét[

1
p ])×),

the formal p-adic completion morphism j : U→ U of log ringed étale sites is strict. (1.6.4)

Proof. For a geometric point u of U, due to [SP, 04D1], the stalk map OU, u ∼= j−1(OU, u) → OU, u

induces an isomorphism OU, u/pn ∼= OU, u/p
n for every n > 0. We consider the stalk map

OU, u ∩ (OU, u[1
p ])× ∼= j−1(OU, u ∩ (OU, u[1

p ])×)→ OU, u ∩ (OU, u[1
p ])×. (1.6.5)

Every element x of the target of (1.6.5) satisfies the equation xy = pn for some n > 0. We choose
an x̃ ∈ OU, u congruent to x modulo pn+1, so that x̃ỹ = pn + pn+1z̃ for some ỹ, z̃ ∈ OU, u. Since
1 +pz̃ ∈ O×U, u, we adjust ỹ to get x̃ỹ = pn, which shows that x̃ ∈ OU, u∩ (OU, u[1

p ])× and (pn) ⊂ (x̃).
Thus, the image of x̃ in OU, u and x generate the same ideal, and hence are unit multiples of each
other. Conversely, if x̃1, x̃2 ∈ OU, u ∩ (OU, u[1

p ])× are unit multiples of each other in OU, u, then, by
reducing modulo pn for a large enough n, we see that they generate the same ideal in OU, u, so are
unit multiples of each other already in OU, u. In conclusion, the map (1.6.5) induces an isomorphism

(OU, u ∩ (OU, u[1
p ])×)/O×U, u

∼−→ (OU, u ∩ (OU, u[1
p ])×)/O×U, u,

to the effect that the map (1.6.4) is indeed strict, as claimed. �

1.7. Conventions and additional notation. For a field K, we let K be its algebraic closure
(taken inside C if K is given as a subfield of C). If K has a valuation, we let OK be its valuation
subring and write OK for the integral closure of OK in K. In mixed characteristic, we normalize
the valuations by requiring that v(p) = 1. We let (−)sm denote the smooth locus of a (formal)
scheme over an implicitly understood base. For power series rings, we use {−} to indicate decaying
coefficients. For a topological ring R, we let R◦ denote the subset of powerbounded elements.

We let W (−) (resp. Wn(−)) denote p-typical Witt vectors (resp., their length n truncation), and
let [−] denote Teichmüller representatives. We let Z(p) be the localization of Z at p, let µpn be the
group scheme of pn-th roots of unity, and let ζpn denote a primitive pn-th root of unity. For brevity,
we set Zp(1) := lim←− (µpn(C)). We let M̂ denote the (by default, p-adic) completion of a module M
and, similarly, let

⊕̂
denote the completion of a direct sum. Unless specified otherwise, we endow

a p-adically complete module with the inverse limit of the discrete topologies.

We use the definition of a perfectoid ring given in [BMS16, 3.5] (the compatibility with prior
definitions is discussed in [BMS16, 3.20]). Explicitly, by [BMS16, 3.9 and 3.10], a p-torsion free ring
S is perfectoid if and only if S is p-adically complete and the divisor (p) ⊂ S has a p-power root in
the sense that there is a $ ∈ S with ($p) = (p) and S/$S

x 7→xp
∼ // S/pS. In particular, for such

an S, any p-adically formally étale S-algebra S′ that is p-adically complete is also perfectoid.

For a ring object R of a topos T , we write D(T , R), or simply D(R), for the derived category of
R-modules. For an object M of a derived category, we denote its derived p-adic completion by

M̂ := R limn(M ⊗L
Z Z/pnZ), and also set ∗ ⊗̂L

· − := R limn((∗ ⊗L
· −)⊗L

Z Z/pnZ) (1.7.1)
6
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(see [SP, 0940] for the definition ofR lim). For a morphism f of ringed topoi, we use the commutation
of the functor Rf∗ with derived limits and derived completions, see [SP, 0A07 and 0944].

For a profinite group H and a continuous H-module M , we write RΓcont(H,M) for the continuous
cochain complex. Whenever convenient, we also view RΓcont(H,−) as the derived global sections
functor of the site of profinite H-sets (see [Sch13, 3.7 (iii)] and [Sch13e, (1)]).

For commuting endomorphisms f1, . . . , fn of an abelian group A, we recall the Koszul complex :

KA(f1, . . . , fn) := A⊗Z[x1,...,xn]

⊗n
i=1

(
Z[x1, . . . , xn]

xi−→ Z[x1, . . . , xd]
)
, (1.7.2)

where A is regarded as a Z[x1, . . . , xn]-module by letting xj act as fj , the tensor products are over
Z[x1, . . . , xn], and the factor complexes are concentrated in degrees 0 and 1.

For an ideal I of a ring R and an R-module complex (M•, d•) withM j ∼= 0 for j < 0, the subcomplex

ηI(M
•) ⊂M• is defined by (ηI(M

•))j := {m ∈ IjM j | dj(m) ∈ Ij+1M j+1}. (1.7.3)

We will mostly (but possibly not always, see Proposition 5.34) use ηI(M•) in the same context as
in [BMS16, 6.2]: when I is generated by a nonzerodivisor and the M j have no nonzero I-torsion.

A logarithmic divided power thickening (or, for brevity, a log PD thickening) is an exact closed
immersion of logarithmic (often abbreviated to log) schemes equipped with a divided power structure
on the quasi-coherent sheaf of ideals that defines the underlying closed immersion of schemes.

Acknowledgements. We thank Bhargav Bhatt and Matthew Morrow for writing the surveys
[Bha16] and [Mor16], which have been useful for preparing this paper. We thank Bhargav Bhatt,
Pierre Colmez, Ravi Fernando, Luc Illusie, Arthur-César Le Bras, Matthew Morrow, Wiesława
Nizioł, Arthur Ogus, Peter Scholze, Joseph Stahl, Jakob Stix, and Olivier Wittenberg for helpful
conversations or correspondence. We thank the Kyoto Top Global University program for providing
the framework in which this collaboration started. We thank the Miller Institute at the University
of California Berkeley, the Research Institute for Mathematical Sciences at Kyoto University, and
the University of Bonn for their support during the preparation of this article.

2. The object AΩX and the p-adic étale cohomology of X

As in the case when X is smooth treated in [BMS16], the eventual construction of the Ainf -
cohomology modules of X rests on the object AΩX that lives in a derived category of Ainf -module
sheaves on X. In this short section, we review the definition of AΩX in §2.2 and then, in the case
when X is proper, review the connection between AΩX and the integral p-adic étale cohomology of
Xad
C in Theorem 2.3. We begin by fixing the basic notation that concerns the ring Ainf of integral

p-adic Hodge theory. The setup of §§2.1–2.2 will be used freely in the rest of the paper.

2.1. The ring Ainf . We denote the tilt of OC by

O[C := lim←−y 7→yp (OC/p) , so that, by reduction mod p, lim←−y 7→yp OC
∼−→ lim←−y 7→yp (OC/p) = O[C

as multiplicative monoids (see [Sch12, 3.4 (i)]). We regard p1/p∞ fixed in §1.5 as an element of
O[C . Due to the fixed embedding pQ≥0 ⊂ OC , this element comes equipped with well-defined
powers (p1/p∞)q ∈ O[C for q ∈ Q≥0. For each x ∈ O[C , we let (. . . , x(1), x(0)) denote its preimage
in lim←−y 7→yp OC . The map x 7→ valOC (x(0)) makes O[C a complete valuation ring of height 1 whose

fraction field C[ := Frac(O[C) is algebraically closed (see [Sch12, 3.4 (iii), 3.7 (ii)]). We let m[ denote
the maximal ideal of O[C .
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The basic period ring Ainf of Fontaine is defined by

Ainf := W (O[C) and comes equipped with the Witt vector Frobenius ϕ : Ainf
∼−→ Ainf .

We equip the local domain Ainf with the product of the valuation topologies via the Witt coordinate
bijection W (O[C) ∼=

∏∞
n=1O[C . Then Ainf is complete and its topology agrees with the (p, [x])-

adic topology for any nonzero nonunit x ∈ O[C . We fix (once and for all) a compatible system
ε = (. . . , ζp2 , ζp, 1) of p-power roots of unity in OC , so that ε ∈ O[C , and set

µ := [ε]− 1 ∈ Ainf . (2.1.1)

Since (p, µ) = (p, [ε− 1]), the topology of Ainf is (p, µ)-adic. By forming the limit of the sequences

0→Wn(O[C)
µ−→Wn(O[C)→Wn(O[C)/µ→ 0, (2.1.2)

we see that Ainf/µ is p-adically complete and that the ideal (µ) ⊂ Ainf does not depend on the
choice of ε (use the fact that the valuation of ζp − 1 does not depend on ζp).

The assignment [x] 7→ x(0) extends uniquely to a ring homomorphism

θ : Ainf � OC , the so-called de Rham specialization map of Ainf , (2.1.3)

which is surjective, as indicated, and intertwines the Frobenius ϕ of Ainf with the absolute Frobenius
of OC/p. Its kernel Ker(θ) ⊂ Ainf is principal and generated by the element

ξ :=
∑p−1

i=0 [εi/p] (2.1.4)

(see [BMS16, 3.16]). Analogues of the sequences (2.1.2) show that each Ainf/ξ
n is p-adically com-

plete. In fact, the map θ identifies Ainf/ξ
n with the initial p-adically complete infinitesimal thick-

ening of OC of order n− 1, see [SZ17, 3.13]. The composition

θ ◦ ϕ−1 : Ainf � OC is the so-called Hodge–Tate specialization map of Ainf ,

and its kernel is generated by the element ϕ(ξ) =
∑p−1

i=0 [εi].

Due to the nature of our C (see §1.5), the ring OC/p is a k-algebra, so Ainf is a W (k)-algebra.

2.2. The object AΩX. The operations that define O[C and Ainf make sense on the proétale site
(Xad

C )proét: namely, as in [Sch13, 4.1, 5.10, and 6.1], we have the integral completed structure sheaf

Ô+
Xad
C

:= lim←−n(O+
Xad
C , proét

/pn), its tilt Ô+, [

Xad
C

:= lim←−y 7→yp(O
+
Xad
C , proét

/p), (2.2.1)

and the basic period sheaf
Ainf,Xad

C
:= W (Ô+, [

Xad
C

). (2.2.2)

For brevity, we often denote these sheaves simply by Ô+, Ô+, [, and Ainf . Affinoid perfectoids form
a basis for (Xad

C )proét (see [Sch13, 4.7]) and the construction of the map θ of (2.1.3) makes sense for
any perfectoid OC-algebra (see [BMS16, §3]). In particular, Ainf,Xad

C
comes equipped with the map

θXad
C

: Ainf,Xad
C
→ Ô+

Xad
C

, (2.2.3)

which, by construction, is compatible with the map θ : Ainf → OC , intertwines the Witt vector
Frobenius ϕ of Ainf,Xad

C
with the absolute Frobenius of Ô+

Xad
C

/p, and, by [Sch13, 6.3 and 6.5], is
surjective with Ker(θXad

C
) = ξ · Ainf,Xad

C
.

The key object that we are going to study in this paper is

AΩX := Lη(µ)(Rν∗(Ainf,Xad
C

)) ∈ D≥0(Xét, Ainf), (2.2.4)
8



where the décalage functor Lη of [BMS16, §6] is formed with respect to the ideal (µ) of the constant
sheaf Ainf of Xét (the definition of Lη(µ) builds on the formula (1.7.3) for η(µ)). The formula (2.2.4)
may also be executed with the Zariski site XZar as the target of ν, and it then defines the object

AΩXZar
∈ D≥0(XZar, Ainf), (2.2.5)

which is the AΩX that was used in [BMS16]. We will only use AΩXZar
in Corollary 4.20 (and in

some results that lead to it) for comparison to AΩX.

Since ϕ(µ) = ϕ(ξ)µ, the Frobenius automorphism of Ainf,Xad
C

gives the “Frobenius” morphism

AΩX ⊗L
Ainf , ϕ

Ainf
∼= Lη(ϕ(ξ))(AΩX)

[BMS16, 6.11, 6.10, and 3.17 (ii)]−−−−−−−−−−−−−−−−−−−−−→ AΩX in D≥0(Xét, Ainf), (2.2.6)

which, by [BMS16, 6.14], induces an isomorphism

(AΩX ⊗L
Ainf , ϕ

Ainf)[
1

ϕ(ξ) ]
∼−→ (AΩX)[ 1

ϕ(ξ) ]. (2.2.7)

In addition, by loc. cit., we also have

AΩX ⊗L
Ainf

Ainf [
1
µ ] ∼= (Rν∗(Ainf,Xad

C
))⊗L

Ainf
Ainf [

1
µ ], (2.2.8)

so a result of Scholze [BMS16, 5.6] supplies the following relation to integral p-adic étale cohomology:

Theorem 2.3. If X is OC-proper, then there is an identification

RΓ(Xét, AΩX)⊗L
Ainf

Ainf [
1
µ ] ∼= RΓét(X

ad
C ,Zp)⊗L

Zp Ainf [
1
µ ]. (2.3.1)

In broad strokes, the proof of Theorem 2.3 given in loc. cit. goes as follows: one considers the map

RΓét(X
ad
C ,Zp)⊗L

Zp Ainf
∼= RΓproét(X

ad
C ,Zp)⊗L

Zp Ainf → RΓproét(X
ad
C ,Ainf,Xad

C
) (2.3.2)

induced by the inclusion Ainf ↪→ Ainf,Xad
C

and deduces from the almost purity theorem with, for
instance, Lemma 3.17 below that the ideal

W (m[) := Ker(W (O[C) �W (k)) of Ainf (2.3.3)

kills the cohomology of its cone. Since µ lies in W (m[) and we have the identification (2.2.8), it
follows that the map (2.3.2) induces the identification (2.3.1).

Remark 2.4. In practice, X often arises as the formal p-adic completion of a proper, finitely
presented OC-scheme X . In this situation, Xad

C agrees with the adic space associated to XC (see
[Con99, 5.3.1 4.], [Hub94, 4.6 (i)], and [Hub96, 1.9.2 ii)]) and, by [Hub96, 3.7.2], we have

RΓét(X
ad
C ,Zp) ∼= RΓét(XC ,Zp).

3. The local analysis of AΩX

Even though the definition of the object AΩX given in (2.2.4) is global, the key computations that
will eventually relate it to the logarithmic de Rham and crystalline cohomologies are local and are
presented in this section. Under the assumption that X has a coordinate morphism as in (1.5.1) (or
(3.1.1) below), their basic goal is to express the cohomology of the proétale sheaf Ainf,Xad

C
, at least

after applying Lη(µ), in terms of continuous group cohomology formed using an explicit perfectoid
proétale cover Xad

C,∞ of Xad
C (see Theorem 3.20). The basic relation of this sort is supplied by the

almost purity theorem, so the key point is to explicate the appearing group cohomology modules
well enough in order to eliminate the “almost” ambiguities inherent in this theorem with the help of
Lemma 3.18 below that comes from [Bha16]. We first carry out this program for the simpler sheaf
Ô+

Xad
C

, and then build on this case to address Ainf,Xad
C
.
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In comparison to the local analysis carried out in the smooth case in [BMS16], one complication
is that the perfectoid cover of X that gives rise to Xad

C,∞ is not flat over the singular points of
Xk. This makes it difficult to transfer various arguments with “q-de Rham complexes” across the
coordinate morphism (3.1.1). In fact, we avoid q-de Rham complexes altogether and instead phrase
the intermediate steps of the local analysis purely in terms of continuous group cohomology modules.

3.1. The local setup. We assume throughout §3 that X = Spf R and for some d ≥ 0, some
0 ≤ r ≤ d, and some q ∈ Q>0, there is an étale Spf(OC)-morphism as in (1.5.1):

X = Spf(R)→ Spf(R�) =: X� with R� := OC{t0, . . . , tr, t±1
r+1, . . . , t

±1
d }/(t0 · · · tr − p

q). (3.1.1)

Due to our assumptions from §1.5, a general X is of this form on a basis for its étale topology.

3.2. The perfectoid cover Xad
C,∞. For each m ≥ 0, we consider the R�-algebra

R�
m := OC{t1/p

m

0 , . . . , t1/p
m

r , t
±1/pm

r+1 , . . . , t
±1/pm

d }/(t1/p
m

0 · · · t1/pmr −pq/pm), and R�
∞ :=

(
lim−→R�

m

)
.̂

Explicitly, we have the p-adically completed direct sum decomposition

R�
∞
∼=
⊕̂

(a0,...,ad)∈(Z[ 1
p

]≥0)⊕(r+1)⊕(Z[ 1
p

])⊕(d−r),

aj = 0 for some 0 ≤ j ≤ r

OC · ta0
0 · · · t

ad
d , (3.2.1)

which shows that R�
∞ is perfectoid (see §1.7) and that, for each m ≥ 0, the map R�

m → R�
∞ is an

inclusion of an R�
m-module direct summand comprised of those summands OC · ta0

0 · · · t
ad
d of (3.2.1)

for which pmaj ∈ Z for all j.

The corresponding R-algebras are

Rm := R⊗R� R
�
m and R∞ :=

(
lim−→Rm

)̂ ∼= (R⊗R� R
�
∞)̂.

Each Rm (resp., R∞) is a p-torsion free p-adically formally étale R�
m-algebra (resp., R�

∞-algebra).
In particular, R∞ is perfectoid (see §1.7). By [GR03, 7.1.6 (ii)], each Rm is p-adically complete.

The summands in (3.2.1) with aj 6∈ Z for some 0 ≤ j ≤ d comprise an R�-submodule M�
∞ of R�

∞,
and we set M∞ := R⊗̂R�M�

∞. Thus, we have the R�-module (resp., R-module) decomposition

R�
∞
∼= R� ⊕M�

∞ (resp., R∞ ∼= R⊕M∞). (3.2.2)

The profinite group

∆ :=

{
(ε0, . . . , εd) ∈

(
lim←−m≥0

µpm(OC)
)⊕(d+1) ∣∣∣ ε0 · · · εr = 1

}
' Z⊕dp

acts R�-linearly on R�
m by scaling each t1/p

m

j by the µpm-component of εj . The induced actions of ∆

on R�
∞ and R∞ are continuous, compatible, and preserve the decompositions (3.2.1) and (3.2.2). In

terms of the element ε fixed in §2.1, ∆ is topologically freely generated by the following d elements:

δi := (ε−1, 1, . . . , 1, ε, 1, . . . , 1) for i = 1, . . . , r, where the 0-th and i-th entries are nonidentity;
δi := (1, . . . , 1, ε, 1, . . . , 1) for i = r + 1, . . . , d, where the i-th entry is nonidentity.

After inverting p, for each m ≥ 0, we have

R�
m[1

p ] ∼=
⊕

a1,...,ad∈{0, 1
pm

,..., p
m−1
pm
}R

�[1
p ] · ta1

1 · · · t
ad
d ,
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so R�
m[1

p ] is the R�[1
p ]-algebra obtained by adjoining the (pm)th roots of t1, . . . , td ∈ (R�[1

p ])×, and

hence is finite étale over R�[1
p ]. Therefore, lim−→m

(
R�
m[1

p ]
)
is a pro-(finite étale) ∆-cover of R�[1

p ].

The explicit description (3.2.1) implies that R�
m = (R�

m[1
p ])◦, so the pro-object

(X�)ad
C,∞ := “ lim←− Spa(R�

m[1
p ], R�

m)”

is an affinoid perfectoid pro-(finite étale) ∆-cover of the adic generic fiber (X�)ad
C of Spf(R�).

Consequently, the Xad
C -base change of (X�)ad

C,∞, namely, the tower

Xad
C,∞ := “ lim←− Spa(Rm[1

p ], Rm), ”

is an affinoid perfectoid pro-(finite étale) ∆-cover of Xad
C .

By [Sch13, 4.10 (iii)], the value on Xad
C,∞ of the sheaf Ô+

Xad
C

reviewed in (2.2.1) is the ring R∞.

3.3. The cohomology of Ô+ and continuous group cohomology. By [Sch13, 3.5, 3.7 (iii)
and its proof, 6.6], the Čech complex of the sheaf Ô+

Xad
C

with respect to the pro-(finite étale) affinoid
perfectoid cover

Xad
C,∞ � Xad

C

is identified with the continuous cochain complex RΓcont(∆, R∞). In particular, by using [SP,
01GY], we obtain the edge map to the proétale cohomology of Ô+

Xad
C

:

e : RΓcont(∆, R∞)→ RΓproét(X
ad
C , Ô+), (3.3.1)

which on the level of cohomology is described by the Cartan–Leray spectral sequence (see loc. cit. or
[SGA 4II, V.3.3]). By the almost purity theorem [Sch13, 4.10 (v)], the maximal ideal m ⊂ OC kills
the cohomology groups of Cone(e).

We will show in Theorem 3.9 that Lη(ζp−1)(e) is an isomorphism, so that Lη(ζp−1)(RΓproét(X
ad
C , Ô+))

is computed in terms of continuous group cohomology. For this, we will use the following lemma.

Lemma 3.4 ([BMS16, 8.11 (i)]). An OC-module map f : M →M ′ with M [m] =
(

M
(ζp−1)M

)
[m] = 0

and both Ker f and Coker f killed by m induces an isomorphism M
M [ζp−1]

∼−→ M ′

M ′[ζp−1] . �

In order to apply Lemma 3.4, we will check in Proposition 3.8 that the cohomology modules
H i

cont(∆, R∞) have no nonzero m-torsion. This will use the following general lemmas.

Lemma 3.5. For an inclusion o ⊂ O of a discrete valuation ring into a nondiscrete valuation ring
of rank 1, if N is an o-module and M ⊂ O denotes the maximal ideal, then (N ⊗o O)[M] = 0.

Proof. The o-flatness of O reduces us to the case when N is finitely generated, so it suffices to
observe that (O/(a))[M] = 0 whenever a ∈ O. �

Lemma 3.6. Fix an i ∈ Z≥0, let H be a profinite group, let {Mj}j∈J be p-adically complete,
p-torsion free, continuous H-modules, and suppose that either

(i) the group H i
cont(H,Mj) is p-torsion free for every j, or

(ii) some pn kills H i
cont(H,Mj) for every j.
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Then the following map is injective:

H i
cont(H,

⊕̂
j∈JMj) ↪→

∏
j∈J H

i
cont(H,Mj), where the completion is p-adic.

In particular, in the case (i) (resp., (ii)), H i
cont(H,

⊕̂
j∈JMj) is p-torsion free (resp., killed by pn).

Proof. Let c be a continuous
(⊕̂

j∈JMj

)
-valued i-cocycle that represents an element of the kernel.

For each j, let cj be the “j-th coordinate” of c. We discard the j with cj = 0 and, for each remaining
j, we choose the maximal nj ∈ Z≥0 such that cj is (pnjMj)-valued, so that the function j 7→ nj is
finite-to-one. Since each Mj is p-torsion free, each p−njcj is an Mj-valued continuous i-cocycle.

In the case (i), the class of p−njcj in H i
cont(H,Mj) vanishes, so each cj is the coboundary of a

(pnjMj)-valued continuous (i − 1)-cochain bj . In the case (ii), pn kills H i
cont(H,Mj), so cj is the

coboundary of a (pnj−nMj)-valued continuous (i− 1)-cochain bj whenever nj ≥ n.

In both cases, the bj exhibit c as a continuous coboundary. �

Lemma 3.7 ([BMS16, 7.3 (ii)]). Let H be a profinite group isomorphic to Z⊕dp for some d > 0, and
let M ∼= lim←−n≥1

Mn be a continuous H-module with each Mn a discrete, pn-torsion, continuous H-
module. For any γ1, . . . , γd ∈ H that topologically freely generate H, there is a natural identification

RΓcont(H,M) ∼= KM (γ1 − 1, . . . , γd − 1), so also Hj
cont(H,M) ∼= Hj(KM (γ1 − 1, . . . , γd − 1)),

in the derived category (see §1.7 for the notation). �

Proposition 3.8. The element ζp − 1 kills the OC-modules H i
cont(∆,M∞). Moreover, for each

b ∈ OC , the OC-modules R∞/b and H i
cont(∆, R∞/b) have no nonzero m-torsion.

Proof. Let S := OC ·ta0
0 · · · t

ad
d be a summand of (3.2.1). By Lemma 3.7, the OC-module H i

cont(∆, S)

is the i-th cohomology of the OC-tensor product of d complexes of the form OC
ζ−1−−→ OC for suitable

p-power roots of unity ζ. Moreover, since the d complexes may be defined over some discrete
valuation subring of OC , Lemma 3.5 ensures that

H i
cont(∆, S) has no nonzero m-torsion. (3.8.1)

If S contributes to M∞, that is, if aj 6∈ Z for some j, then some ζ is not 1, and the corresponding
factor complex is quasi-isomorphic to OC/(ζ − 1). Thus, in this case,

ζ − 1, and hence also ζp − 1, kills H i
cont(∆, S). (3.8.2)

For m > 0, let M�
m denote the p-adically completed direct sum of those summands OC · ta0

0 · · · t
ad
d of

(3.2.1) for which m is the smallest nonnegative integer with pm · (a0, . . . , ad) ∈ Z⊕(d+1). Lemma 3.6
and (3.8.1)–(3.8.2) imply that the OC-module

H i
cont(∆,M

�
m) has no nonzero m-torsion and is killed by ζp − 1. (3.8.3)

Since R is R�-flat and R⊗R� M�
m is p-adically complete (see §1.5 and §3.2), Lemma 3.7 gives

H i
cont(∆, R⊗R� M

�
m) ∼= R⊗R� H

i
cont(∆,M

�
m). (3.8.4)

SinceM∞ ∼=
⊕̂

m(R⊗R�M�
m), (3.8.3)–(3.8.4) and Lemma 3.6 imply that ζp−1 kills H i

cont(∆,M∞).

Since R∞/b is p-adically complete and each of the summands of the decomposition

R∞/(b, p
n) ∼= R/(b, pn)⊕

⊕
m>0(R⊗R� M�

m)/(b, pn) for n > 0
12



may be defined over a suitably large discrete valuation subring of OC , Lemma 3.5 ensures that
R∞/b has no nonzero m-torsion. In addition, the ∆-action on each summand may be defined over
a possibly larger such subring, so, by Lemmas 3.5 and 3.7, in the case b 6= 0 each

H i
cont(∆, (R⊗R� M

�
m)/b), so also H i

cont(∆,M∞/b), has no nonzero m-torsion.

This conclusion extends to the case b = 0 because the (ζp−1)-annihilation of H i
cont(∆,M∞) supplies

the injection H i
cont(∆,M∞) ↪→ H i

cont(∆,M∞/(ζp − 1)). It remains to observe that the OC-module
H i

cont(∆, R/b) also has no nonzero m-torsion: ∆ acts trivially on R/b, so Lemma 3.7 ensures that
H i

cont(∆, R/b) is a direct sum of copies of R/b. �

Theorem 3.9. The edge map e defined in (3.3.1) induces the isomorphism

Lη(ζp−1)(e) : Lη(ζp−1)(RΓcont(∆, R∞))
∼−→ Lη(ζp−1)(RΓproét(X

ad
C , Ô+)). (3.9.1)

Proof. Proposition 3.8 ensures that the OC-modules H i
cont(∆, R∞) have no nonzero m-torsion and

that Hi
cont(∆, R∞)

Hi
cont(∆, R∞)[ζp−1]

∼= Hi
cont(∆, R)

Hi
cont(∆, R)[ζp−1]

. Since ∆ acts trivially on R, this last quotient is a finite
direct sum of copies of R (see Lemma 3.7), so, by Proposition 3.8, it has no nonzero m-torsion.
Consequently, since m kills the kernel and the cokernel of each map

H i(e) : H i
cont(∆, R∞)→ H i(Xad

C , Ô+)

(see §3.3), Lemma 3.4 applies to these maps and gives the desired conclusion. �

Remark 3.10. Theorem 3.9 extends as follows: for a pro-(finite étale) affinoid perfectoid ∆′-cover

Spa(R′∞[1
p ], R′∞)→ Spa(R[1

p ], R) ∼= Xad
C that refines Xad

C,∞ → Xad
C of §3.2, (3.10.1)

the edge map e′ defined analogously to (3.3.1) induces the isomorphism

Lη(ζp−1)(e
′) : Lη(ζp−1)(RΓcont(∆

′, R′∞))
∼−→ Lη(ζp−1)(RΓproét(X

ad
C , Ô+)).

Indeed, by the almost purity theorem [Sch13, 4.10 (v)], the ideal m kills the cohomology of Cone(e′)
(in addition to that of Cone(e)), so the octahedral axiom (see [BBD82, 1.1.7.1]) ensures that it also
kills the cohomology of the cone of the map RΓcont(∆, R∞) → RΓcont(∆

′, R′∞); Lemma 3.4 then
applies to this map and combines with Theorem 3.9 to give the claim.

The main goal of this section is an analogue of Theorem 3.9 for the sheaf Ainf,Xad
C

(see Theorem 3.20).

To prepare for it, in §3.11 and §3.14 we describe the values of the sheaves Ô+, [

Xad
C

and Ainf,Xad
C

on Xad
C,∞.

3.11. The tilt R[∞. Thanks to the explicit description (3.2.1) of the perfectoid ring R�
∞, its tilt

(R�
∞)[ := lim←−y 7→yp(R

�
∞/p) is described explicitly by the identification

(R�
∞)[ ∼=

(
lim−→m

(
O[C [x

1/pm

0 , . . . , x
1/pm

r , x
±1/pm

r+1 , . . . , x
±1/pm

d ]/(x
1/pm

0 · · ·x1/pm

r − (p1/p∞)q/p
m

)
))̂

∼=
⊕̂

(a0,...,ad)∈(Z[ 1
p

]≥0)⊕(r+1)⊕(Z[ 1
p

])⊕(d−r),

aj = 0 for some 0 ≤ j ≤ r

O[C · x
a0
0 · · ·x

ad
d ,

where x1/pm

i corresponds to the p-power compatible sequence (. . . , t
1/pm+1

i , t
1/pm

i ) of elements of R�
∞,

the completions are p1/p∞-adic, and the decomposition is as O[C-modules. Thus,

the tilt R[∞ := lim←−y 7→yp(R∞/p) of the perfectoid ring R∞
13



is identified with the p1/p∞-adic completion of any lift of the étale R�
∞/p-algebra R∞/p to an étale

(R�
∞)[-algebra (such a lift exists, see [SP, 04D1]). By [Sch13, 5.11 (i)], the value on Xad

C,∞ of the
sheaf Ô+, [

Xad
C

reviewed in (2.2.1) is the ring R[∞.

By functoriality, the group ∆ acts continuously and O[C-linearly on (R�
∞)[ and R[∞. Explicitly, ∆

respects the completed direct sum decomposition and an (ε0, . . . , εd) ∈ ∆ scales xajj by εajj ∈ O[C .

Our analysis in §3.14 of the value on Xad
C,∞ of the sheaf Ainf,Xad

C
will hinge on the following lemmas.

Lemma 3.12. Both R[∞/b and H i
cont(∆, R

[
∞/b) for each b ∈ O[C \ {0} have no nonzero m[-torsion.

Proof. We may assume that b ∈ m[, so, by using Frobenius, that b | p1/p∞ in O[C . Then Proposi-
tion 3.8 and the ∆-isomorphism R[∞/b

∼= R∞/b
] for some b] ∈ OC give the claim. �

Lemma 3.13. For any affinoid perfectoid Spa(R′∞[1
p ], R′∞) over Spa(C,OC), the ring

Ainf(R
′
∞) := W ((R′∞)[) (resp., Ainf(R

′
∞)/µ)

is (p, µ)-adically complete (resp., p-adically complete). Moreover, for any n, n′ > 0, the sequence
(pn, µn

′
) is Ainf(R

′
∞)-regular and the Ainf/(p

n, µn
′
)-algebra Ainf(R

′
∞)/(pn, µn

′
) is flat.

Proof. By its definition, the perfect O[C-algebra (R′∞)[ := lim←−y 7→yp(R
′
∞/p) has no nonzero p1/p∞-

torsion (that is, it is O[C-flat), so the regular sequence claim follows from [SP, 07DV]. The formal
criterion of flatness [BouAC, Ch. III, §5.2, Thm. 1 (i)⇔(iv)] then implies the Ainf/(p

n, µn
′
)-flatness

of Ainf(R
′
∞)/(pn, µn

′
) (even with n′ = 0). In addition, the short exact sequences (2.1.2) with (R′∞)[

in place of O[C imply the p-adic completeness of Ainf(R
′
∞)/µ.

Analogously to the case of Ainf discussed in §2.1, we use the Witt coordinate bijection and the
µ-adic topology on (R′∞)[ to topologize Ainf(R

′
∞) ∼=

∏∞
n=1(R′∞)[ and we see that this topology

agrees with the (p, µ)-adic topology. Thus, Ainf(R
′
∞) is (p, µ)-adically complete. �

3.14. The ring Ainf(R∞). By [Sch13, 6.5 (i)], the value on Xad
C,∞ of the sheaf Ainf,Xad

C
is the ring

Ainf(R∞) := W (R[∞).

By Lemma 3.13 and the formal criterion of flatness, Ainf(R∞) is (p, µ)-adically formally flat as
an Ainf -algebra and (p, µ)-adically formally étale as an Ainf(R

�
∞)-algebra. By using, in addition,

Lemma 3.12, we see that each quotient

Ainf(R∞)/(pn, µn
′
), so also Ainf(R∞)/µ, has no nonzero W (m[)-torsion. (3.14.1)

In general, for a perfect Fp-algebra A, the Witt ring W (A) is the unique p-adically complete p-
torsion free Zp-algebra Ã equipped with an isomorphism Ã/p ' A (see [Bha16, 2.5]). For an a ∈ A,
the Teichmüller [a] ∈ Ã is lim

n→∞
(ãp

n

n ) where ãn ∈ Ã is any lift of a1/pn (see [Bha16, 2.4]). Therefore,

Ainf(R
�
∞) ∼=

(
lim−→m

Ainf [X
1/pm

0 , . . . , X
1/pm

r , X
±1/pm

r+1 , . . . , X
±1/pm

d ]/(
∏r
i=0X

1/pm

i − [(p1/p∞)q/p
m

])
)̂

∼=
⊕̂

(a0,...,ad)∈(Z[ 1
p

]≥0)⊕(r+1)⊕(Z[ 1
p

])⊕(d−r),

aj = 0 for some 0 ≤ j ≤ r

Ainf ·Xa0
0 · · ·X

ad
d ,
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where the completions are (p, µ)-adic, the decomposition is as Ainf -modules, and, in terms of §3.11,
we have X1/pm

i = [x
1/pm

i ]. The summands for which ai ∈ Z for all i comprise a subring

A(R�) ∼= Ainf{X0, . . . , Xr, X
±1
r+1, . . . , X

±1
d }/(X0 · · ·Xr − [(p1/p∞)q]) inside Ainf(R

�
∞), (3.14.2)

where the convergence is (p, µ)-adic. The remaining summands, that is, those for which ai 6∈ Z for
some i, comprise an A(R�)-submodule N�

∞ ⊂ Ainf(R
�
∞).

On sections over Xad
C,∞, the map θ from (2.2.3) is identified with the unique ring homomorphism

θ : Ainf(R∞) � R∞ such that [x] 7→ x(0),

is surjective with the kernel generated by the regular element ξ (see [BMS16, 3.10, 3.11]), and
intertwines the Witt vector Frobenius of Ainf(R∞) with the absolute Frobenius of R∞/p. Thus,

θ : A(R�) � R� is described by Xi 7→ ti. (3.14.3)

We use the surjection (3.14.3) to uniquely lift the étale R�/p-algebra R/p to a (p, µ)-adically
complete, formally étale A(R�)-algebra A(R). By construction, we have the identification

Ainf(R∞) ∼= Ainf(R
�
∞)⊗̂A(R�)A(R), (3.14.4)

where the completion is (p, µ)-adic. Therefore, by setting N∞ := N�
∞⊗̂A(R�)A(R), we arrive at the

decompositions of Ainf(R
�
∞) and Ainf(R∞) into “integral” and “nonintegral” parts:

Ainf(R
�
∞) ∼= A(R�)⊕N�

∞ and Ainf(R∞) ∼= A(R)⊕N∞. (3.14.5)

Modulo Ker θ (that is, modulo ξ), these decompositions reduce to the decompositions (3.2.2).

The Witt vector Frobenius of Ainf(R
�
∞) preserves A(R�); explicitly: it is semilinear with respect to

the Frobenius of Ainf and raises each X1/pm

i to the p-th power. By construction, A(R) inherits a
Frobenius ring endomorphism from A(R�), and the identification (3.14.4) is Frobenius-equivariant.

The natural ∆-action on Ainf(R∞) is continuous and commutes with the Frobenius. Explicitly, ∆
respects the completed direct sum decomposition and an (ε0, . . . , εd) ∈ ∆ scales Xaj

j by [ε
aj
j ] ∈ Ainf .

The ∆-action on A(R�) lifts uniquely to a necessarily Frobenius-equivariant ∆-action on A(R). In
particular, ∆ acts trivially on A(R)/µ. The identifications (3.14.4) and (3.14.5) are ∆-equivariant.

3.15. The cohomology of Ainf and continuous group cohomology. Similarly to §3.3, the
Čech complex of the sheaf Ainf,Xad

C
with respect to the pro-(finite étale) affinoid perfectoid cover

Xad
C,∞ → Xad

C is identified with the continuous cochain complex RΓcont(∆,Ainf(R∞)). Thus, by
using [SP, 01GY], we obtain the edge map to the proétale cohomology of Ainf,Xad

C
:

e : RΓcont(∆,Ainf(R∞))→ RΓproét(X
ad
C ,Ainf). (3.15.1)

By the almost purity theorem, more precisely, by [Sch13, 6.5 (ii)], the subset [m[] ⊂ Ainf that consists
of the Teichmüller lifts of the elements in the maximal ideal m[ ⊂ O[C kills all the cohomology groups
of Cone(e). Since µ ∈W (m[) (see (2.3.3)), it will be useful to strengthen this annihilation as follows.

Lemma 3.16. The ideal W (m[) ⊂ Ainf defined in (2.3.3) kills each H i(Cone(e)).

Proof. We argue similarly to [BMS16, proof of Thm. 5.6]. Both the source and the target of e are
derived p-adically complete (see §1.7), so, by [BS15, 3.4.4 and 3.4.14], each H i(Cone(e)) is also
derived p-adically complete. Thus, the desired conclusion follows from the following lemma. �

Lemma 3.17. If [m[]Ainf kills a derived p-adically complete Ainf-module H, then so does W (m[).
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Proof. By the derived p-adic completeness, any free Ainf -module resolution F • of H satisfies

H ∼= Coker
(

lim←−n(F−1/pn)→ lim←−n(F 0/pn)
)
.

Moreover, for every n ≥ 1 the ideals [m[] · Wn(O[C) and Wn(m[) := Ker(Wn(O[C) → Wn(k)) of
Wn(O[C) agree. Thus, the ([m[]Ainf)-annihilation of H implies that Wn(m[) kills both

H/pn ∼= H0(F • ⊗Ainf
Ainf/p

n) and TorAinf
1 (H,Ainf/p

n) ∼= H−1(F • ⊗Ainf
Ainf/p

n).

Thus, since [m[]2 = [m[] and F0/p
n has no nonzerom-torsion for every nonzerom ∈ [m[], any element

x ∈Wn+1(m[) · (F0/p
n+1) may be lifted to Wn+1(m[) · (F−1/p

n+1), compatibly with a specified lift
of its image x ∈ Wn(m[) · (F0/p

n) to Wn(m[) · (F−1/p
n). In particular, W (m[) · (lim←−n(F 0/pn)) lies

in the image of lim←−n(F−1/pn), that is, W (m[) kills H, as desired. �

We will show in Theorem 3.20 that Lη(µ)(e) is an isomorphism, so that continuous group cohomology
computes Lη(µ)(RΓproét(X

ad
C ,Ainf)). For this, we will use the following variant of [Bha16, 6.14].

Lemma 3.18. If B b−→ B′ is a morphism in D(Ainf) such that each H i(B ⊗L
Ainf

Ainf/µ) has no
nonzero W (m[)-torsion and W (m[) kills each H i(Cone(b)), then Lη(µ)(b) is an isomorphism.

Proof. Since Lη is in general not a triangulated functor, the fact that Lη(µ)(Cone(b)) ∼= 0 does not
a priori suffice. Nevertheless, the argument used to prove [Bha16, 6.14] gives the claim. In more
detail, (W (m[))2 kills the cohomology of Cone(b)⊗L

Ainf
Ainf/µ, so the sequences

0→ H i(B ⊗L
Ainf

Ainf/µ)→ H i(B′ ⊗L
Ainf

Ainf/µ)→ H i(Cone(b)⊗L
Ainf

Ainf/µ)→ 0

are short exact. By the Bockstein construction (see [BMS16, 6.12]), as i varies, they comprise a
short exact sequence whose terms are complexes that compute Lη(µ)(B) ⊗L

Ainf
Ainf/µ, etc. Thus,

the vanishing of Lη(µ)(Cone(b)) implies that (Lη(µ)(b)) ⊗L
Ainf

Ainf/µ is an isomorphism. It follows
that Cone(Lη(µ)(b)) ⊗L

Ainf
Ainf/µ ∼= 0, so µ acts invertibly on the cohomology of Cone(Lη(µ)(b)).

But then, as we see after applying −⊗L
Ainf

Ainf [
1
µ ], this cohomology vanishes. �

We now verify that the edge map e defined in (3.15.1) also meets the first assumption of Lemma 3.18.

Proposition 3.19. For each i ∈ Z, the Ainf-module H i
cont(∆,Ainf(R∞)/µ) is p-torsion free and

p-adically complete; moreover, the following natural maps are isomorphisms:

H i
cont(∆,Ainf(R∞)/µ)⊗Ainf

Ainf/p
n ∼−→ H i

cont(∆,Ainf(R∞)/(µ, pn)) for n > 0 (3.19.1)

and
H i

cont(∆,Ainf(R∞)/µ)
∼−→ lim←−n

(
H i

cont(∆,Ainf(R∞)/(µ, pn))
)
. (3.19.2)

In addition, H i
cont(∆,Ainf(R∞)/(µ, pn)) and H i

cont(∆,Ainf(R∞)/µ) have no nonzeroW (m[)-torsion.

Proof. Since A(R)/µ is p-adically complete and trivial as a ∆-module (see Lemma 3.13 and §3.14),
Lemma 3.7 implies that H i

cont(∆, A(R)/µ) is a direct sum of copies of A(R)/µ, and likewise for
H i

cont(∆, A(R)/(µ, pn)). Consequently, since, by (3.14.1), the rings A(R)/(µ, pn) and A(R)/µ have
no nonzero W (m[)-torsion, the analogues of all the claims with A(R) in place of Ainf(R∞) follow.
Thus, due to (3.14.5), we only need to establish these analogues with N∞ in place of Ainf(R∞).

To prepare for treating N∞, we start by building on the ideas of [Bha16, proof of Lem. 4.6] to
analyze a single summand S := Ainf ·Xa0

0 · · ·X
ad
d that, as in §3.14, contributes to N�

∞. We set

bj := aj − a0 for 1 ≤ j ≤ r and bj := aj for r + 1 ≤ j ≤ d, (3.19.3)
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and letm ∈ Z>0 be the minimal such that pmbj ∈ Z for all j. Lemma 3.7 applied with the topological
generators δ1, . . . , δd of ∆ defined in §3.2 gives an Ainf -isomorphism H i

cont(∆, S/µ) ' H i(C•), where
C• is the (Ainf/µ)-tensor product of the d complexes

[Ainf/µ
[εbj ]−1−−−−→ Ainf/µ] ∼= Ainf/([ε

bj ]− 1)⊗L
Ainf

Ainf/µ. (3.19.4)

By reordering the bj , we may assume that for all j we have bj/b1 ∈ Z(p), so that b1 6∈ Z and both
[εb1 ]− 1 | [εbj ]− 1 and [εb1 ]− 1 | µ. Then, by resolving Ainf/µ in (3.19.4) with j = 1, we see that C•
is quasi-isomorphic to a direct sum of shifts of Ainf/([ε

b1 ]− 1) ∼= Ainf/ϕ
−m(µ). Thus, for i ∈ Z,

H i
cont(∆, S/µ) '

⊕
I Ainf/ϕ

−m(µ) for some set I, and hence H i
cont(∆, S/µ)[p] = 0. (3.19.5)

By Lemma 3.7 and [SP, 061Z, 0662], this implies that

H i
cont(∆, S/µ)⊗Ainf

Ainf/p
n ∼−→ H i

cont(∆, S/(µ, p
n)). (3.19.6)

We now analyze N�
∞. Since Ainf(R

�
∞)/µ is p-adically complete, §3.14 gives the ∆-decomposition

Ainf(R
�
∞)/µ ∼=

⊕̂
(a0,...,ad)∈(Z[ 1

p
]≥0)⊕(r+1)⊕(Z[ 1

p
])⊕(d−r),

aj = 0 for some 0 ≤ j ≤ r

Ainf/µ ·Xa0
0 · · ·X

ad
d (3.19.7)

in which the completion is p-adic. Lemma 3.6 (i) then combines with (3.19.5) to prove that

H i
cont(∆, N

�
∞/µ)[p] = 0 for each i ∈ Z. (3.19.8)

Analogously to (3.19.6), this, in turn, implies that

H i
cont(∆, N

�
∞/µ)⊗Ainf

Ainf/p
n ∼−→ H i

cont(∆, N
�
∞/(µ, p

n)). (3.19.9)

Finally, we analyze N∞. The identification

N∞/(µ, p
n) ∼= N�

∞/(µ, p
n)⊗A(R�) A(R) (3.19.10)

is ∆-equivariant and A(R)/(µ, pn) is (A(R�)/(µ, pn))-flat, so Lemma 3.7 gives the identifications

H i
cont(∆, N∞/(µ, p

n)) ∼= H i
cont(∆, N

�
∞/(µ, p

n))⊗A(R�) A(R) for n ≥ 1, (3.19.11)

which are compatible as n varies. Consequently, for n > 1, the sequences

0→ H i
cont(∆, N∞/(µ, p

n))[p]→ H i
cont(∆, N∞/(µ, p

n))→ H i
cont(∆, N∞/(µ, p

n−1))→ 0 (3.19.12)

are short exact because, by (3.19.5) and (3.19.9), so are their analogues with N�
∞ in place of N∞.

By taking the inverse limit of these sequences for varying n and using [SP, 08U5], we obtain

H i
cont(∆, N∞/µ)

∼−→ lim←−n
(
H i

cont(∆, N∞/(µ, p
n))
)
, (3.19.13)

which is the sought analogue of (3.19.2). The p-torsion freeness of H i
cont(∆, N∞/µ) follows from

(3.19.12)–(3.19.13) and, as in (3.19.6), it implies that

H i
cont(∆, N∞/µ)⊗Ainf

Ainf/p
n ∼−→ H i

cont(∆, N∞/(µ, p
n)).

It remains to show that each H i
cont(∆, N∞/(µ, p

n)) has no nonzero W (m[)-torsion.

The surjectivity aspect of the short exact sequences (3.19.12) implies that the sequences

0→ N∞/(µ, p)
pn−1

−−−→ N∞/(µ, p
n)→ N∞/(µ, p

n−1)→ 0

stay short exact after applying H i
cont(∆,−). Thus, H i

cont(∆, N∞/(µ, p
n)) is a successive exten-

sion of copies of H i
cont(∆, N∞/(µ, p)). Consequently, it has no nonzero W (m[)-torsion because, by

Lemma 3.12, neither does H i
cont(∆, N∞/(µ, p)). �
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Theorem 3.20. The edge map e defined in (3.15.1) induces the isomorphism

Lη(µ)(e) : Lη(µ)(RΓcont(∆,Ainf(R∞)))
∼−→ Lη(µ)(RΓproét(X

ad
C ,Ainf,Xad

C
)).

Proof. By the projection formula [SP, 0944],

RΓcont(∆,Ainf(R∞))⊗L
Ainf

Ainf/µ ∼= RΓcont(∆,Ainf(R∞)/µ), (3.20.1)

so Proposition 3.19 implies that the cohomology modules of RΓcont(∆,Ainf(R∞))⊗L
Ainf

Ainf/µ have
no nonzero W (m[)-torsion. Thus, the claim follows from Lemmas 3.16 and 3.18. �

Remark 3.21. Analogously to Remark 3.10, Theorem 3.20 extends as follows: for a pro-(finite
étale) affinoid perfectoid ∆′-cover

Spa(R′∞[1
p ], R′∞)→ Spa(R[1

p ], R) ∼= Xad
C that refines Xad

C,∞ → Xad
C , (3.21.1)

the edge map e′ defined analogously to (3.15.1) induces the isomorphism

Lη(µ)(e
′) : Lη(µ)(RΓcont(∆

′,Ainf(R
′
∞)))

∼−→ Lη(µ)(RΓproét(X
ad
C , Ô+)).

Indeed, like in Remark 3.10, by the almost purity theorem and the octahedral axiom, [m[]Ainf kills
the cohomology modules of the cone of the map e0 : RΓcont(∆,Ainf(R∞)) → RΓcont(∆

′,Ainf(R
′
∞))

and, by [BS15, 3.4.4 and 3.4.14], these modules are derived p-adically complete; thus, by Lemma 3.17,
even W (m[) kills them, to the effect that Lemma 3.18 applies to the map e0 and proves the claim.

As a final goal of §3, we wish to show in Theorem 3.34 that even the maps Lη(µ)(e⊗̂
L
Ainf

A
(m)
cris )

are isomorphisms for Ainf -algebras A
(m)
cris reviewed in §3.26 below. This extension of Theorem 3.20

will be important for relating AΩX to logarithmic crystalline cohomology in §5. Our analysis of
Lη(µ)(e⊗̂

L
Ainf

A
(m)
cris ) will use the following further consequences of the proof of Proposition 3.19.

3.22. The decomposition of N∞. For m ≥ 0, let N�
m be the (p, µ)-adically completed direct

sum of those summands Ainf ·Xa0
0 · · ·X

ad
d that contribute to Ainf(R

�
∞) in §3.14 for which m is the

smallest nonnegative integer such that pmaj ∈ Z for all j (equivalently, in the notation of (3.19.3),
such that pmbj ∈ Z for all j). For varying m > 0, the A(R�)-modules N�

m and the A(R)-modules
Nm := N�

m⊗̂A(R�)A(R) comprise the (p, µ)-adically completed direct sum decompositions

N�
∞
∼=
⊕̂

m>0N
�
m and N∞ ∼=

⊕̂
m>0Nm. (3.22.1)

For a fixed i, Lemma 3.7 and (3.19.5)–(3.19.6) imply that

H i
cont(∆, N

�
m/(µ, p

n)) '
⊕

I′ Ainf/(ϕ
−m(µ), pn) for some set I ′ and every n > 0. (3.22.2)

Corollary 3.23. For all i and n,m ≥ 0,

H i
cont(∆, Nm/(µ, p

n)) is killed by ϕ−m(µ) and is a flat Ainf/(ϕ
−m(µ), pn)-module.

Proof. If R = R�, then (3.22.2) suffices. In addition, by Lazard’s theorem, A(R)/(µ, pn) is a filtered
direct limit of finite free A(R�)/(µ, pn)-modules. Thus, the general case of the claim follows by using
(3.19.11) and its analogue for N0 and N�

0 . �

We wish to supplement Proposition 3.19 with Proposition 3.25 that analyzes the cohomology of N∞
without reducing modulo µ. Its proof will use the following base change result for Lη.
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Lemma 3.24 ([Bha16, 5.14]). For a ring A, a regular sequence f, g ∈ A, and a K ∈ D(A), if the
cohomology modules H i(K ⊗L

A A/f) have no nonzero g-torsion, then the natural map

Lη(f)(K)⊗L
A A/g → Lη(f)(K ⊗

L
A A/g), where f denotes the image of f in A/g,

is an isomorphism. �

Proposition 3.25. The element µ kills every H i
cont(∆, N∞).

Proof. Let δ1, . . . , δd be the free generators of ∆ fixed in §3.2. By Lemma 3.7, we need to prove that

Lη(µ)(KN∞(δ1 − 1, . . . , δd − 1)) ∼= 0. (3.25.1)

The key point, with which we start, is to prove the vanishing (3.25.1) modulo ϕ(ξ). The isomorphism

KN∞(δ1 − 1, . . . , δd − 1)⊗L
Ainf

Ainf/µ ∼= KN∞/µ(δ1 − 1, . . . , δd − 1),

Lemma 3.7, and Proposition 3.19 show that the cohomology of KN∞(δ1−1, . . . , δd−1)⊗L
Ainf

Ainf/µ
is p-torsion free. Therefore, Lemma 3.24 supplies the identification

Lη(µ)(KN∞(δ1 − 1, . . . , δd − 1))⊗L
Ainf

Ainf/ϕ(ξ) ∼= Lη(ζp−1)(KN∞/ϕ(ξ)(δ1 − 1, . . . , δd − 1)). (3.25.2)

The inverse Frobenius ϕ−1 maps N�
∞ isomorphically onto a direct summand of N�

∞, so it maps N∞
isomorphically onto a direct summand of N∞. Thus, ϕ−1 maps N∞/ϕ(ξ) isomorphically onto a
direct summand of N∞/ξ ∼= M∞ (see (3.14.5)). In particular, by Lemma 3.7 and Proposition 3.8,
ζp − 1 kills the cohomology of KN∞/ϕ(ξ)(δ1 − 1, . . . , δd − 1), so both sides of (3.25.2) are acyclic.

Since KN∞(δ1 − 1, . . . , δd − 1) is derived ϕ(ξ)-adically complete (see [SP, 090T]), [BMS16, 6.19]
implies the same for Lη(µ)(KN∞(δ1 − 1, . . . , δd − 1)). The established acyclicity of the left side of
(3.25.2) therefore implies the desired vanishing (3.25.1). �

3.26. The Ainf-algebras A
(m)
cris . The ring A(m)

cris for m ∈ Z≥1 is the p-adic completion of the Ainf -
subalgebra A0, (m)

cris of Ainf [
1
p ] generated by the elements ξs

s! with s ≤ m. In particular, A(m)
cris
∼= Ainf

for m < p. In contrast, if m ≥ p, then, since µp

p! ∈ A
(m)
cris , the p-adic and (p, µ)-adic topologies of A(m)

cris

agree. By its definition, A(m)
cris is p-torsion free; in fact, although we will not use this, Proposition 5.36

below implies that A(m)
cris is even a domain. The map θ of (2.1.3) extends to A(m)

cris :

θ : A
(m)
cris � OC . (3.26.1)

Due to the “finite type nature” of the Ainf -algebra A
(m)
cris , more precisely, due to [BMS16, 12.7 (ii)],

the systems of ideals

(pnA
(m)
cris )n≥1 and ({x ∈ A(m)

cris | µx ∈ p
nA

(m)
cris })n≥1 of A(m)

cris are intertwined. (3.26.2)

Equivalently,

for every n ≥ 1, the map (A
(m)
cris /p

n′)[µ]→ A
(m)
cris /p

n vanishes for large n′ > n. (3.26.3)

Therefore, by taking the inverse limit over n of the sequences

0→ (A
(m)
cris /p

n)[µ]→ A
(m)
cris /p

n µ−→ A
(m)
cris /p

n → A
(m)
cris /(µ, p

n)→ 0, (3.26.4)

we conclude that

A
(m)
cris is µ-torsion free and A

(m)
cris /µ is p-adically complete. (3.26.5)
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The Frobenius automorphism of Ainf preserves the subring A0, (m)
cris ⊂ Ainf [

1
p ]: indeed, for m ≥ p,

since ξ =
∑p−1

i=0 [εi/p] and ξp ∈ pA0, (m)
cris , we have ϕ(ξ) =

∑p−1
i=0 [εi] and ϕ(ξ) ∈ pA0, (m)

cris . Thus, the
Frobenius induces a ring endomorphism

ϕ : A
(m)
cris → A

(m)
cris , (3.26.6)

which, via the map θ, intertwines the absolute Frobenius of OC/p (compare with (2.1.3)).

3.27. The A(R)-algebras A(m)
cris (R). We define the “relative version” of the ring A(m)

cris and its “highly
ramified cover” by

A
(m)
cris (R) := A(R)⊗̂Ainf

A
(m)
cris and A(m)

cris (R∞) := Ainf(R∞)⊗̂Ainf
A

(m)
cris ,

respectively, where the completion is (p, µ)-adic (equivalently, p-adic if m ≥ p). In the case m < p,
one has the identifications A(m)

cris (R) ∼= A(R) and A(m)
cris (R∞) ∼= Ainf(R∞). Due to the decomposition

(3.14.5), the A(R)-algebra A(m)
cris (R) is an A(m)

cris (R)-module direct summand of A(m)
cris (R∞).

The completed direct sum decomposition of Ainf(R
�
∞) (see §3.14) gives the decomposition

A(m)
cris (R�

∞) ∼=
⊕̂

(a0,...,ad)∈Z[ 1
p

]
⊕(r+1)
≥0 ⊕Z[ 1

p
]⊕(d−r),

aj = 0 for some 0 ≤ j ≤ r

A
(m)
cris ·X

a0
0 · · ·X

ad
d , (3.27.1)

where the completion is (p, µ)-adic (equivalently, p-adic if m ≥ p), and, by Lemma 3.13, the al-
gebra A(m)

cris (R∞) is (p, µ)-adically formally étale over A(m)
cris (R�

∞). In particular, (3.26.3) holds with
A(m)

cris (R�
∞) in place of A(m)

cris , and hence also with A(m)
cris (R∞) in place of A(m)

cris . Consequently, the
generalization of (3.26.5) holds, too:

A(m)
cris (R∞) is µ-torsion free and A(m)

cris (R∞)/µ is p-adically complete. (3.27.2)

In addition, by (3.27.1) and the formal étaleness, each A(m)
cris (R∞) is p-torsion free. By §3.14 and

§3.26, the rings A(m)
cris (R) and A(m)

cris (R∞) come equipped with A(m)
cris -semilinear Frobenius endomor-

phisms that are compatible as m varies.

The group ∆ acts continuously, Frobenius-equivariantly, andA(m)
cris -linearly onA(m)

cris (R) and A(m)
cris (R∞).

For each δ ∈ ∆, the abelian group endomorphism δ−1
µ of A(R) induces the endomorphism δ−1

µ of

A
(m)
cris (R) that satisfies δ = 1+µ · δ−1

µ , so, in particular, the induced ∆-action on A(m)
cris (R)/µ is trivial.

3.28. The A
(m)
cris -base change of the edge map. Since A(m)

cris
∼= Ainf for m < p (see §3.26), for

the sake of analyzing the map e⊗̂L
Ainf

A
(m)
cris , let us suppose that m ≥ p. Then for each A

(m)
cris /p

n,
we have A(m)

cris /p
n ∼= A

(m)
cris /(p

n, µn
′
) for every large enough n′ > 0 (see §3.26). Consequently, since

each sequence (pn, µn
′
) is Ainf(R∞)-regular with Ainf(R∞)/(pn, µn

′
) flat over Ainf/(p

n, µn
′
) (see

Lemma 3.13), the projection formula [SP, 0944] and Lemma 3.7 imply that

RΓcont(∆,Ainf(R∞))⊗̂L
Ainf

A
(m)
cris
∼= RΓcont(∆,A

(m)
cris (R∞)).

Consequently, the edge map e defined in (3.15.1) gives rise to the map

e⊗̂L
Ainf

A
(m)
cris : RΓcont(∆,A

(m)
cris (R∞))→ RΓproét(X

ad
C ,Ainf)⊗̂

L
Ainf

A
(m)
cris . (3.28.1)

Since [m[] kills each H i(Cone(e)) (see §3.15) and Cone(e) is bounded, a spectral sequence (see
[SP, 0662]) shows that [m[] also kills each H i(Cone(e)⊗L

Ainf
A

(m)
cris /p

n). Consequently, by [SP, 08U5],
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the ideal [m[]Ainf kills each H i(Cone(e)⊗̂L
Ainf

A
(m)
cris ). In fact, since H i(Cone(e)⊗̂L

Ainf
A

(m)
cris ) is derived

p-adically complete (see [BS15, 3.4.4 and 3.4.14]), by Lemma 3.17, evenW (m[) kills it. In conclusion,

W (m[) kills all the cohomology groups of Cone(e⊗̂L
Ainf

A
(m)
cris ) ∼= Cone(e)⊗̂L

Ainf
A

(m)
cris . (3.28.2)

We will show in Theorem 3.34 that Lη(µ)(e⊗̂
L
Ainf

A
(m)
cris ) is an isomorphism by applying Lemma 3.18.

Thus, we need to know that the Ainf -modulesH i
cont(∆,A

(m)
cris (R∞)/µ) have no nonzeroW (m[)-torsion

(compare with Proposition 3.19 for Ainf(R∞)/µ). The following result is a step in that direction:

Proposition 3.29. The rings A(m)
cris (R∞)/µ and A(m)

cris (R∞)/(µ, pn) have no nonzero W (m[)-torsion.

Proof. Due to the p-adic completeness of A(m)
cris (R∞)/µ, it suffices to establish the claim about

A(m)
cris (R∞)/(µ, pn) for every n ∈ Z≥1. The argument for the latter is similar to that of [BMS16,

12.7 (iii)] and uses approximation by Noetherian rings. Namely, due to the µ-adic completeness of
Ainf , the assignment

T 7→ [ε]1/p − 1 defines a Zp-algebra morphism ZpJT K→ Ainf . (3.29.1)

By [BMS16, 4.31], this turns Ainf into a faithfully flat ZpJT K-module, so, letting M be the mod
(pn, (T +1)p−1) reduction of the ZpJT K-subalgebra of ZpJT K[1

p ] generated by the 1
s!(
∑p−1

i=0 (T +1)i)s

with s ≤ m, we have the identification

A(m)
cris (R∞)/(µ, pn) ∼= M ⊗ZpJT K/(pn, (T+1)p−1) Ainf(R∞)/(pn, µ).

The (ZpJT K/(pn, (T+1)p−1))-flatness of Ainf(R∞)/(pn, µ) ensures that the ϕ−1(µ)-torsion submod-
ule of A(m)

cris (R∞)/(µ, pn) is the base change of the T -torsion submodule M [T ] ⊂M . Consequently,
since ϕ−1(µ) ∈W (m[), the consideration of the p-adic filtration of M [T ] reduces us to proving that

Fp ⊗ZpJT K/(pn, (T+1)p−1) Ainf(R∞)/(pn, µ) ∼= R[∞/ϕ
−1(µ) has no nonzero m[-torsion,

which follows from Lemma 3.12. �

To relateH i
cont(∆,A

(m)
cris (R∞)/µ) toH i

cont(∆,Ainf(R∞)/µ), we will use the following generality about
the exactness properties of p-adically completed tensor products (that has little to do with the
particular Ainf -algebra A

(m)
cris , or even with Ainf itself).

Lemma 3.30. For a fixed m ∈ Z≥1, consider the following condition on an Ainf-module L:

for j > 0, {TorAinf
j (L,A

(m)
cris /p

n)}n>0 is Mittag–Leffler with vanishing eventual images, (?)

which means concretely that for every j, n, the map TorAinf
j (L,A

(m)
cris /p

n′) → TorAinf
j (L,A

(m)
cris /p

n)

vanishes for some n′ > n. For a bounded complex

M• = . . .→M i di−→M i+1 → . . .

of Ainf-modules, if each M i and each H i(M•) satisfy (?), then, for every i ∈ Z, we have

H i(M•⊗̂Ainf
A

(m)
cris ) ∼= lim←−nH

i(M• ⊗Ainf
A

(m)
cris /p

n) ∼= H i(M•)⊗̂Ainf
A

(m)
cris . (3.30.1)

Proof. For an inverse system {0 → I ′n → In → I ′′n → 0}n>0 of short exact sequences of abelian
groups, {In}n>0 is Mittag–Leffler with vanishing eventual images if and only if so are both {I ′n}n>0

and {I ′′n}n>0. Therefore, the short exact sequences

0→ Ker di →M i → Im di → 0 and 0→ Im di−1 → Ker di → H i(M•)→ 0 (3.30.2)
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imply, by descending induction on i, that each Ker di and each Im di satisfies (?). Consequently,
these sequences stay short exact after applying −⊗̂Ainf

A
(m)
cris , to the effect that the flanking terms of

(3.30.1) get identified. By construction, this identification is compatible with the canonical maps
to lim←−nH

i(M• ⊗Ainf
A

(m)
cris /p

n), so it remains to establish the second identification in (3.30.1).

By [SP, 0662], spectral sequences associated to a double complex give the following spectral se-
quences that converge to H i+j(M• ⊗L

Ainf
A

(m)
cris /p

n):

(n)Eij2 = H i(Hj(M•)⊗L
Ainf

A
(m)
cris /p

n) and (n)′Eij1 = Hj(M i ⊗L
Ainf

A
(m)
cris /p

n),

where the differential on the (n)′E1-page is Hj(di ⊗L
Ainf

A
(m)
cris /p

n). As n varies, both families of
spectral sequences form an inverse system. Moreover, by assumption, when j 6= 0, the systems
{(n)Eij2 }n>0 and {(n)′Eij1 }n>0 are Mittag–Leffler with vanishing eventual images. Thus, by the first
sentence of the proof, when j 6= 0, the same holds for the systems {(n)Eijs }n>0 and {(n)′Eijs }n>0 for
any s ≤ ∞. Consequently, for i ∈ Z, the edge maps

H i(M•)⊗A(m)
cris /p

n → H i(M• ⊗L A
(m)
cris /p

n) and H i(M• ⊗L A
(m)
cris /p

n)→ H i(M• ⊗A(m)
cris /p

n)

become isomorphisms after applying the functor lim←−n. It remains to note that then so does their

composition, which is the canonical map H i(M•)⊗Ainf
A

(m)
cris /p

n → H i(M• ⊗Ainf
A

(m)
cris /p

n). �

To make Lemma 3.30 practical to use, we now establish its condition (?) in several key cases.

Lemma 3.31. For a fixed m ∈ Z≥1, the condition (?) of Lemma 3.30 holds for an Ainf-module L
in any of the following cases:

(i) m < p and L has no nonzero p-torsion;

(ii) for any n, n′ > 0, the sequence (pn, µn
′
) is regular on L and L/(pn, µn′) is Ainf/(p

n, µn
′
)-flat;

(iii) the module L has no nonzero p-torsion and for every n > 0, the quotient L/pn is a filtered
direct limit of direct sums of modules of the form Ainf/(ϕ

−s(µ), pn) for variable s ∈ Z≥0.

Thus, (?) holds for Ainf(R∞) and Ainf(R∞)/µ, and for each H i
cont(∆, N∞) and H i

cont(∆,Ainf(R∞)/µ).

Proof. If (i) holds, then A(m)
cris
∼= Ainf and TorAinf

j (L,A
(m)
cris /p

n) = 0 for j > 0, so (?) holds. Therefore,

when arguing the assertions about (ii) and (iii), we may assume that m ≥ p, so that each A(m)
cris /p

n

is an Ainf/(p
n, µn

′
)-algebra for some n′ > 0 (see §3.26).

If (ii) holds, then the regular sequence aspect ensures that L ⊗L
Ainf

Ainf/(p
n, µn

′
) ∼= L/(pn, µn

′
).

Thus, the flatness aspect implies that L ⊗L
Ainf

A
(m)
cris /p

n is concentrated in degree 0, i.e., that the
systems in (?) vanish termwise, so that (?) holds in this case.

For s ∈ Z≥0, one has ϕ−s(µ) | µ, so (3.26.3) ensures that for every n ∈ Z≥0 there is an n′ > n such
that the reduction modulo pn map

Tor
Ainf/p

n′

1 (Ainf/(ϕ
−s(µ), pn

′
), A

(m)
cris /p

n′) ∼= (A
(m)
cris /p

n′)[ϕ−s(µ)]→ A
(m)
cris /p

n

vanishes for every s ≥ 0. Thus, if (iii) holds, then for every j > 0 the transition map from position
n′ to position n vanishes in the projective system

{Tor
Ainf/p

n

j (L/pn, A
(m)
cris /p

n)}n>0
∼= {TorAinf

j (L,A
(m)
cris /p

n)}n>0, (3.31.1)
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where the termwise identification follows from the p-torsion freeness of L, more precisely, from the
fact that L⊗L

Ainf
Ainf/p

n is concentrated in degree 0. Consequently, (iii) implies (?).

By §3.14 and Lemma 3.13, (ii) holds for Ainf(R∞) and, by additionally using Lazard’s theorem,
(iii) holds for Ainf(R∞)/µ. Likewise, Proposition 3.19, Corollary 3.23, and Lazard’s theorem imply
that (iii) holds for each H i

cont(∆,Ainf(R∞)/µ). By Lemma 3.7, H i
cont(∆, N∞) vanishes for large i.

Therefore, similarly to the proof of Lemma 3.30, the following short exact sequences that result
from Proposition 3.25:

0→ H i
cont(∆, N∞)→ H i

cont(∆, N∞/µ)→ H i+1
cont(∆, N∞)→ 0 (3.31.2)

show, by induction on i, that (?) for H i
cont(∆,Ainf(R∞)/µ) implies (?) for H i

cont(∆, N∞). �

Thanks to Lemma 3.31, we may apply Lemma 3.30 to draw the following concrete consequences.

Proposition 3.32. For every m ∈ Z≥1 and i ∈ Z, we have the identifications

H i
cont(∆, N∞⊗̂Ainf

A
(m)
cris ) ∼= lim←−nH

i
cont(∆, N∞ ⊗Ainf

A
(m)
cris /p

n) ∼= H i
cont(∆, N∞)⊗̂Ainf

A
(m)
cris . (3.32.1)

In particular, µ kills every H i
cont(∆, N∞⊗̂Ainf

A
(m)
cris ).

Proof. By Lemma 3.7, a Koszul complex M• of N∞ with respect to ∆ satisfies

H i(M•) ∼= H i
cont(∆, N∞) and H i(M•⊗̂A(m)

cris ) ∼= H i
cont(∆, N∞⊗̂Ainf

A
(m)
cris ),

as well as H i(M•⊗A(m)
cris /p

n) ∼= H i
cont(∆, N∞⊗A

(m)
cris /p

n) for every n > 0. Moreover, by Lemma 3.31,
eachM i and eachH i(M•) satisfy (?). Thus, (3.32.1) is a special case of (3.30.1). Finally, by Proposi-
tion 3.25, µ kills every H i

cont(∆, N∞), so, by (3.32.1), it also kills every H i
cont(∆, N∞⊗̂Ainf

A
(m)
cris ). �

Proposition 3.33. For every m ∈ Z≥1 and i ∈ Z, we have the identifications

H i
cont(∆,A

(m)
cris (R∞)/µ) ∼= lim←−nH

i
cont(∆,A

(m)
cris (R∞)/(µ, pn)) ∼= H i

cont(∆,Ainf(R∞)/µ)⊗̂Ainf
A

(m)
cris .

Moreover, the Ainf-module H i
cont(∆,A

(m)
cris (R∞)/µ) has no nonzero W (m[)-torsion.

Proof. Similarly to the proof of Proposition 3.32, Lemma 3.30 applied to the Koszul complex of
Ainf(R∞)/µ proves the identifications. Thus, for the claim about the W (m[)-torsion, it suffices to
prove that each

H i
cont(∆,Ainf(R∞)/µ)⊗Ainf

A
(m)
cris /p

n
(3.19.1)∼= H i

cont(∆,Ainf(R∞)/(µ, pn))⊗Ainf/pn A
(m)
cris /p

n

has no nonzero W (m[)-torsion. Since ∆ acts trivially on A(R)/(µ, pn), Lemma 3.7 and Proposi-
tion 3.29 imply that each H i

cont(∆, A(R)/(µ, pn)) ⊗Ainf/pn A
(m)
cris /p

n has no nonzero W (m[)-torsion.
Consequently, due to the decomposition (3.22.1), it suffices to prove that each

H i
cont(∆, Nj/(µ, p

n))⊗Ainf/pn A
(m)
cris /p

n
3.23∼= H i

cont(∆, Nj/(µ, p
n))⊗Ainf/(ϕ−j(µ),pn) A

(m)
cris /(ϕ

−j(µ), pn)

with j > 0 has no nonzero W (m[)-torsion. For this, similarly to the proof of Proposition 3.29, we
will approximate by Noetherian rings. More precisely, similarly to (3.29.1), the assignment

T 7→ [ε]1/p
j − 1 defines a Zp-algebra morphism ZpJT K→ Ainf ,

with respect to which Ainf is ZJT K-flat. The Ainf -algebra A
(m)
cris /(ϕ

−j(µ), pn) is then identified with
the Ainf/(ϕ

−j(µ), pn)-base change of the mod (T, pn) reduction M of the ZpJT K-subalgebra of
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ZpJT K[1
p ] generated by the elements 1

s!

∑p−1
i=0 (T + 1)p

j−1·i with s ≤ m. Consequently, we need
to prove that

H i
cont(∆, Nj/(µ, p

n))⊗ZpJT K/(T, pn) M

has no nonzero W (m[)-torsion. In fact, since, by Corollary 3.23, the module H i
cont(∆, Nj/(µ, p

n))
is ZpJT K/(T, pn)-flat and M is a successive extension of direct sums of Fp, it suffices to prove that
H i

cont(∆, Nj/(µ, p
n))/p has no nonzero W (m[)-torsion. This, in turn, follows from Proposition 3.19

and Lemma 3.12. �

With Proposition 3.33 in hand, we are ready for the promised claim about Lη(µ)(e⊗̂
L
Ainf

A
(m)
cris ):

Theorem 3.34. For each m ≥ p, the map e⊗̂L
Ainf

A
(m)
cris from (3.28.1) induces the isomorphism

Lη(µ)(e⊗̂
L
Ainf

A
(m)
cris ) : Lη(µ)(RΓcont(∆,A

(m)
cris (R∞)))

∼−→ Lη(µ)(RΓproét(X
ad
proét,Ainf, X)⊗̂L

Ainf
A

(m)
cris ).

Proof. By (3.28.2), the ideal W (m[) ⊂ Ainf kills the cohomology of Cone(e⊗̂L
Ainf

A
(m)
cris ). By Propo-

sition 3.33 (and the projection formula [SP, 0944] with (3.27.2)), the cohomology of

RΓcont(∆,A
(m)
cris (R∞))⊗L

Ainf
Ainf/µ

has no nonzero W (m[)-torsion. Thus, Lemma 3.18 applies and gives the desired conclusion. �

Remark 3.35. Analogously to Remark 3.21, we may extend Theorem 3.34 to any affinoid perfectoid
∆′-cover that refines Xad

C,∞ → Xad
C : more precisely, in the notation used there, we have

Lη(µ)(e
′⊗̂L

Ainf
A

(m)
cris ) : Lη(µ)(RΓcont(∆

′,A(m)
cris (R′∞)))

∼−→ Lη(µ)(RΓproét(X
ad
proét,Ainf, X)⊗̂L

Ainf
A

(m)
cris ),

where A(m)
cris (R′∞) := Ainf(R

′
∞)⊗̂Ainf

A
(m)
cris . Indeed, as there (see also Lemma 3.13 and §3.28), the ideal

W (m[) kills the cohomology of the cone of the map RΓcont(∆,A
(m)
cris (R∞))→ RΓcont(∆

′,A(m)
cris (R′∞)),

so Lemma 3.18 applies to it and gives the claim.

4. The de Rham specialization of AΩX

The main goal of this section is to identify the de Rham specialization of AΩX with the logarithmic
de Rham complex of X over OC (see Theorem 4.16). The key steps for this are the identification
and the analysis of the Hodge–Tate specialization of AΩX in Theorems 4.2 and 4.11. These steps
were also used in the smooth case in [BMS16, §8 and §9] but, due to the difficulties mentioned in the
beginning of §3, we carry them out differently. Namely, we rely on the analysis of group cohomology
from §3 and, in the identification step, we use Lemma 3.24 (which comes from [Bha16]).

4.1. The presheaf version AΩpsh
X . In addition to the étale site Xét, we consider the site Xpsh

ét
whose objects are those connected affine opens of Xét that have an étale coordinate map (3.1.1) and
coverings are isomorphisms over X. Thus, the topology of Xpsh

ét is the coarsest one possible and any
presheaf is already a sheaf. Since Xpsh

ét is a subcategory of Xét, there is an evident morphism of sites

φ : Xshv
ét → Xpsh

ét , (4.1.1)

for which the pushforward φ∗ is given by restricting and, since the objects of Xpsh
ét form a basis of

Xét, the pullback φ−1 is given by sheafifying. In particular, (φ−1, φ∗) constitutes a morphism of
topoi, and, in addition, since any sheaf is the sheafification of its associated presheaf, φ−1 ◦φ∗ ∼= id.
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We set

νpsh := φ ◦ ν : (Xad
C )proét → Xpsh

ét and AΩpsh
X := Lη(µ)(Rν

psh
∗ (Ainf,Xad

C
)), (4.1.2)

so that, explicitly, for every object U of Xpsh
ét , we have

RΓ(U, AΩpsh
X ) ∼= Lη(µ)(RΓ((Uad

C )proét,Ainf,Uad
C

)). (4.1.3)

Since, by [BMS16, 6.19], the functor Lη preserves derived completeness when used in the context of
a replete topos (such as that of sets), the identification (4.1.3) shows in particular that the object
AΩpsh

X is derived ξ-adically (and also ϕ(ξ)-adically) complete (compare with Corollary 4.6 below).

Since the functor of Lη commutes with pullback under flat morphisms of ringed topoi (see [BMS16,
6.14]) and any sheaf on Xét is the sheafification of its restriction to Xpsh

ét , we have

φ−1(AΩpsh
X ) ∼= AΩX. (4.1.4)

Armed with this formalism, we now identify the Hodge–Tate specialization of AΩX.

Theorem 4.2. We have the identification

AΩX ⊗L
Ainf , θ◦ϕ−1 OC

∼−→ Lη(ζp−1)(Rν∗(Ô+
Xad
C

)), (4.2.1)

where on the right side Lη is formed with respect to the ideal sheaf (ζp − 1)OX, ét ⊂ OX, ét. If the
étale morphisms (1.5.1) exist Zariski locally on X, then (4.2.1) also holds for AΩXZar

(see (2.2.5)).

Proof. The kernel of θXad
C
◦ϕ−1 : Ainf,Xad

C
� Ô+

Xad
C

is generated by the nonzero divisor ϕ(ξ) (see §2.2),
so the projection formula [SP, 0944] provides the identification

Rν∗(Ainf,Xad
C

)⊗L
Ainf , θ◦ϕ−1 OC ∼= Rν∗(Ô+

Xad
C

). (4.2.2)

Since (θ ◦ ϕ−1)(µ) = ζp − 1, this identification induces the map (4.2.1), and likewise we also obtain
the presheaf version:

AΩpsh
X ⊗L

Ainf , θ◦ϕ−1 OC → Lη(ζp−1)(Rφ∗(Rν∗(Ô+
Xad
C

))). (4.2.3)

The functor φ−1 brings (4.2.3) to (4.2.1) (compare with (4.1.4)), so it remains to show that (4.2.3)
is an isomorphism.

For every object U = Spf(R) of Xpsh
ét equipped with an étale morphism as in (3.1.1), Proposition 3.19

and (3.20.1) ensure that the cohomology of RΓcont(∆,Ainf(R∞))⊗L
Ainf

Ainf/µ is p-torsion free. Thus,
since ϕ(ξ) ≡ p mod (µ) (see §2.1), [Bha16, 5.14 and its proof] imply that

Lη(µ)(RΓcont(∆,Ainf(R∞)))⊗L
Ainf , θ◦ϕ−1 OC

∼−→ Lη(ζp−1)(RΓcont(∆,Ainf(R∞))⊗L
Ainf , θ◦ϕ−1 OC).

Since the maps (3.3.1) and (3.15.1) are compatible, Theorem 3.9 and Theorem 3.20 then imply that

Lη(µ)(RΓ((Uad
C )proét,Ainf))⊗L

Ainf , θ◦ϕ−1 OC
∼−→ Lη(ζp−1)(RΓ((Uad

C )proét,Ainf)⊗L
Ainf , θ◦ϕ−1 OC).

This shows that (4.2.3) is indeed an isomorphism on every U, as desired. �

4.3. The object Ω̃X. To proceed further, we need to analyze the right side of (4.2.1). For the sake
of brevity, we denote it by

Ω̃X := Lη(ζp−1)(Rν∗(Ô+
Xad
C

)) ∈ D≥0(OX, ét), (4.3.1)

where, as in Theorem 4.2, the functor Lη is formed with respect to the ideal sheaf (ζp − 1)OX, ét.
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Proposition 4.4. For each i ≥ 0, the OX, ét-module H i(Ω̃X) is locally free and its rank at a closed
point x of Xk is equal to

(
dimx(Xk)

i

)
; in particular, each H i(Ω̃X)/pn is a quasi-coherent OX, ét/p

n-
module. In addition,

ν] : OX, ét
∼−→ ν∗(Ô+

Xad
C

), so that H0(Ω̃X) ∼= OX, ét. (4.4.1)

Proof. The claims are étale local (see [SP, 058S]), so we assume that X = Spf R, that X is connected,
and that for some q ∈ Q>0, there is an étale Spf(OC)-morphism as in (1.5.1):

X = Spf R→ Spf R� =: X� with R� := OC{t0, . . . , tr, t±1
r+1, . . . , t

±1
d }/(t0 · · · tr − p

q). (4.4.2)

In particular, this places us in the local setup of §3.1, so the results of §3 apply.

Since R is R�-flat and ∆ acts trivially on R� and R, Lemma 3.7 and Proposition 3.8 imply that

R⊕(di) ∼= H i
cont(∆, R

�)⊗R� R ∼=
Hi

cont(∆, R
�
∞)

Hi
cont(∆, R

�
∞)[ζp−1]

⊗R� R
∼−→ Hi

cont(∆, R∞)

Hi
cont(∆, R∞)[ζp−1]

. (4.4.3)

Therefore, since the map e of (3.3.1) is compatible with its analogue e� for R�, Theorem 3.9 shows
that the base change morphism

Hi((X�)ad
C , Ô+)

Hi((X�)ad
C , Ô+)[ζp−1]

⊗R� R→
Hi(Xad

C , Ô+)

Hi(Xad
C , Ô+)[ζp−1]

(4.4.4)

is an isomorphism of free R-modules of rank
(
d
i

)
. Since the connected affine X is arbitrary (subject

to (4.4.2)), we conclude that

Hi((X�)ad
C , Ô+)

Hi((X�)ad
C , Ô+)[ζp−1]

⊗R� OSpf R, ét
∼−→ Riν∗(Ô+)

(Riν∗(Ô+))[ζp−1]

[BMS16, 6.4]∼= H i(Ω̃X) (4.4.5)

and that H i(Ω̃X) is free of rank
(
d
i

)
, as desired.

For (4.4.1), due to the discussion in §3.3, we need to show that R ∼−→ (R∞)∆. However, this map is
an inclusion of a direct summand whose complementary summand M∆

∞ is both p-torsion free and,
by Proposition 3.8, killed by ζp − 1, so the claim follows. �

Remark 4.5. The proof of Proposition 4.4, specifically, (4.4.4) and (4.4.5), shows that if X is affine,
connected, and admits a coordinate map (4.4.2), then the presheaf which to a variable X-étale affine

X′ assigns Hi(X′ad
C , Ô+)

Hi(X′ad
C , Ô+)[ζp−1]

is already a sheaf and that

H i(Ω̃X�)⊗R� R
∼−→ H i(Ω̃X). (4.5.1)

In particular, if the coordinate maps (4.4.2) exist Zariski locally on X (for instance, if X isOC-smooth
or arises as in (1.5.3) from a strictly semistable X ), then the sheaves H i(Ω̃X) may be computed
using the Zariski topology: more precisely, then the object Ω̃XZar

defined by the formula (4.3.1)
using the Zariski topology of X satisfies

H i(Ω̃XZar
)
∼−→ (H i(Ω̃X))|XZar

for every i ∈ Z≥0. (4.5.2)

Corollary 4.6. The following adjunction map is an isomorphism:

AΩpsh
X

∼−→ Rφ∗(AΩX) ∼= Rφ∗(φ
−1(AΩpsh

X )) (4.6.1)

(see §4.1 for the identification) and AΩX is derived ξ-adically complete.
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Proof. Since φ−1◦Rφ∗ ∼= id and AΩpsh
X is derived ξ-adically complete (see §4.1), the second assertion

follows from the first: indeed, for the derived ξ-adic completeness, it suffices to check that the map

AΩX → R limn(AΩX ⊗L
Ainf

Ainf/ξ
n)

becomes an isomorphism after applying Rφ∗.

As for the first assertion, namely, (4.6.1), we may assume that X is connected and admits an étale
morphism (1.5.1). In addition, since AΩpsh

X is derived ϕ(ξ)-adically complete (see §4.1), the Xpsh
ét -

analogue of [BMS16, 9.15] allows us to replace AΩpsh
X in (4.6.1) by AΩpsh

X ⊗L
Ainf

Ainf/(ϕ(ξ)n). Then,
due to the five lemma, it suffices to establish (4.6.1) for AΩpsh

X ⊗L
Ainf

Ainf/(ϕ(ξ)) in place of AΩpsh
X .

However, by (4.2.3), the object AΩpsh
X ⊗

L
Ainf

Ainf/(ϕ(ξ)) is identified with the presheaf analogue Ωpsh
X

of ΩX defined as the right side of (4.2.3). By Remark 4.5, the cohomology modules of this presheaf
analogue are already sheaves, so the desired (4.6.1) holds for Ωpsh

X . �

Our next task is to identify the vector bundles H i(Ω̃X) with the twists of bundles given by the
logarithmic differentials (see Theorem 4.11). For this, we first express H i(Ω̃X) as

∧iH1(Ω̃X) in
Proposition 4.8, and then construct a map (4.10.2) that relates H1(Ω̃X) to Kähler differentials.

4.7. The cup product maps. By [SP, 0B6C],4 there is a cup product map

Rν∗(Ô+)⊗L
OX, ét

Rν∗(Ô+)→ Rν∗(Ô+). (4.7.1)

Moreover, arguments analogous to those used to construct the map [SP, 068H] give product maps

Rjν∗(Ô+)⊗OX, ét
Rj
′
ν∗(Ô+)

−∪−−−−→ Hj+j′(Rν∗(Ô+)⊗L
OX, ét

Rν∗(Ô+)), (4.7.2)

which satisfy x ∪ y = (−1)jj
′
y ∪ x (see [SP, 0BYI]) and combine with (4.7.1) to give the map⊗i
s=1R

1ν∗(Ô+)→ Riν∗(Ô+) for i ∈ Z>0. (4.7.3)

Proposition 4.8. For each i > 0, the map (4.7.3) induces the isomorphism∧i
(

R1ν∗(Ô+)

R1ν∗(Ô+)[ζp−1]

)
∼=
∧iH1(Ω̃X)

∼−→ H i(Ω̃X) ∼= Riν∗(Ô+)

Riν∗(Ô+)[ζp−1]
. (4.8.1)

Proof. By Proposition 4.4, each H i(Ω̃X) has no nontrivial 2-torsion, so the “antisymmetric in each
pair of variables” map (4.7.3) indeed induces the OX, ét-module map (4.8.1). For the isomorphism
claim, we may work étale locally, so we put ourselves in the situation (4.4.2). The edge maps

e : H i
cont(∆, R∞)→ H i(Xad

C , Ô+)

of (3.3.1) are compatible with cup products: in order to check this one identifies H i(Xad
C , Ô+)

with the direct limit of the ith Čech cohomology groups of Ô+ with respect to a variable proétale
hypercovering of Xad

C (see [SP, 01H0]) and uses the hypercovering construction of the cup product
(see [SP, 01FP]). Due to Theorem 3.9 and (4.4.3), it then remains to argue that the identification

H1
cont(∆, R

�)
3.7∼= (R�)d induces H i

cont(∆, R
�)

3.7∼=
∧i(R�)d

via the cup product, which follows from [BMS16, 7.3 and 7.5]. �

To relateH1(Ω̃X) to Kähler differentials, we now review the needed material on cotangent complexes.

4Loc. cit. applies in its present form because (Xad
C )proét has enough points by [Sch13e, (2)].
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4.9. The completed cotangent complex L̂Ô+/Zp. Affinoid perfectoids form a basis of the proé-
tale topology of Xad

C (see [Sch13, 4.7]). Therefore, [BMS16, 3.14] ensures that for the sheaf of rings
Ô+

Xad
C

defined in (2.2.1), the cotangent complex LÔ+/OC ∈ D
≤0(Ô+

Xad
C

) (whose levelwise terms are

Ô+
Xad
C

-flat) satisfies

LÔ+/OC ⊗
L
Z Z/pZ ∼= 0, and hence also L̂Ô+/OC

∼= 0.

Consequently, derived p-adic completion turns the canonical morphism

LOC/Zp ⊗OC Ô
+
Xad
C

→ LÔ+/Zp into an isomorphism (LOC/Zp ⊗OC Ô
+
Xad
C

)̂ ∼−→ L̂Ô+/Zp

in the derived category. By [GR03, 6.5.12 (ii)], the complex LOC/Zp is quasi-isomorphic to Ω1
OC/Zp

placed in degree 0. The p-divisibility of Ω1
OC/Zp then ensures that

LOC/Zp ⊗
L
OC (Ô+/pnÔ+) ∼= (Ω1

OC/Zp [p
n]⊗OC Ô

+)[1]
[Sch13, 4.2 (iii)]∼= (Ω1

OC/Zp [p
n]⊗OC (O+/pnO+))[1],

where O+ abbreviates the integral structure sheaf O+
Xad
C

. Moreover, by [Fon82, Thm. 1′ (ii)],5

OC{1} := lim←−n
(

Ω1
OC/Zp [p

n]
)

is a free OC-module of rank 1.

In conclusion, letting {1} abbreviate the OC-tensor product with OC{1}, we obtain an isomorphism

(LOC/Zp ⊗OC Ô
+
Xad
C

)̂ ∼= Ô+
Xad
C

{1}[1], and hence also L̂Ô+/Zp
∼= Ô+

Xad
C

{1}[1], in D(Ô+
Xad
C

). (4.9.1)

4.10. The relation between Ω̃X and Kähler differentials. We equip the étale site Xét with the
sheaf of rings OX, ét and the proétale site (Xad

C )proét with Ô+
Xad
C

, so that (ν−1, ν∗) from §1.5 becomes a
morphism of ringed of topoi (see [Hub96, 1.9.1 b)]). In particular, we obtain the pullback morphism

L̂OX, ét/Zp → Rν∗(L̂Ô+/Zp)
(4.9.1)∼= Rν∗(Ô+

Xad
C

{1})[1]. (4.10.1)

To explicate its source, we note that an argument analogous to that of §4.9 gives

(LOC/Zp⊗OC OX, ét)̂ ∼= OX, ét{1}[1], so H0(L̂OX, ét/Zp)
∼= H0(L̂OX, ét/OC )

[GR03, 7.2.4, 7.2.8]∼= Ω1
X/OC .

Moreover, by [GR03, 7.2.10 (iii)], the last identification induces a quasi-isomorphism between

L̂OXsm, ét/OC and Ω1
Xsm/OC placed in degree 0.

Consequently, by applying H0(−) to the map (4.10.1) and twisting by OC{−1} we obtain the first
map in the following composition of OX, ét-module morphisms:

Ω1
X/OC{−1} → R1ν∗(Ô+

Xad
C

) � R1ν∗(Ô+)

(R1ν∗(Ô+))[ζp−1]
∼= H1(Ω̃X). (4.10.2)

By [BMS16, proof of Prop. 8.15], the restriction of this composition to Xsm is an isomorphism onto
((ζp − 1) ·H1(Ω̃X))|Xsm . Moreover, by Proposition 4.4, H1(Ω̃X) is a vector bundle, so it is (ζp − 1)-
torsion free and has no nonzero local sections that vanish on Xsm (as may be seen using (1.5.1)). In
conclusion, we may divide the composition (4.10.2) by ζp − 1 to obtain a map

Ω1
X/OC{−1} → H1(Ω̃X) that is an isomorphism over Xsm. (4.10.3)

We are ready for the promised relation between H i(Ω̃X) and Ωi
X/OC , log.

5For passage from Ω1
Zp/Zp

of loc. cit. to Ω1
OC/Zp

, one may use [GR03, 6.5.20 (i)] to conclude that Ω1
OC/Zp

[p] = 0.
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Theorem 4.11. The restriction of (4.10.3) to Xsm extends uniquely to an OX, ét-module isomor-
phism

H1(Ω̃X) ∼= Ω1
X/OC , log{−1}; (4.11.1)

by (4.4.1) and Proposition 4.8, for every i ≥ 0, it induces an OX, ét-module identification

H i(Ω̃X) ∼= Ωi
X/OC , log{−i}. (4.11.2)

In the proof of Theorem 4.11 we will use the formal GAGA and Grothendieck existence theorems.
The Noetherian cases of these theorems proved in [EGA III1, §5] have been extended to suitable
non-Noetherian settings by K. Fujiwara and F. Kato (with important inputs due to O. Gabber).
The relevant to our aims special case of this extension is summarized in the following theorem.

Theorem 4.12 (Fujiwara–Kato). For a complete valuation ring V of height 1, a nonzero nonunit
a ∈ V , and a proper, finitely presented V -scheme Y , the category of finitely presented OY -modules
is equivalent to that of sequences (Fn)n∈Z>0 of finitely presented OYV/an -modules Fn equipped with
isomorphisms Fn+1|YV/an ' Fn via the functor

F 7→ (F/anF)n∈Z>0 . (4.12.1)

Proof. The claim is a special case of [FK17, I.10.1.2]. In order to explain why loc. cit. applies, we
first reinterpret our source and target categories.

By a result of Gabber [FK17, 0.9.2.7], the ring V is “a-adically topologically universally adhesive,”
so, by [FK17, 0.8.5.25 (2)], it is also “topologically universally coherent with respect to (a).” In
particular, by [FK17, 0.8.5.24], every finitely presented V -algebra is a coherent ring, and hence, by
[FK17, 0.5.1.2], the OY -module OY is coherent. In particular, by [FK17, 0.4.1.8], an OY -module F
is finitely presented if and only if F is coherent, and likewise for OYV/an -modules for n ∈ Z>0.

By [FK17, 0.8.5.19 (3) and 0.8.4.2], the formal a-adic completion Ŷ of Y may be covered by open
affines whose coordinate rings are “topologically universally adhesive” so also, by [FK17, 0.8.5.18],
“topologically universally Noetherian outside (a).” In particular, by [FK17, I.2.1.7 and I.2.1.1 (1)],
the formal scheme Ŷ is “universally rigid-Noetherian.” In addition, by [FK17, 0.8.4.5], it is locally
of finite presentation over Spf V , so [FK17, I.7.2.2] applied with A = V and [FK17, I.7.2.1] imply
that Ŷ is “universally cohesive.” Then, by [FK17, I.7.2.4 and I.3.4.1], the functor (Fn) 7→ lim←−Fn is
an equivalence from the target category of (4.12.1) to the category of coherent O

Ŷ
-modules.

In conclusion, our claim is that the quasi-coherent pullback i∗ along the morphism i : Ŷ → Y of
locally ringed spaces induces an equivalence between the category of coherent OY -modules and that
of coherent O

Ŷ
-modules. This is a special case of [FK17, I.10.1.2] (see also [FK17, I.§9.1]). �

Remarks.

4.13. In Theorem 4.12, if each Fn is locally free, then the OY -module F that algebraizes the
sequence (Fn) is also locally free. Indeed, it is enough to argue that the stalks of F at the
points of YV/a are flat, so, since, by [FK17, I.1.4.7 (2)], the morphism i is flat, it suffices to
note that the O

Ŷ
-module i∗F ∼= lim←−Fn is locally free because the Nakayama lemma ensures

that Fn+1 is locally trivialized by any lifts of local sections that trivialize Fn.

4.14. Remark 4.13 and the proof of Theorem 4.12 also show that i is flat and that the functor
(Fn) 7→ lim←−Fn is an equivalence to the category of finitely presented O

Ŷ
-modules.
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Proof of Theorem 4.11. As may be checked with the help of étale local semistable coordinates
(4.4.2), no nonzero local section of OX vanishes on Xsm. Thus, the same holds for any vector
bundle in place of OX, to the effect that the desired isomorphism (4.11.1) is unique if it exists.

Thanks to the uniqueness, we may assume the local setup of §3.1. Remark 4.5 then reduces us
further to the case when X = X�. In this case, there exists a discrete valuation subring O ⊂ OC
and a proper, flat O-scheme X which étale locally has étale “coordinate morphisms” (1.5.2) and
such that X is an open subscheme of the formal p-adic completion of X := XOC . Thus, finally, we
may drop the previous assumptions and assume instead that X = X̂ with X and X as above. We
equip X with the log structure OX ∩ (OX [1

p ])×, so that X is log smooth over OC (see Claim 1.6.1)
and the map X→ X of log ringed étale sites is strict (see Claim 1.6.3).

By Theorem 4.12, the map (4.10.3) algebraizes to an OX -module map

f : Ω1
X/OC

{−1} → H

where, by Proposition 4.4 and Remark 4.13, H is a vector bundle on X of rank equal to the relative
dimension of X over OC . Moreover, by (4.10.3) and the Nakayama lemma, f is surjective at every
point of X sm

k .

Claim 4.14.2. There is an isomorphism H[1
p ] ' Ω1

XC/C
.

Proof. By the adic GAGA (see [Sch13, 9.1 (i)]), it suffices to find an analogous isomorphism after
pullback to (XC)ad ∼= Xad

C . Such a pullback of H[1
p ] is isomorphic to (R1ν∗(Ô+

Xad
C

))[1
p ], and [Sch13,

6.19] supplies an isomorphism between (R1ν∗(Ô+
Xad
C

))[1
p ] and the pullback of Ω1

XC/C
to (XC)ad. �

Claim 4.14.2 ensures that f [1
p ] is a generically surjective morphism between isomorphic vector

bundles on XC . Since XC is proper and smooth, every global section of the structure sheaf of each
connected component of XC is constant, so det(f [1

p ]) is an isomorphism, and hence f [1
p ] is surjective

on the entire XC . In conclusion, f |X sm is a surjection between vector bundles of the same rank, so

f |X sm : Ω1
X sm

/OC
{−1} ∼−→ H|X sm . (4.14.3)

Since X is Cohen–Macaulay and X \X sm is of codimension ≥ 2 in X , limit arguments and [EGA IV2,
5.10.5] ensure thatH is the unique vector bundle extension ofH|X sm to X . The isomorphism (4.14.3)
then leads to an isomorphism H ' Ω1

X/OC , log
{−1} whose formal p-adic completion gives the desired

isomorphism (4.11.1). �

Remark 4.15. If the coordinate morphisms (1.5.1) exist Zariski locally on X, then, by Remark 4.5,
the identifications of Theorem 4.11 hold already for the Zariski topology; more precisely, then

H i(Ω̃XZar
) ∼= Ωi

X/OC , log{−i} as OXZar
-modules for every i ≥ 0.

We are ready to relate the de Rham specialization of AΩX to differential forms.

Theorem 4.16. There is an identification

AΩX ⊗L
Ainf , θ

OC ∼= Ω•X/OC , log; (4.16.1)

If the étale morphisms (1.5.1) exist Zariski locally on X, then (4.16.1) also holds for AΩXZar
.
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Proof. Similarly to [BMS16, proof of Thm. 14.1], since ϕ(µ) = ϕ(ξ)µ (see §2.1), [BMS16, 6.11] gives

AΩX ⊗L
Ainf , θ

OC ∼= AΩX ⊗L
Ainf , ϕ

Ainf ⊗L
Ainf , θ◦ϕ−1 OC ∼= (Lη(ϕ(ξ))(AΩX))⊗L

Ainf , θ◦ϕ−1 OC . (4.16.2)

By [BMS16, 6.12], since Ainf/(ϕ(ξ)) ∼= OC via θ ◦ ϕ−1, the object (Lη(ϕ(ξ))(AΩX)) ⊗L
Ainf , θ◦ϕ−1 OC

is identified in the derived category with the complex whose ith degree term is

H i(AΩX ⊗L
Ainf , θ◦ϕ−1 OC)⊗OC

(
Ker(θ◦ϕ−1)

(Ker(θ◦ϕ−1))2

)⊗i (4.2.1)∼= H i(Ω̃X)⊗OC
(

Ker(θ◦ϕ−1)
(Ker(θ◦ϕ−1))2

)⊗i
and the differentials are given by Bockstein homomorphisms.

The perfectness of O[C implies that L̂Ainf/Zp
∼= 0 and (4.9.1) (applied with X = Spf OC) implies

that L̂OC/Zp ∼= OC{1}[1], so L̂OC/Ainf
∼= OC{1}[1] where OC is regarded as an Ainf -algebra via

θ ◦ ϕ−1. This combines with [Ill71, III.3.2.4 (iii)] to supply an isomorphism Ker(θ◦ϕ−1)
(Ker(θ◦ϕ−1))2

∼= OC{1}.
In conclusion, due to Theorem 4.11 and the previous paragraph, AΩX ⊗L

Ainf , θ
OC is identified

with the complex whose ith degree term is Ωi
X/OC , log and whose differentials are certain Bockstein

homomorphisms. Since each Ωi
X/OC , log is a vector bundle, the agreement of these differentials with

those of Ω•X/OC , log may be checked over Xsm (compare with the argument for (4.10.3)), where it
follows from [BMS16, 14.1 (ii)] (or from [Bha16, proof of Prop. 7.9]).

Due to Remark 4.15, the proof for AΩXZar
is the same. �

Corollary 4.17. The de Rham specialization of RΓ(Xét, AΩX) may be identified as follows:

RΓ(Xét, AΩX)⊗L
Ainf , θ

OC ∼= RΓlog dR(X/OC). (4.17.1)

Proof. The claim follows from the projection formula [SP, 0944] and Theorem 4.16. �

Remark 4.18. In the case when X ∼= X̂ for a proper and flat OC-scheme X that étale locally has
étale morphisms (1.5.2) (with OC there replaced by O), we have a further identification

RΓ(Xét,Ω
•
X/OC , log)

∼−→ RΓ(Xét,Ω
•
X/OC , log)

granted that X is endowed with the log structure OX ∩ (OX [1
p ])× (whose pullback to X is the

log structure of X, see Claim 1.6.3). Indeed, the natural pullback map between the E1-spectral
sequences

Hj(X ,Ωi
X/OC , log)⇒ H i+j(RΓ(Xét,Ω

•
X , log)) and Hj(X,Ωi

X/OC , log)⇒ H i+j(RΓ(Xét,Ω
•
X/OC , log))

is an isomorphism because, by the Grothendieck finiteness and comparison theorems [EGA III1, 3.2.1
and 4.1.7] (combined with limit arguments; or, by [FK17, I.9.2.1] directly),

Hj(X ,Ωi
X/OC , log)

∼−→ Hj(X,Ωi
X/OC , log) for all i, j.

Corollary 4.19. If X is proper over OC , then RΓ(Xét, AΩX) is a perfect object of D≥0(Ainf); in
other words, then RΓ(Xét, AΩX) is quasi-isomorphic to a bounded complex of finite free Ainf-modules.

Proof. By the Grothendieck finiteness theorem [Ull95, 5.3] and the spectral sequence as in Re-
mark 4.18, the OC-modules Hj(RΓ(Xét,Ω

•
X/OC , log)) are finitely presented, and hence also perfect

(see [SP, 0ASP]). Thus, by Corollary 4.17 and [SP, 066U], the object RΓ(Xét, AΩX)⊗L
Ainf

Ainf/(ξ)

of D≥0(OC) is perfect. Moreover, by Corollary 4.6, the object RΓ(Xét, AΩX) is derived ξ-adically
complete. Therefore, by [SP, 09AW], it is also perfect, as desired. �

We close the section by comparing RΓ(Xét, AΩX) to its analogue defined using the Zariski topology.
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Corollary 4.20. If the coordinate maps (1.5.1) exist Zariski locally on X, then RΓ(Xét, AΩX) may
be computed using the Zariski topology of X; more precisely, then

RΓ(XZar, AΩXZar
)
∼−→ RΓ(Xét, AΩX). (4.20.1)

Proof. By Theorem 4.16 and its corollary 4.17, the reduction of (4.20.1) modulo ξ is identified with

RΓ(XZar,Ω
•
X/OC , log)

∼−→ RΓ(Xét,Ω
•
X/OC , log),

and hence is an isomorphism. Thus, due to the derived ξ-adic completeness of RΓ(XZar, AΩXZar
) and

RΓ(Xét, AΩX) ensured by Corollary 4.6 (and its analogue for the Zariski topology), the morphism
(4.20.1) is also an isomorphism. �

Example 4.21. By §1.5, Corollary 4.20 applies to any OC-smooth X and, more generally, to any
X that Zariski locally arises from a strictly semistable scheme defined over a discrete valuation ring.

5. The absolute crystalline comparison isomorphism

In Theorem 4.16, we have identified the OC-base change (along θ) of the object AΩX with Ω•X/OC , log.
The goal of the present section is to similarly identify the Acris-base change of AΩX with an object
that computes the logarithmic crystalline (that is, Hyodo–Kato) cohomology of XOC/p over Acris

(see Theorem 5.4). This is more general because, on the one hand, θ factors through the map
Ainf → Acris, while, on the other, Ω•X/OC , log computes the log crystalline cohomology of XOC/p over
OC . In fact, even the map Ainf → Ainf/µ factors through Ainf → Acris (see [BMS16, proof of Lemma
4.19]), so the identification of the Acris-base change of AΩX will capture the entire µ = 0 locus of
Ainf (in contrast, the comparison with the p-adic étale cohomology captured the µ 6= 0 locus, see
Theorem 2.3).

In comparison to the case when X is smooth treated in [BMS16, §12], it seems more subtle to control
the interaction of the functor Lη(µ) with the relevant base changes. To overcome this, we resort
to the analysis of continuous group cohomology carried out in §3. Another major complication is
the presence of log structures. Specifically, not knowing the existence of logarithmic divided power
envelopes of certain (nonexact) logarithmic closed immersions in mixed characteristic, we are forced
to devise slightly indirect arguments when analyzing the relevant divided power envelopes. For this,
we rely on the results and arguments from [Kat89] and [Bei13b]; the latter reference is especially
useful for us because some log structures that we use are not coherent (only quasi-coherent).

5.1. The ring Acris. With the generator ξ of the kernel of θ : Ainf � OC in hand (see (2.1.4)), we
let A0

cris be the Ainf -subalgebra of Ainf [
1
p ] generated by the divided powers ξn

n! for n ∈ Z≥1. The
induced map θ : A0

cris � OC identifies A0
cris with the divided power envelope of θ : Ainf � OC/p over

(Zp, pZp) (where pZp is equipped with its canonical divided powers), see [Tsu99, A2.8].

We let Acris be the p-adic completion of A0
cris. The map A0

cris → Acris is injective (see [Tsu99, A2.13]
or Proposition 5.36 below), and the induced map θ : Acris � OC identifies Acris with the initial p-
adically complete divided power thickening of OC over Zp (see [Tsu99, A1.3 and A1.5]). Moreover,
since θ(µ) = 0 (see (2.1.3) and (2.1.1)), we have µp ∈ pA0

cris, so the p-adic topology of A0
cris agrees

with the (p, µ)-adic topology, and hence Acris is complete for these topologies (see [SP, 05GG]). By
[Bri06, 2.33] (or Proposition 5.36 below), the Ainf -algebra Acris is a domain of characteristic 0.

Analogously to §3.26, the ring Acris comes equipped with the Frobenius endomorphism ϕ that
intertwines the absolute Frobenius endomorphism of OC/p via the map θ. The identification

Acris
∼= (lim−→m

A
(m)
cris )̂, which results from the evident A0

cris
∼= lim−→m

A
0, (m)
cris (5.1.1)

32

http://stacks.math.columbia.edu/tag/05GG


(see §3.26), is Frobenius equivariant and compatible with the maps θ.

5.2. The log structure on Acris. For each n ∈ Z≥1, the ring Acris/p
n is a divided power thick-

ening of OC/p over Z/pn. Therefore, by [Bei13b, §1.17, Lemma], every quasi-coherent integral log
structure N on OC/p for which the multiplication by p map is an automorphism of N/(OC/p)×
lifts uniquely to a quasi-coherent integral log structure on Acris/p

n. Thus, letting N be the “de-
fault” log structure on OC/p (see §1.6 (1)), for which N/(OC/p)× ∼= Q≥0, we obtain compatible
quasi-coherent integral log structures on the rings Acris/p

n, to the effect that each Acris/p
n becomes

a log PD thickening of OC/p. Explicitly, these log structures are the pullbacks of the log structure
on Acris associated to the prelog structure

O[C \ {0} → Acris, x 7→ [x]. (5.2.1)

In what follows, we always equip

• each Acris/p
n, as well as Acris, with the log structures described above;

• each Z/pnZ with the standard divided powers on pZ/pnZ and the trivial log structure.

By, for instance, [Tsu99, A1.5], for every OC/p-scheme Z and every divided power thickening Z̃ of
Z over Z/pnZ, the map z : Z → Spec(OC/p) extends uniquely to a PD map z̃ : Z̃ → Spec(Acris/p

n).
If, in addition, Z̃ is equipped with a quasi-coherent integral log structure for which z is enhanced
to a map z] of log schemes, then, by [Bei13b, §1.17, Exercise], the map z] extends uniquely to a PD
map z̃] : Z̃ → Spec(Acris/p

n) of log schemes.

5.3. The absolute crystalline cohomology of XOC/p. We let

(XOC/p/Zp)log cris

be the log crystalline site of XOC/p over Zp defined as in [Bei13b, §1.12]; each object of this site is
an étale XOC/p-scheme Z equipped with a divided power thickening Z̃ over some Z/pnZ such that
Z̃ is, in turn, equipped with a quasi-coherent integral log structure whose pullback to Z is identified
with the pullback of the log structure of XOC/p (which is defined in §1.6). The universal property
of Acris reviewed in the last paragraph of §5.2 gives the following identification of sites:

(XOC/p/Zp)log cris
∼= (XOC/p/Acris)log cris.

The absolute logarithmic crystalline cohomology of XOC/p is the cohomology of the structure sheaf:

RΓlog cris(XOC/p/Acris) := RΓ((XOC/p/Zp)log cris, OXOC/p/Zp
);

equivalently (see also [Bei13b, (1.18.1)]),

RΓlog cris(XOC/p/Acris) ∼= RΓ((XOC/p/Acris)log cris, OXOC/p/Acris
).

Letting
u : (XOC/p/Acris)log cris → (XOC/p)ét

∼= Xét

be the morphism of topoi that forgets the thickenings Z̃ (see [Bei13b, §1.5]), we get the identification

RΓlog cris(XOC/p/Acris) ∼= RΓ(Xét, Ru∗(OXOC/p/Acris
)). (5.3.1)

By functoriality, the absolute Frobenius (which is the multiplication by p on the log structures)
induces the “Frobenius” endomorphisms of Ru∗(OXOC/p/Acris

) and RΓlog cris(XOC/p/Acris) that are
semilinear with respect to the Frobenius endomorphism of Acris (see §5.1).

The main goal of this section is to establish the following Acris-comparison isomorphism.
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Theorem 5.4. There is a Frobenius-equivariant (see §2.1, §2.2, §5.1, §5.3) identification

AΩX⊗̂
L
Ainf

Acris
∼= Ru∗(OXOC/p/Acris

), (5.4.1)

where, consistently with the definition (1.7.1), we have AΩX⊗̂
L
Ainf

Acris = R limn(AΩX⊗L
Ainf

Acris/p
n).

We will first prove a version of Theorem 5.4 in a local setting, that is, in the presence of semistable
coordinates. We will then complete the proof by using “all possible coordinates” to globalize the
argument. This overall strategy is similar to the one used in [BMS16, §12] in the smooth case.

5.5. The local setup. For the local argument, we assume until §5.17 that X = Spf(R), that X is
connected, and that for some 0 ≤ r ≤ d and q ∈ Q>0 there is an étale OC-morphism

X = Spf(R)→ Spf(R�) with R� = OC{t0, . . . , tr, t±1
r+1, . . . , t

±1
d }/(t0 · · · tr − p

q). (5.5.1)

We use the rings R�
∞ and R∞ and the group ∆ introduced in §3.2, as well as the rings Ainf(R

�
∞),

Ainf(R∞), A(R�), and A(R), and the modules N�
∞ and N∞, introduced in §3.14.

Roughly speaking, in the local case we will access the right side of (5.4.1) through the de Rham
cohomology of an explicitly constructed log smooth lift Spf(Acris(R)) of XOC/p to Spf Acris. The de
Rham complex that computes this cohomology can be made explicit by expressing its differentials
in terms of the ∆-action on Acris(R) (see Lemma 5.15). On the other hand, results from §3, namely
(3.25.1) and Theorem 3.20, make the left side of (5.4.1) explicit. Once both sides of (5.4.1) are
explicit, it is possible to identify them, and hence to establish (the presheaf version of) the local
case of Theorem 5.4.

However, this relatively short local proof, whose detailed version in the good reduction case is
given in [BMS16, 12.4], is ill-suited for globalizing. This is so because it appears difficult to ex-
tend the implicit exchange of the order of the functors Lη(µ) and −⊗̂L

Ainf
Acris in this argument

to general perfectoid covers that appear in the “all possible coordinates” technique. For instance,
one may attempt to use the almost purity theorem and Lemma 3.18 to reduce such commuta-
tion to the “base case” of R∞, but this requires understanding the W (m[)-torsion in the groups
H i

cont(∆, (Ainf(R∞)⊗̂Ainf
Acris)/µ) that seem difficult to access due to pathologies of the ring Acris/µ.

Similarly to [BMS16, §12.2], to overcome this difficulty we will use the Ainf -algebras A
(m)
cris reviewed

in §3.26 that retain better finite type properties over Ainf than Acris. In particular, we commute
the functors Lη(µ) and −⊗̂L

Ainf
A

(m)
cris in the following proposition:

Proposition 5.6. In the local setting of (5.5.1), for every m ≥ p, we have

Lη(µ)(RΓ(Xad
proét,Ainf, X))⊗̂L

Ainf
A

(m)
cris

∼−→ Lη(µ)(RΓ(Xad
proét,Ainf, X)⊗̂L

Ainf
A

(m)
cris ). (5.6.1)

Proof. The map (5.6.1) exists because its target is derived p-adically complete (see [BMS16, 6.19]).
Moreover, by Theorems 3.20 and 3.34, it suffices to prove that

Lη(µ)(RΓcont(∆,Ainf(R∞)))⊗̂L
Ainf

A
(m)
cris

∼−→ Lη(µ)(RΓcont(∆,A
(m)
cris (R∞))).

By Propositions 3.25 and 3.32, the “nonintegral” part N∞ does not contribute, which reduces to

Lη(µ)(RΓcont(∆, A(R)))⊗̂L
Ainf

A
(m)
cris

∼−→ Lη(µ)(RΓcont(∆, A
(m)
cris (R))). (5.6.2)

In turn, (5.6.2) follows from the triviality of the ∆-action on A(R)/µ and A(m)
cris (R)/µ (see §3.14 and

§3.27): namely, due to Lemma 3.7 and this triviality, the left (resp., right) side of (5.6.2) becomes

KA(R)(
δ1−1
µ , . . . , δd−1

µ )⊗̂Ainf
A

(m)
cris (resp., K

A
(m)
cris (R)

( δ1−1
µ , . . . , δd−1

µ )). �
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Continuing to work in the local setting, we now express the (presheaf version of the) left side of
(5.4.1) in the form that will be convenient for the “all possible coordinates” technique.

Corollary 5.7. In the local setting of (5.5.1), there is a natural Frobenius-equivariant identification

RΓ(Xpsh
ét , AΩpsh

X )⊗̂L
Ainf

Acris
∼=
(

lim−→m

(
η(µ)

(
KA(m)

cris (R∞)
(δ1 − 1, . . . , δd − 1)

)))̂
(see (4.1.2) for AΩpsh

X ) where, on the right side, the direct limit and the p-adic completion are termwise.

Proof. The ∆-equivariant Frobenius action on each A(m)
cris (R∞) that is compatible as m varies (see

§3.27) and the divisibility µ | ϕ(µ) supply the Frobenius action on the right side. The proof of
Proposition 5.6 gives the Frobenius-equivariant identification

RΓ(Xpsh
ét , AΩpsh

X )⊗̂L
Ainf

A
(m)
cris
∼= η(µ)

(
KA(m)

cris (R∞)
(δ1 − 1, . . . , δd − 1)

)
,

so it remains to pass to the direct limit and to form the p-adic completion. �

We now turn our attention to the right side of (5.4.1) in a local setting and begin by constructing
the ring Acris(R) that underlies a log smooth lift of R/p to Acris.

5.8. The ring Acris(R). The relative version of Acris and the corresponding variant that models a
“highly ramified cover” of the relative version are

Acris(R) := A(R)⊗̂Ainf
Acris and Acris(R∞) := Ainf(R∞)⊗̂Ainf

Acris,

respectively, where the completions are p-adic (equivalently, (p, µ)-adic, see §5.1). Due to (3.14.5),
the ring Acris(R) is an Acris(R)-module direct summand of Acris(R∞). The maps θ from §3.14 and
§5.1 induce compatible surjections (which we abusively also call θ):

θ : Acris(R) � R and θ : Acris(R∞)→ R∞.

Let A0
cris(R∞) be the Ainf(R∞)-subalgebra of Ainf(R∞)[1

p ] generated by the ξn

n! for n ∈ Z≥1. By
[Tsu99, proof of A2.8], letting Ainf(R∞)[T

n

n! ]n≥1 denote the divided power polynomial algebra over
Ainf(R∞) in one variable, we have

A0
cris(R∞) ∼= (Ainf(R∞)[T

n

n! ]n≥1)/(T − ξ), so also A0
cris(R∞) ∼= Ainf(R∞)⊗Ainf

A0
cris.

Consequently, since ξ generates Ker(θ) ⊂ Ainf(R∞), the ring A0
cris(R∞) is identified with the divided

power envelope of (Ainf(R∞),Ker(θ)+pAinf(R∞)) over (Zp, pZp). Therefore, by §5.1 and base change
for divided power envelopes (see [BO78, 3.20 1)] and [SP, 07HB, 07HD]),

Acris(R∞) ∼= (A0
cris(R∞))̂.

Due to Lemma 3.13, Acris(R∞) (resp., Acris(R)) is p-adically formally étale as an Acris(R
�
∞)-algebra

(resp., as an A(R)-algebra) and p-adically formally flat as an Acris-algebra. In particular, Acris(R∞)
inherits p-torsion freeness from Acris. Moreover, even though we will not use this, Acris(R∞) is also
µ-torsion free, as follows from Proposition 5.36 below (contrast with (3.26.2) and (3.27.2)).

Analogously to §3.27, the rings Acris(R) and Acris(R∞) come equipped with Acris-semilinear Frobe-
nius endomorphisms that are compatible with their counterparts on A(m)

cris (R) and A(m)
cris (R∞).

The profinite group ∆ acts continuously, Frobenius-equivariantly, and Acris-linearly on Acris(R) and
Acris(R∞). As in §3.27, the induced ∆-action on Acris(R)/µ is trivial.
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5.9. The log structure on A(R). Provisionally, we consider the (fine) log structures on A(R) and
Ainf associated to the prelog structures

Nr+1
≥0

(ai)7→
∏
X
ai
i−−−−−−−−→ A(R) and N≥0

a7→[(p1/p∞ )q ]a−−−−−−−−−→ Ainf .

Moreover, we map N≥0 → Nr+1
≥0 diagonally, so that A(R) becomes (p, µ)-adically formally log smooth

over Ainf (see (3.14.2) and [Kat89, 3.5]). To eliminate the dependence on q, we always, unless noted
otherwise, equip Ainf with the log structure associated to the prelog structure

O[C \ {0} → Ainf , x 7→ [x].

Likewise, we always, unless noted otherwise, equip A(R) with the log structure that is the base
change of the fine log structure on A(R) described above along the “change of log structure” self-

map of Ainf determined by N≥0
i 7→[(p1/p∞ )q ]i−−−−−−−−−→ O[C \ {0}. Explicitly, this log structure is associated

to the prelog structure
Nr+1
≥0

⊔
N≥0

(O[C \ {0})→ A(R)

that embeds N≥0 diagonally into Nr+1
≥0 , sends an i ∈ N≥0 to [(p1/p∞)q]i, and sends the ith standard

basis vector of Nr+1
≥0 (resp., an x ∈ O[C \ {0}) to Xi (resp., to [x]).

These latter “default” log structures on A(R) and Ainf are quasi-coherent and integral and, by base
change, with them A(R) is log smooth over Ainf . Moreover, via the map θ, the ring A(R) becomes
a (p, µ)-adically formally log smooth thickening of R/p over Spf(Ainf) (where R/p is endowed with
the log structure discussed in §5.3).

The Frobenius on Ainf and A(R) extends to the log structures: we may let it act as multiplication
by p on Nr+1

≥0 and N≥0 and as the pth power map on O[C \ {0}. Consequently, the Frobenius of the
log Ainf -algebra A(R) lifts the absolute Frobenius of the log OC/p-algebra R/p.

The Frobenius-equivariant ∆-action on the Ainf -algebra A(R) (see §3.14) extends to a Frobenius-
equivariant ∆-action on the log Ainf -scheme Spec(A(R)): indeed, a δ ∈ ∆ sends each Xi with
0 ≤ i ≤ r to uδ, i ·Xi for some unit uδ, i ∈ A(R)× that is a Teichmüller element (see §3.14) and the
prelog structures

Nr+1
≥0

(ai)7→
∏
X
ai
i−−−−−−−−→ A(R) and Nr+1

≥0

(ai)7→
∏

(uδ, i·Xi)ai−−−−−−−−−−−−→ A(R)

define the same log structure on Spec(A(R)), namely, the one defined by the prelog structure

Zr+1 × Nr+1
≥0

((zi),(ai)) 7→
∏
u
zi
δ, i·
∏
X
ai
i−−−−−−−−−−−−−−−−→ A(R).

5.10. The logarithmic de Rham complex. We let

Ω•A(R)/Ainf , log

be the (global section complex of the) logarithmic de Rham complex of Spf(A(R)) over Spf(Ainf);
more precisely, Ω•A(R)/Ainf , log is the (termwise) inverse limit over n, n′ > 0 of the logarithmic
de Rham complexes of A(R)/(pn, µn

′
) over Ainf/(p

n, µn
′
). Due to the formal log smoothness of

A(R) over Ainf , each Ωi
A(R)/Ainf , log is a free A(R)-module: indeed, the logarithmic differentials

d log(X1), . . . , d log(Xd) form a basis of Ω1
A(R)/Ainf , log. We let

∂
∂ log(Xi)

: A(R)→ A(R) for i = 1, . . . , d (5.10.1)
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denote the dual basis of log Ainf -derivations (we do not notationally explicate the accompanying
homomorphisms from the log structure to A(R)). These derivations satisfy the following explicit
formulas derived using the relation d log(X0) + · · ·+ d log(Xr) = 0:

∂
∂ log(Xi)

(Xj) =

{
0, if 0 < j 6= i,
Xi, if j = i,

and ∂
∂ log(Xi)

(X0) =

{
−X0, if 0 < i ≤ r,
0, if r < i.

(5.10.2)

They also define an isomorphism Ω1
A(R)/Ainf , log

∼= A(R)⊕d, which extends to an isomorphism

Ω•A(R)/Ainf , log
∼= KA(R)

(
∂

∂ log(X1) , . . . ,
∂

∂ log(Xd)

)
(5.10.3)

that may be regarded to be canonical because its construction uses only data determined by the
local coordinate map (5.5.1).

The endomorphism induced by the Frobenius of the log Ainf -algebra A(R) multiplies each d log(Xi)
by p, so its effect on the right side of (5.10.3) is given in each degree j by pj times the endomorphism
induced by the Frobenius of A(R).

5.11. The log structure on Acris(R). We always, unless noted otherwise, equip the Ainf -algebras
Acris and A

(m)
cris for m > 0, as well as Acris/p

n and A
(m)
cris /p

n for n > 0, with the base changes of
the “default” log structure on Ainf described in §5.9. In the case of Acris, this agrees with the log
structure defined in §5.2. Likewise, we always, unless noted otherwise, equip the A(R)-algebras
Acris(R) and A(m)

cris (R) for m > 0, as well as Acris(R)/pn and A(m)
cris (R)/pn for n > 0, with the base

changes of the “default” log structure on A(R), so that Acris(R) and A(m)
cris (R) are log smooth over

Acris and A(m)
cris , respectively. We set

Ω•Acris(R)/Acris, log
:= Ω•A(R)/Ainf , log⊗̂Ainf

Acris and Ω•
A

(m)
cris (R)/A

(m)
cris , log

:= Ω•A(R)/Ainf , log⊗̂Ainf
A

(m)
cris .

These complexes are identified with the (global section complexes of the) logarithmic de Rham
complexes of Spf(Acris(R)) and Spf(A

(m)
cris (R)) over Spf(Acris) and Spf(A

(m)
cris ), respectively.

We use the p-adic completeness of Acris(R) and its p-adic formal flatness over Acris to extend the
divided power structure of Acris to Acris(R) (see §5.8 and [SP, 07H1]). In effect, Spf(Acris(R))
becomes a log PD thickening of Spec(R/p) that is log smooth over Spf(Acris).

Through the results of [Bei13b], the following lemma will be key for relating the right side of (5.4.1)
to the logarithmic de Rham cohomology of Spf(Acris(R)) over Spf(Acris).

Lemma 5.12. For each n ∈ Z≥1, the log smooth log PD thickening Acris(R)/pn of R/p over Acris/p
n

is PD smooth in the sense of [Bei13b, §1.4] (see the proof for the definition).

Proof. The PD smoothness is the claim that the indicated lift exists in every commutative square

U //� _

��

Spec(R/p) �
�

// Spec(Acris(R)/pn)

��

Ũ //

33

Spec(Acris/p
n)

of log schemes subject to the requirements that U is affine, U ↪→ Ũ is an (exact) log PD thickening,
the log structure on Ũ is integral and quasi-coherent, and the lift is a log PD morphism (see loc. cit.).

This sought property of Acris(R)/pn is invariant under base change that changes the log structure
on Acris/p

n, so we may assume that Acris/p
n and Acris(R)/pn are instead equipped with the base
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changes of the “provisional” fine log structures defined in §5.9. Moreover, since the PD structure
of Acris(R)/pn is extended from Acris/p

n, the log PD thickening Spec(R/p) ↪→ Spec(Acris(R)/pn)
over Acris/p

n is its own log PD-envelope (in the sense of [Bei13b, §1.3]). Thus, the claimed PD
smoothness follows from [Bei13b, §1.4, Remarks (ii)] and the log smoothness of Acris(R)/pn over
Acris/p

n. �

In a local setting, we are ready to express the (presheaf version of the) right side of (5.4.1) in the
form that will be convenient for the “all possible coordinates” technique.

Proposition 5.13. In the local setting of (5.5.1), there are Frobenius-equivariant identifications

RΓlog cris(OXOC/p/Acris
) ∼= Ω•Acris(R)/Acris, log

(5.10.3)∼=
(

lim−→m>0
K
A

(m)
cris (R)

(
∂

∂ log(X1) , . . . ,
∂

∂ log(Xd)

)) ̂
(see §5.10 for the description of the Frobenius action on the last term).

Proof. By Lemma 5.12, each Acris(R)/pn is PD smooth over Acris/p
n, so [Bei13b, (1.8.1)] gives the

Frobenius-equivariant identification6

RΓlog cris(OXOC/p/Acris
) ∼= RΓ(Spf(Acris(R))ét,Ω

•
Spf(Acris(R))/ Spf(Acris), log).

On the other hand, since the sheaves Ωi
Spf(Acris(R))/Spf(Acris), log are locally free and, in particular,

coherent, they are acyclic for Γ(Spf(Acris(R))ét,−) (see [Ull95, 5.1]), so

RΓ(Spf(Acris(R))ét,Ω
•
Spf(Acris(R))/ Spf(Acris), log) ∼= Γ(Spf(Acris(R))ét,Ω

•
Spf(Acris(R))/ Spf(Acris), log).

It remains to observe that the latter complex is identified with Ω•Acris(R)/Acris, log. �

Having rewritten both the left side of (5.4.1) in Corollary 5.7 and the right side in Proposition 5.13
in the desired forms, we would now like to exhibit an isomorphism between them. We will achieve
this in Proposition 5.16 after the following preparations.

5.14. The element log([ε]). Let us fix an m ≥ p2. The elements µn

(n+1)! ∈ A
(m)
cris [1

p ] lie in A(m)
cris , are

topologically nilpotent in A(m)
cris if n > 1, and tend to 0 in the p-adic topology of A(m)

cris as n → ∞
(see the proof of [BMS16, 12.2]).7 Consequently, recalling that µ = [ε]− 1, we may define

log([ε]) := µ− µ2

2 + µ3

3 − . . . in A(m)
cris .

By loc. cit.,8 the elements log([ε]) and µ are unit multiples of each other in A(m)
cris , so

(log([ε]))n

µ·n! lies in

A
(m)
cris , is topologically nilpotent if n > 1, and tends to 0 in the p-adic topology of A(m)

cris as n → ∞.
The Frobenius of A(m)

cris maps log([ε]) to p · log([ε]).

6Loc. cit. uses the logarithmic PD de Rham complex, that is, the quotient of Ω•Spf(Acris(R))/ Spf(Acris), log by the PD
relations d(u[m]) = u[m−1]du, see [Bei13b, §1.7]. In our situation, there is no difference: since the PD structure of
Acris(R)/pn is extended from the base Acris/p

n, the PD relations hold already in Ω•Spf(Acris(R))/ Spf(Acris), log.
7For completeness, we review an argument that gives these claims. Since p, µξ is an Ainf -regular sequence, µp −

µξp ∈ pξµAinf , so µp−1

p
= ξp

p
+ ξa for some a ∈ Ainf . Thus, since (p2)!

pp
∈ pZ, we have

(
µp−1

p

)p
∈ pA(m)

cris , so
µp−1

p
is

topologically nilpotent in A(m)
cris . In effect, since 1

(n+1)!
p
b n
p−1
c ∈ Z, the elements µn

(n+1)!
tend to 0 in the p-adic topology

of A(m)
cris and are topologically nilpotent.

8The argument is as follows. By the previous footnote,
∑
n≥p

µn

n+1
lies in pA

(m)
cris . Thus, since each µn

n+1
with

0 < n < p is topologically nilpotent in A(m)
cris , so is

∑
n≥1

µn

n+1
. In conclusion, log([ε])

µ
is a unit in A(m)

cris .
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The following lemma uses the element log([ε]) and the ∆-action on A(m)
cris (R) to describe the deriva-

tions ∂
∂ log(Xi)

: A
(m)
cris (R)→ A

(m)
cris (R) that are induced from those in (5.10.1).

Lemma 5.15. For every m ≥ p2, the element δi ∈ ∆ with i = 1, . . . , d (see §3.2) acts on A(m)
cris (R)

as the series
exp(log([ε]) · ∂

∂ log(Xi)
) :=

∑
n≥0

(log([ε]))n

n! ( ∂
∂ log(Xi)

)n. (5.15.1)

In particular, for such m and i, we have the following description of the “q-derivative” δi−1
µ :

δi−1
µ = ∂

∂ log(Xi)
·
(∑

n≥1
(log([ε]))n

µ·n! ( ∂
∂ log(Xi)

)n−1
)

as maps A
(m)
cris (R)→ A

(m)
cris (R), (5.15.2)

where the parenthetical factor defines an A(m)
cris -linear additive automorphism of A(m)

cris (R).

Proof. The argument is similar to that of [BMS16, 12.3]. Firstly, (log([ε]))n

n! tends to 0 in A(m)
cris for the

p-adic topology (see §5.14), so the series (5.15.1) does define an A(m)
cris -linear additive endomorphism

of A(m)
cris (R). This endomorphism is actually also multiplicative because, by the Leibniz rule,

(log([ε]))n

n! ( ∂
∂ log(Xi)

)n(ab) =
∑n

j=0
(log([ε]))j

j! ( ∂
∂ log(Xi)

)j(a) · (log([ε]))n−j

(n−j)! ( ∂
∂ log(Xi)

)n−j(b).

Therefore, in the case R = R� the desired equality

δi = exp(log([ε]) · ∂
∂ log(Xi)

) of endomorphisms A
(m)
cris (R�)→ A

(m)
cris (R�) (5.15.3)

follows by noting that, due to the formulas (5.10.2), both of its sides send Xi to [ε]Xi, fix each Xj

with 0 < j 6= i, and send X0 to [ε−1]X0 if i ≤ r and to X0 if r < i.

In the general case, since µ, and hence also ξ, divides each (log([ε]))n

n! with n ≥ 1 (see §5.14), both
sides of the equality (5.15.3) induce the trivial action modulo (p, ξ). Therefore, due to the formal
étaleness of A(m)

cris (R) over A(m)
cris (R�) and the settled R = R� case, the sides agree.

Since A(m)
cris (R) is µ-torsion free (see (3.27.2)) and µ | (log([ε]))n

n! in A
(m)
cris (see §5.14), the equality

(5.15.2) follows from (5.15.3). Since (log([ε]))n

µ·n! is a unit for n = 1, is topologically nilpotent if n > 1

(see §5.14), and p-adically tends to 0 as n → ∞, the parenthetical factor of (5.15.2) is indeed an
automorphism, as desired. �

We are ready to settle the (presheaf version of the) local case of Theorem 5.4.

Proposition 5.16. In the local setting of (5.5.1), for every m ≥ p2 and i = 1, . . . , d, the morphism(
A

(m)
cris (R)

∂
∂ log(Xi)−−−−−→ A

(m)
cris (R)

) (
id,
∑
n≥1

(log([ε]))n

n!
( ∂
∂ log(Xi)

)n−1
)

−−−−−−−−−−−−−−−−−−−−−−→
(
A

(m)
cris (R)

δi−1−−−→ A
(m)
cris (R)

)
(5.16.1)

of complexes concentrated in degrees 0 and 1 is Frobenius equivariant, where the Frobenius action
on the A(m)

cris (R) in degree 1 of the source is multiplied by p (compare with §5.10). For every m ≥ p2,
these morphisms induce a Frobenius-equivariant quasi-isomorphism

K
A

(m)
cris (R)

(
∂

∂ log(X1) , . . . ,
∂

∂ log(Xd)

)
∼−→ η(µ)

(
KA(m)

cris (R∞)
(δ1 − 1, . . . , δd − 1)

)
, (5.16.2)

which, as m varies, induces a Frobenius-equivariant identification that is a local version of (5.4.1):

RΓlog cris(OXOC/p/Acris
) ∼= RΓ(Xpsh

ét , AΩpsh
X )⊗̂L

Ainf
Acris. (5.16.3)
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Proof. The Frobenius-equivariance of (5.16.1) follows from the equations ϕ(log([ε])) = p · log([ε])

(see §5.14) and ∂
∂ log(Xi)

◦ ϕ = p ·
(
ϕ ◦ ∂

∂ log(Xi)

)
(see §5.10). Since ∆ acts trivially on A(m)

cris (R)/µ,
the subcomplex

η(µ)

(
K
A

(m)
cris (R)

(δ1 − 1, . . . , δd − 1)
)
⊂ K

A
(m)
cris (R)

(δ1 − 1, . . . , δd − 1)

is obtained by letting its jth term for j ≥ 0 be the submodule of µj-multiples inside the jth term of
K
A

(m)
cris (R)

(δ1 − 1, . . . , δd − 1), see (1.7.2) and (1.7.3). In particular, since µ | ϕ(µ), this subcomplex
is Frobenius-stable. Thus, Lemma 5.15 implies that the morphisms (5.16.1) induce an isomorphism

K
A

(m)
cris (R)

(
∂

∂ log(X1) , . . . ,
∂

∂ log(Xd)

)
∼−→ η(µ)

(
K
A

(m)
cris (R)

(δ1 − 1, . . . , δd − 1)
)
. (5.16.4)

Proposition 3.32 then implies that the natural inclusion of the target of (5.16.4) into the target
of (5.16.2) is a quasi-isomorphism, and (5.16.2) follows. The maps (5.16.2) are compatible as m
varies, so, by passing to the limit over m, forming the termwise p-adic completions, and applying
Corollary 5.7 and Proposition 5.13, we obtain the desired identification (5.16.3). �

We now turn to the “all possible coordinates” technique that will globalize the arguments and
eventually prove Theorem 5.4. For globalizing, the key point is to build, for a small enough affine
X, a functorial in X explicit complex that computes the presheaf version of the left side of (5.4.1)
(see §5.21), to then also build such complex for the right side of (5.4.1) (see §5.32), and, finally, to
build a natural isomorphism between the two complexes (see §5.38 and Proposition 5.39). Virtually
every step of this process will rely on our work in the local case (5.5.1) discussed so far.

5.17. More general coordinates. Continuing to work locally, we now assume until the proof of
Theorem 5.4 given in §5.40 that X is affine, that is, X = Spf R, and connected, and that we are
given

• a finite set Σ that indexes the coordinates of a formal torus

R�
Σ := OC{t±1

σ |σ ∈ Σ};

• a nonempty finite set Λ and for each λ ∈ Λ a qλ ∈ Q>0 and an OC-algebra

R�
λ := OC{tλ, 0, . . . , tλ, rλ , t

±1
λ, rλ+1, . . . , t

±1
λ, d}/(tλ, 0 · · · tλ, rλ − p

qλ);

• a closed immersion
X = Spf R→ Spf R�

Σ ×
∏
λ∈Λ Spf R�

λ (5.17.1)

where the products are formed over Spf OC , subject to the requirements that already

X = Spf R→ Spf R�
Σ is a closed immersion, (5.17.2)

the induced map

X = Spf R→ Spf R�
λ is étale for each λ ∈ Λ, (5.17.3)

and for some λ ∈ Λ, each irreducible component of Spec(R⊗ k) is cut out by a (unique) tλ, i
with 0 ≤ i ≤ rλ (which is equivalent to the intersection of any two irreducible components of
Spec(R ⊗ k) being nonempty, and hence implies this condition for every λ ∈ Λ: indeed, by
(5.17.3), the irreducible components of Spec(R⊗k) are a priori identified with the connected
components of

⊔
i Spec((R⊗ k)/(tλ, i)) for any λ ∈ Λ).
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By §1.5, if R/p is not OC/p-smooth, then qλ is determined by R and does not depend on λ. On the
other hand, if R/p is OC/p-smooth, then the qλ may differ; this and also the possibility that rλ > 0
complicate matters in the “simpler” smooth case but are crucial to allow in order for the eventual
“all possible coordinates” constructions to be functorial in R.

For any X, the data above exists on a basis for Xét: to see this, first fix a geometric point x of X.
If x lies in Xsm, then it has a required basis of étale neighborhoods because any X is étale locally
the formal spectrum of the p-adic completion of a finite type OC-algebra, the spectrum of which
Zariski locally embeds into some GΣ

m. If x does not lie in Xsm, then it has a basis of affine étale
neighborhoods Spf R that admit semistable local coordinates (5.5.1) for which (t0, . . . , tr) cuts out
x; further Zariski localization at x then ensures the existence of a closed immersion into some ĜΣ

m.

Each (5.17.3) is an instance of the local setup (5.5.1), so the local discussion between §5.5 and
the present section applies to it. Another instance (with r = 0 and d = #Σ) is the identity map
Spf R�

Σ
=−→ Spf R�

Σ, so the indicated discussion also applies to the ring R�
Σ in place of R�.

Our first aim in this setup is to reexpress the (presheaf version of the) left side of (5.4.1) in §5.21.

5.18. The perfectoid cover RΣ,Λ,∞. For each λ ∈ Λ, we set

∆λ :=

{
(ε0, . . . , εd) ∈

(
lim←−m≥0

µpm(OC)
)⊕(d+1) ∣∣∣ ε0 · · · εrλ = 1

}
' Z⊕dp

and let

Spa(Rλ,∞[1
p ], Rλ,∞)→ Spa(R[1

p ], R) and Spa(R�
λ,∞[1

p ], R�
λ,∞)→ Spa(R�

λ [1
p ], R�

λ ) (5.18.1)

be the affinoid perfectoid pro-(finite étale) ∆λ-covers defined as in §3.2 using the coordinate map
(5.17.3). Similarly, we set

∆Σ :=
(

lim←−m≥0
µpm(OC)

)Σ
' ZΣ

p

and let
Spa(R�

Σ,∞[1
p ], R�

Σ,∞)→ Spa(R�
Σ[1
p ], R�

Σ)

be the affinoid perfectoid pro-(finite étale) ∆Σ-cover defined as in §3.2 using the coordinate map
Spf R�

Σ
=−→ Spf R�

Σ. Explicitly,

R�
Σ,∞ :=

(
lim−→m≥0

OC{t±1/pm

σ |σ ∈ Σ}
) ̂.

By taking products over Spa(OC [1
p ],OC) and setting

∆Σ,Λ := ∆Σ ×
∏
λ∈Λ ∆λ, (5.18.2)

we obtain the affinoid perfectoid pro-(finite étale) ∆Σ,Λ-cover

Spa(R�
Σ,∞[1

p ], R�
Σ,∞)×

∏
λ∈Λ Spa(R�

λ,∞[1
p ], R�

λ,∞)→ Spa(R�
Σ[1
p ], R�

Σ)×
∏
λ∈Λ Spa(R�

λ [1
p ], R�

λ ),

which we abbreviate as

Spa(R�
Σ,Λ,∞[1

p ], R�
Σ,Λ,∞)→ Spa(R�

Σ,Λ[1
p ], R�

Σ,Λ).

Its base change along the generic fiber of the closed immersion (5.17.1) gives the pro-(finite étale)
∆Σ,Λ-cover

Spa(RΣ,Λ,∞[1
p ], RΣ,Λ,∞)→ Spa(R[1

p ], R), (5.18.3)

which contains each Spa(Rλ,∞[1
p ], Rλ,∞)→ Spa(R[1

p ], R) as a subcover. Thus, by the almost purity
theorem [Sch12, 7.9 (iii)], theOC-algebra RΣ,Λ,∞ defined by (5.18.3) is perfectoid (by [BMS16, 3.20],
the notions of ‘perfectoid’ used in [Sch12] and here agree).
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5.19. The rings Ainf(RΣ,Λ,∞) and A(m)
cris (RΣ,Λ,∞). Similarly to §3.14, we set

Ainf(RΣ,Λ,∞) := W (R[Σ,Λ,∞).

By Lemma 3.13, for each n, n′ > 0, the sequence (pn, µn
′
) is regular on Ainf(RΣ,Λ,∞), theAinf/(p

n, µn
′
)-

algebra Ainf(RΣ,Λ,∞)/(pn, µn
′
) is flat, and Ainf(RΣ,Λ,∞)/µ is p-adically complete. As in §3.14, we

have the surjection
θ : Ainf(RΣ,Λ,∞) � RΣ,Λ,∞. (5.19.1)

To fix the notation for the coordinates, we write the isomorphism (3.14.2) for R�
Σ and R�

λ as follows:

A(R�
Σ) ∼= Ainf{X±1

σ }σ∈Σ,

A(R�
λ ) ∼= Ainf{Xλ, 0, . . . , Xλ, rλ , X

±1
λ, rλ+1, . . . , X

±1
λ, d}/(Xλ, 0 · · ·Xλ, rλ − [(p1/p∞)qλ ]).

(5.19.2)

Likewise, similarly to §3.27, for an m ∈ Z≥1, we set

A(m)
cris (RΣ,Λ,∞) := Ainf(RΣ,Λ,∞)⊗̂Ainf

A
(m)
cris ,

where the completion is (p, µ)-adic (equivalently, p-adic if m ≥ p). Since Ainf(RΣ,Λ,∞) is (p, µ)-
adically formally flat over Ainf , the ring A(m)

cris (RΣ,Λ,∞) inherits p-torsion freeness from A
(m)
cris . By

using, in addition, the short exact sequences (3.26.4) together with the vanishing (3.26.3), we also
see that A(m)

cris (RΣ,Λ,∞) is µ-torsion free and A(m)
cris (RΣ,Λ,∞)/µ is p-adically complete. The map

(5.19.1) gives rise to the compatible map

θ : A(m)
cris (RΣ,Λ,∞) � RΣ,Λ,∞. (5.19.3)

As in §3.14, the map θ intertwines the Witt vector Frobenius of Ainf(RΣ,Λ,∞) with the absolute
Frobenius of RΣ,Λ,∞/p. Likewise, as in §3.27, each A(m)

cris (RΣ,Λ,∞) comes equipped with an A(m)
cris -

semilinear Frobenius, and these Frobenii are compatible as m varies.

The profinite group ∆Σ,Λ acts continuously and Frobenius-equivariantly on the rings above. To
analyze this action, we use the compatible system ε of p-power roots of unity chosen in §2.1 and
define elements δσ ∈ ∆Σ by

δσ := (1, . . . , 1, ε, 1, . . . , 1) for σ ∈ Σ, where the σth entry is nonidentity,

as well as, for every λ ∈ Λ, the elements δλ, i ∈ ∆λ by

δλ, i := (ε−1, 1, . . . , 1, ε, 1, . . . , 1) for i = 1, . . . , rλ, where the 0th and ith entries are nonidentity;

δλ, i := (1, . . . , 1, ε, 1, . . . , 1) for i = rλ + 1, . . . , d, where the ith entry is nonidentity.

Jointly, the δσ and the δλ, i form a system of free topological generators for ∆Σ,Λ.

Using the following consequence of Theorem 3.34, in §5.21 we will build a functorial complex that
locally computes the left side of the desired identification (5.4.1).

Proposition 5.20. In the local setup of §5.17, for every m ≥ 1, the edge map (see §3.15 and §3.28)

η(µ)

(
KA(m)

cris (RΣ,Λ,∞)
((δσ − 1)σ∈Σ, (δλ, i − 1)λ∈Λ, 1≤i≤d)

)
∼−→ RΓ(Xpsh

ét , AΩpsh
X )⊗̂L

Ainf
A

(m)
cris (5.20.1)

is a Frobenius-equivariant quasi-isomorphism. In particular, we have the following Frobenius-
equivariant identification in the derived category:(

lim−→m

(
η(µ)

(
KA(m)

cris (RΣ,Λ,∞)
((δσ − 1)σ∈Σ, (δλ, i − 1)λ∈Λ, 1≤i≤d)

)))̂ ∼−→ RΓ(Xpsh
ét , AΩpsh

X )⊗̂L
Ainf

Acris,

where the direct limit and the p-adic completion of the complexes in the source are formed termwise.
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Proof. The termwise p-adic completion of the source in the last display agrees with the derived p-
adic completion because each A(m)

cris (RΣ,Λ,∞) is p-torsion free. Moreover, the Frobenius-equivariance
aspects follow from the Frobenius-equivariance of the edge map used to construct (5.20.1) and
that of the identification (5.1.1). Thus, since the pro-(finite étale) affinoid perfectoid ∆Σ,Λ-cover
Spa(RΣ,Λ,∞[1

p ], RΣ,Λ,∞) of Spa(R[1
p ], R) contains Spa(Rλ,∞[1

p ], Rλ,∞) as a subcover, the claim
follows from Lemma 3.7 and Remark 3.35. �

5.21. A functorial complex that computes RΓ(Xpsh
ét , AΩpsh

X )⊗̂L
Ainf

Acris. For a fixed R, the
isomorphisms of Proposition 5.20 are compatible with enlarging Σ and Λ. Therefore, by taking the
filtered direct limit over all the closed immersions (5.17.1) for varying Σ and Λ (but fixed R), we
may build the complex

lim−→Σ,Λ

((
lim−→m>0

(
η(µ)

(
KA(m)

cris (RΣ,Λ,∞)
((δσ − 1)σ∈Σ, (δλ, i − 1)λ∈Λ, 1≤i≤d)

))) )̂
, (5.21.1)

where the direct limits and the p-adic completion are formed termwise, that comes equipped with
an Acris-semilinear Frobenius endomorphism. By Proposition 5.20, in the derived category this
complex is canonically and Frobenius-equivariantly isomorphic to

RΓ(Xpsh
ét , AΩpsh

X )⊗̂L
Ainf

Acris.

Moreover, if R′ is a formally étale R-algebra equipped with a closed immersion as in (5.17.1) for
some sets Σ′ and Λ′, then the term indexed by Σ, Λ (and by a closed immersion (5.17.1)) of the
direct limit (5.21.1) maps to the term indexed by Σ ∪ Σ′, Λ ∪ Λ′ (and by a closed immersion of
Spf R′) of the analogous direct limit for R′, compatibly with the transition maps in (5.32.1) and
the Frobenius. Consequently, the complex (5.21.1) equipped with its Frobenius is functorial in R
(equipped with the closed immersion (5.17.1)).

Our next aim is to similarly reexpress the (presheaf version of the) right side of (5.4.1) in §5.32.

5.22. The completed log PD envelope DΣ,Λ. By §5.9, the maps θ of (3.14.3) give a Frobenius-
equivariant closed immersion

Spec(R/p) ↪→ Spf(A(R�
Σ))×

∏
λ∈Λ Spf(A(R�

λ )) =: Spf(A(R�
Σ,Λ)) (5.22.1)

of (p, µ)-adic formal log schemes, where the products are formed over the (p, µ)-adic formal log
scheme Spf(Ainf). By [Kat89, 4.1 and 4.4], for each n, n′ ∈ Z>0, the (quasi-coherent) log structure
of Spec(A(R�

Σ,Λ)/(pn, µn
′
)) is integral and the map Spec(A(R�

Σ,Λ)/(pn, µn
′
))→ Spec(Ainf/(p

n, µn
′
))

of log schemes is also integral.

For each n, n′ ∈ Z>0, by [Bei13b, 1.3, Theorem], the Ainf/(p
n, µn

′
)-base change of the closed immer-

sion (5.22.1) has a log PD envelope Spec(DΣ,Λ, n, n′) over (Z/pnZ, pZ/pnZ), which, in particular, is
a nil thickening of Spec(R/p), so is also affine as indicated. In fact, DΣ,Λ, n, n′ is supplied already by
[Kat89, 5.4] because the closed immersion (5.22.1) is a base change of a similar closed immersion of
fine log schemes over Ainf along a “change of log structure” self-map of Ainf (compare with §5.9).9

If n′ is large enough relative to n, so that µn′ ∈ pnAcris, then, since Spec(Acris/p
n) is identified with

the log PD envelope of the exact log closed immersion Spec(OC/p) ↪→ Spec(Ainf/(p
n, µn

′
)) over

(Z/pnZ, pZ/pnZ) (see §5.1), Spec(DΣ,Λ, n, n′) comes equipped with a canonical log PD morphism to
Spec(Acris/p

n) that identifies it with the log PD envelope of

Spec(R/p) ↪→ Spec(A(R�
Σ,Λ)⊗Ainf

Acris/p
n) over Spec(OC/p) ↪→ Spec(Acris/p

n).

9The two references characterize the log PD envelope differently, but this is not an issue for us essentially because
the image of any monoid morphism M →M ′ with M finitely generated is finitely generated.
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In particular, letting DΣ,Λ, n denote the common DΣ,Λ, n, n′ for large enough n′, so that we have
DΣ,Λ, n/p

n−1 ∼= DΣ,Λ, n−1 for n > 1, we obtain a formal log Spf(Acris)-scheme Spf(DΣ,Λ) that fits
into a factorization

Spec(R/p) ↪→ Spf(DΣ,Λ)→ Spf(Acris(R
�
Σ))×

∏
λ∈Λ Spf(Acris(R

�
λ )) =: Spf(Acris(R

�
Σ,Λ)), (5.22.2)

where the products are formed over the formal log scheme Spf(Acris). By the functoriality of its
construction, Spf(DΣ,Λ) comes equipped with an Acris-semilinear Frobenius endomorphism. In ad-
dition, since, for each n > 0, the ideal defining the exact closed immersion Spec(R/p) ↪→ Spec(R/pn)
inherits divided powers from Z/pn, the universal property of DΣ,Λ supplies the factorization

Spec(R/p) ↪→ Spf(R) ↪→ Spf(DΣ,Λ) over Spec(OC/p) ↪→ Spf(OC) ↪→ Spf(Acris). (5.22.3)

The profinite group ∆Σ,Λ acts continuously and Frobenius-equivariantly on A(R�
Σ,Λ) over Ainf

(see (5.18.2), §5.19, and §3.14), and, due to the last paragraph of §5.9, this action extends to a
∆Σ,Λ-action on the formal log scheme Spf(A(R�

Σ,Λ)). Moreover, the closed immersion (5.22.1) is
∆Σ,Λ-equivariant, so ∆Σ,Λ acts continuously and Acris-linearly on each DΣ,Λ, n and also on DΣ,Λ.

For our purposes, the utility of DΣ,Λ will manifest itself through the following proposition:

Proposition 5.23. In the local setting of §5.17, the complex (where the inverse limit is termwise)

Ω•DΣ,Λ/Acris, log,PD
:= lim←−n>0

(
Ω•

(Acris(R
�
Σ,Λ)/pn)/(Acris/pn), log

⊗Acris(R
�
Σ,Λ)/pn DΣ,Λ, n

)
may be canonically and Frobenius-equivariantly identified (in the derived category) as follows:

RΓlog cris(OXOC/p/Acris
) ∼= Ω•DΣ,Λ/Acris, log,PD. (5.23.1)

Under this identification, the natural map

RΓlog cris(OXOC/p/Acris
)→ RΓlog dR(X/OC) is Ω•DΣ,Λ/Acris, log,PD → Ω•Spf(R)/OC , log (5.23.2)

induced by the factorization (5.22.3). In particular, we have a Frobenius-equivariant identification

RΓlog cris(OXOC/p/Acris
) ∼= KDΣ,Λ

((
∂

∂ log(Xσ)

)
σ∈Σ

,
(

∂
∂ log(Xλ, i)

)
λ∈Λ, 1≤i≤d

)
(5.23.3)

where the ∂
∂ log(Xσ) (resp., ∂

∂ log(Xλ, i)
) are defined as in (5.10.1) with R�

Σ (resp., R�
λ ) in place of R

and the Frobenius acts on the degree j term of the right side by pj times the action induced from
the Frobenius action on DΣ,Λ (compare with §5.10).

Proof. By §5.11, each Acris(R
�
Σ,Λ)/pn is a log smooth thickening of R/p over Acris/p

n. Therefore,
by [Bei13b, 1.4, Remarks (ii)], the PD thickening DΣ,Λ, n of R/p is PD smooth over Acris/p

n (see
the proof of Lemma 5.12 for the definition). Consequently, by [Bei13b, (1.8.1)], the logarithmic
PD de Rham complex Ω•DΣ,Λ, n/(Acris/pn), log,PD computes RΓlog cris(OXOC/p/(Acris/pn)); the Frobenius-
equivariance aspect follows by functoriality. By [Bei13b, 1.7, Exercises, (i)],

Ω•DΣ,Λ, n/(Acris/pn), log,PD
∼= Ω•

(Acris(R
�
Σ,Λ)/pn)/(Acris/pn), log

⊗Acris(R
�
Σ,Λ)/pn DΣ,Λ, n, (5.23.4)

so the identification (5.23.1) follows. Since each R/pn is a log smooth thickening of R/p over OC/pn,

similar reasoning applies to RΓlog cris(OXOC/p/R
)

[Bei13b, (1.8.1)]∼= RΓlog dR(X/OC) and gives (5.23.2).

The identification (5.23.3) then results from the Frobenius-equivariant identifications

Ω•
(Acris(R

�
Σ,Λ)/pn)/(Acris/pn), log

∼= KAcris(R
�
Σ,Λ)/pn

((
∂

∂ log(Xσ)

)
σ∈Σ

,
(

∂
∂ log(Xλ, i)

)
λ∈Λ, 1≤i≤d

)
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supplied by (5.10.3). �

Remark 5.24. In fact, by [Bei13b, (1.11.1)], the first map in (5.23.2) induces the identification

RΓlog cris(OXOC/p/Acris
)⊗L

Acris
OC ∼= RΓlog dR(X/OC) (5.24.1)

in the derived category, so the same holds for the second map:

Ω•DΣ,Λ/Acris, log,PD ⊗
L
Acris
OC ∼= Ω•Spf(R)/OC , log. (5.24.2)

To bring the identification (5.23.3) in a form that mimics the last display of the statement of
Proposition 5.20, in §5.30 we will express DΣ,Λ as a completed direct limit of rings D(m)

Σ,Λ that,
loosely speaking, are generated by divided powers of degree at most m, see (5.30.1). For this, it will
be useful to exploit the ideas from the proof of [Kat89, (4.10) (1)] to identify DΣ,Λ with the p-adic
completion of the (non log) divided power envelope of an exact closed immersion in Lemma 5.29.10

5.25. A chart for A(R�
Σ,Λ). To express DΣ,Λ as the p-adic completion of a usual (that is, non

log) divided power envelope, we will build a chart for the (fine version) of the log closed immersion
Spec(R/p) ↪→ Spec(A(R�

Σ,Λ)) of (5.22.1). For this, we fix the unique q ∈ Q>0 for which

Z · q = Σλ∈Λ Z · qλ inside Q,

so that qλ
q ∈ Z>0 for every λ (and even q = qλ in the case when R/p is not OC/p-smooth, see §5.17).

We endow OC/p (resp., Ainf) with the (fine) log structure determined by

N≥0 → OC/p with 1 7→ pq (resp., N≥0 → Ainf with 1 7→ [(pq)1/p∞ ]).

For each λ ∈ Λ, we let Qλ ⊂ q
qλ

∏
0≤i≤rλ N≥0 be the submonoid generated by

∏
0≤i≤rλ N≥0 and the

diagonal ( q
qλ
, . . . , qqλ ), so that the chart

Qλ → A(R�
λ ) given by ( q

qλ
, . . . , qqλ ) 7→ [(p1/p∞)q] and

∏
0≤i≤rλ N≥0

(ni)7→
∏
X
ni
λ, i−−−−−−−−→ A(R�

λ )

makes A(R�
λ ) a fine log Ainf -algebra. We let

Q :=
(∏

λ∈ΛQλ
)
/(( q

qλ1
, . . . , q

qλ1
) = ( q

qλ2
, . . . , q

qλ2
))λ1 6=λ2

be the quotient monoid obtained by identifying the diagonal elements ( q
qλ
, . . . , qqλ ), so that the map

Q→ A(R�
Σ,Λ) that results from the charts Qλ → A(R�

λ )

is a chart for the target Spf(A(R�
Σ,Λ)) of the fine version of the log closed immersion (5.22.1). In

terms of this chart, the Frobenius action multiplies each element of Q by p.

To prepare for building a convenient chart for R/p, for each λ ∈ Λ we define an indexing set by

Iλ := {i | 0 ≤ i ≤ d, tλ, i 6∈ R×}.

5.26. A convenient chart in the smooth case. Assume that R/p is OC/p-smooth. Then for
each λ, there is a unique 0 ≤ iλ ≤ rλ with tλ, iλ 6∈ R×. For every λ0 ∈ Λ, we consider the monoid

Pλ0
:=
(
N≥0 ×

∏
0≤i≤rλ0

, i 6=iλ0
Z
)
×
∏
λ 6=λ0

((∏
0≤i≤rλ Z

)
/Z
)
, (5.26.1)

10In fact, the arguments below would become more direct if we could “uncomplete” DΣ,Λ by constructing the log
PD envelope of the (possibly nonexact) log closed immersion (5.22.1) itself. Neither [Kat89, 5.4] nor [Bei13b, 1.3,
Theorem] gives this hypothetical envelope because p is not nilpotent in A(R�Σ,Λ).
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where each Z by which we quotient is embedded diagonally. For each (λ, i) with 0 ≤ i ≤ rλ, there
is a unique vλ, i ∈ R× such that tλ, i = (pq)nλ, i · vλ, i in R for a (unique) nλ, i ∈ Z≥0: explicitly,
nλ, i = qλ

q if i ∈ Iλ, and else nλ, i = 0. In particular,
∏

0≤i≤rλ vλ, i = 1 for each λ. The map

Pλ0 → R/p given by N≥0 3 1 7→ pq, Z(λ,i) 3 1 7→ vλ,i,

where the subscript (λ, i) indicates index of the factor Z in (5.26.1), is a chart for the source
Spec(R/p) of the fine version of the log closed immersion (5.22.1). In terms of this chart, the
Frobenius action multiplies each element of Pλ0 by p.

Moreover, there is a natural Frobenius-equivariant chart

Q→ Pλ0 =
(
N≥0 ×

∏
0≤i≤rλ0

, i 6=iλ0
Z
)
×
∏
λ 6=λ0

((∏
0≤i≤rλ Z

)
/Z
)

(5.26.2)

for this fine version of (5.22.1): for instance, it maps 1 ∈ (N≥0)(λ0, iλ0
) to the element (

qλ0
q ,−1, . . . ,−1)

of N≥0×
∏

0≤i≤rλ0
, i 6=iλ0

Z, each ( q
qλ
, . . . , qqλ ) to 1 ∈ N≥0, each 1 ∈ (N≥0)(λ,i) with i 6= iλ to 1 ∈ Z(λ,i),

etc.—the key is that the image under Q → A(R�
Σ,Λ) � R/p of every generator of Q is evidently

expressible in terms of the images of the generators of Pλ0 (without knowing the “values” of these
images).

The A(R�
Σ,Λ)-algebra A(R�

Σ,Λ)⊗Z[Q] Z[Pλ0 ] comes equipped with an A(R�
Σ,Λ)-semilinear Frobenius

and is initial among the A(R�
Σ,Λ)-algebras B equipped with a unit Vλ, i ∈ B× for each (λ, i) with

0 ≤ i ≤ rλ subject to the relations

Xλ, i = [((p1/p∞)q)nλ, i ] · Vλ, i,
∏

0≤i≤rλ Vλ, i = 1. (5.26.3)

In particular,

R is naturally an (A(R�
Σ,Λ)⊗Z[Q] Z[Pλ0 ])-algebra (with Vλ, i = vλ, i), (5.26.4)

so the scheme counterpart of the fine variant of the closed immersion (5.22.1) factors Frobenius-
equivariantly as follows:

Spec(R/p) �
� jλ0 // Spec

(
A(R�

Σ,Λ)⊗Z[Q] Z[Pλ0 ]
) qλ0 // Spec(A(R�

Σ,Λ)), (5.26.5)

where Spec
(
A(R�

Σ,Λ)⊗Z[Q] Z[Pλ0 ]
)
is equipped with the log structure pulled back from Z[Pλ0 ]. By

construction, jλ0 is an exact closed immersion and, by [Kat89, 3.5], the projection qλ0 is log étale.

The relations (5.26.3) do not depend on the choice of λ0, so neither does the factorization (5.26.5).
More precisely, for any λ′0 ∈ Λ, we have the a natural isomorphism over Q of charts for R/p:

Pλ0

∼−→ Pλ′0 , (5.26.6)

and this isomorphism gives rise to the vertical Frobenius-equivariant isomorphism in the commuta-
tive diagram

Spec
(
A(R�

Σ,Λ)⊗Z[Q] Z[Pλ0 ]
)

qλ0
--

Spec(R/p)
# �
jλ0 11

� {

jλ′0

--
Spec(A(R�

Σ,Λ)).

Spec
(
A(R�

Σ,Λ)⊗Z[Q] Z[Pλ′0 ]
)∼

OO

qλ′0

11 (5.26.7)

5.27. A convenient chart in the nonsmooth case. Assume that R/p is not OC/p-smooth. We
have qλ = q and Qλ ∼=

∏
0≤i≤rλ N≥0, so, letting ∆λ ⊂ Qλ denote the diagonal copy of N≥0, also

Q ∼=
(∏

λ∈Λ

(∏
0≤i≤rλ N≥0

))
/ (∆λ1 = ∆λ2)λ1 6=λ2

.
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By §5.17, each tλ, i 6∈ R× cuts out a unique irreducible component {yλ, i} of Spec(R⊗OCk). Moreover,
the generic point yλ, i of this component determines the ideal (tλ, i) ⊂ R: indeed, (pq) ⊂ (tλ, i) in
R and the ideal (tλ, i)/(p

q) ⊂ R/(pq) is the kernel of the localization map R/(pq) → (R/(pq))yλ, i ,
as may be seen over R�

λ . Conversely, for each generic point y of Spec(R ⊗OC k) and each λ ∈ Λ,
a unique tλ, iλ(y) with 0 ≤ iλ(y) ≤ rλ cuts out {y}. Consequently, for each y and every λ, λ0 ∈ Λ,
there is a unique uλ, λ0, y ∈ R× such that we have

tλ, iλ(y) = uλ, λ0, y · tλ0, iλ0
(y) in R. (5.27.1)

Letting Y denote the set of generic points of Spec(R⊗OC k), for λ0 ∈ Λ we consider the monoid

Pλ0
:=
((∏

Y N≥0 ×
∏
{0≤i≤rλ0

}\iλ0
(Y) Z

)
×
∏
λ 6=λ0

(∏
0≤i≤rλ Z

))/
(∆λ = ∆λ0)λ 6=λ0 , (5.27.2)

where the quotient means that for every λ 6= λ0 we are identifying every diagonal element of∏
0≤i≤rλ Z with the corresponding diagonal element of

∏
{0≤i≤rλ0

}\iλ0
(Y) Z (interpreted to be 0 if

the latter indexing set is empty). The map

Pλ0 → R/p

given by (similarly to before, the subscript indicates the factor in (5.27.2))

(N≥0)y 3 1 7→ tλ0, iλ0
(y), Z(λ, i) 3 1 7→ uλ, λ0, i for i ∈ iλ(Y), Z(λ, i) 3 1 7→ tλ, i for i 6∈ iλ(Y)

is a chart for the source Spec(R/p) of the fine version of the log closed immersion (5.22.1). In terms
of this chart, the Frobenius action multiplies each element of Pλ0 by p.

Due to the relation (5.27.1), the images in R/p of the generators of Q are evidently expressible
in terms of the images of the generators of Pλ0 , so, as in the smooth case, there is a natural
Frobenius-equivariant chart

Q→ Pλ0

for the fine version of (5.22.1): for instance, for λ 6= λ0 and i ∈ iλ(y), it sends 1 ∈ (N≥0)(λ, i) to
(1, 1) ∈ (N≥0)(λ0, iλ0

(y)) × (Z)(λ, i).

The A(R�
Σ,Λ)-algebra A(R�

Σ,Λ)⊗Z[Q] Z[Pλ0 ] comes equipped with an A(R�
Σ,Λ)-semilinear Frobenius

endomorphism and is initial among the A(R�
Σ,Λ)-algebras B for which Xλ, i ∈ B× when i 6∈ iλ(Y)

and that are equipped with, for each y ∈ Y and λ ∈ Λ, a unit Uλ, λ0, y ∈ B× subject to the relations

Xλ, iλ(y) = Uλ, λ0, y ·Xλ0, iλ0
(y), Uλ0, λ0, y = 1, and∏

y∈Y Uλ, λ0, y =
(∏
{0≤i≤rλ0

}\iλ0
(Y)Xλ0, i

)/(∏
{0≤i≤rλ}\iλ(Y)Xλ, i

)
.

(5.27.3)

In particular, up to a canonical isomorphism, A(R�
Σ,Λ) ⊗Z[Q] Z[Pλ0 ] does not depend on λ0: for a

λ′0 ∈ Λ, we may set Uλ, λ′0, y = Uλ, λ0, y · U
−1
λ′0, λ0, y

to express the Uλ, λ′0, y in terms of the Uλ, λ0, y.

Moreover,

R is naturally an (A(R�
Σ,Λ)⊗Z[Q] Z[Pλ0 ])-algebra (with Uλ, λ0, y = tλ, iλ(y)/tλ0, iλ0

(y)) (5.27.4)

and, as in the smooth case, the scheme version of the fine variant of the closed immersion (5.22.1)
factors Frobenius-equivariantly as follows:

Spec(R/p) �
� jλ0 // Spec

(
A(R�

Σ,Λ)⊗Z[Q] Z[Pλ0 ]
) qλ0 // Spec(A(R�

Σ,Λ)), (5.27.5)

where jλ0 is an exact closed immersion and, by [Kat89, 3.5], the projection qλ0 is log étale. As in
§5.26, we have natural isomorphisms Pλ0 ' Pλ′0 over Q and the compatibility diagram (5.26.7).
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5.28. The divided power envelope of jλ0. For each λ0 ∈ Λ, we let Djλ0
denote the divided

power envelope over (Zp, pZp) of the closed immersion jλ0 defined in (5.26.5) and (5.27.5). Similarly
to §5.22, we may also regard Djλ0

as the divided power envelope over Spec(OC/p) ↪→ Spec(A0
cris)

of the closed immersion

jλ0, cris : Spec(R/p) ↪→ Spec((A(R�
Σ,Λ)⊗Ainf

A0
cris)⊗Z[Q] Z[Pλ0 ]).

Since jλ0 underlies an exact closed immersion of log schemes (see §5.27), we may, in addition, regard
Djλ0

endowed with the log structure pulled back from Z[Pλ0 ] as the log PD envelope of jλ0 over
Zp, or of jλ0, cris over A0

cris (compare with [Kat89, 5.5.1]). For any λ′0 ∈ Λ, the isomorphism as in
(5.26.7) induces an isomorphism

Djλ0

∼= Djλ′0
. (5.28.1)

By functoriality, Djλ0
comes equipped with an A0

cris-semilinear Frobenius endomorphism, and the
isomorphisms (5.28.1) are Frobenius equivariant. Due to (5.26.4) and (5.27.4), there is a map

Djλ0
→ R that lifts Djλ0

� R/p (5.28.2)

and whose formation is compatible with the isomorphisms (5.28.1).

Lemma 5.29. For each λ0 ∈ Λ, the map qλ0 induces Frobenius-equivariant isomorphisms

DΣ,Λ, n
∼= Djλ0

/pn for n ∈ Z≥1 (resp., DΣ,Λ
∼= D̂jλ0

) (5.29.1)

that are compatible with divided powers, maps to R/pn (resp., R; see (5.22.3) and (5.28.2)), and the
isomorphisms (5.28.1). In particular,

DΣ,Λ/p
n ∼−→ DΣ,Λ, n for n > 0.

Proof. Similarly to §5.22, we may regard DΣ,Λ and Djλ0
as being defined using fine log structures

and the trivial log structure on Ainf . In particular, Djλ0
/pn is identified with the (log) divided

power envelope of

jλ0, cris ⊗A0
cris

A0
cris/p

n : Spec(R/p) ↪→ Spec((Acris(R
�
Σ,Λ)/pn)⊗Z[Q] Z[Pλ0 ]) over Acris/p

n

(see [SP, 07HB]). Consider a commutative square

T0� _

��

// Spec((Acris(R
�
Σ,Λ)/pn)⊗Z[Q] Z[Pλ0 ])

qλ0
⊗Ainf

Acris/p
n

��

T //

?

55

Spec(Acris(R
�
Σ,Λ)/pn)

(5.29.2)

of log schemes over Acris/p
n in which T0 ↪→ T is a log PD thickening such that the log structure

NT of T (and hence also NT0 of T0) is integral and quasi-coherent. By [Bei13b, 1.1 Exercises (iii)],
for any t, t′ ∈ Γ(T,NT ) and u0 ∈ O×T0

with t|T0 = u0 · t′|T0 , there exists a unique lift u ∈ O×T of u0

such that t = ut′. Thus, by the construction of Pλ0 and the universal property described by the
equations (5.26.3) and (5.27.3), there is a unique morphism indicated by a dashed arrow in (5.29.2)
that makes the diagram commute. Consequently, qλ0 induces an isomorphism between the log PD
envelopes of jλ0, cris ⊗A0

cris
A0

cris/p
n and (qλ0 ◦ jλ0, cris)⊗Ainf

Acris/p
n over Acris/p

n:

Djλ0
/pn ∼= DΣ,Λ, n, and, by letting n vary, also D̂jλ0

∼= DΣ,Λ.

The Frobenius equivariance follows by functoriality. �
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5.30. The rings D(m)
Σ,Λ. For each λ0 ∈ Λ, the divided powers of the images in Djλ0

of the elements
of the ideal of A(R�

Σ,Λ)⊗Z[Q] Z[Pλ0 ] that cuts out R/p generate Djλ0
as an (A(R�

Σ,Λ)⊗Z[Q] Z[Pλ0 ])-
algebra. The divided powers of degree at most m ∈ Z≥1 of these images generate a Frobenius-stable
subalgebra

D
(m)
jλ0
⊂ Djλ0

, so that Djλ0
=
⋃
m≥1D

(m)
jλ0

.

SinceDjλ0
is naturally an algebra over A0

cris (see §5.28), D
(m)
jλ0

is naturally and Frobenius-semilinearly

an algebra over the subring A0, (m)
cris ⊂ A0

cris defined in §3.26.

By Lemma 5.29, the image D0
Σ,Λ of Djλ0

in DΣ,Λ

(5.29.1)∼= D̂jλ0
is Frobenius stable and does not

depend on λ0. Similarly, the image D0, (m)
Σ,Λ of D(m)

jλ0
in DΣ,Λ is also Frobenius stable and does not

depend on λ0. For m ∈ Z≥1, we set

D
(m)
Σ,Λ := (D

0, (m)
Σ,Λ )̂, which is naturally an algebra over A

(m)
cris

and comes equipped with an A(m)
cris -semilinear Frobenius. In what follows, D0

Σ,Λ will play the role of
the ring that underlies the hypothetical log PD envelope of the log closed immersion (5.22.1) that
we started with (compare with footnote 10).

Both maps in the composition Djλ0
� D0

Σ,Λ ↪→ DΣ,Λ become isomorphisms upon reduction modulo

pn (because so does their composition), so, since D0
Σ,Λ =

⋃
m≥1D

0, (m)
Σ,Λ , we obtain an Frobenius-

equivariant identification

DΣ,Λ
∼=
(

lim−→D
(m)
Σ,Λ

) ̂ over Acris. (5.30.1)

The ∆Σ,Λ-action on DΣ,Λ discussed in §5.22 respects the subrings D0, (m)
Σ,Λ ⊂ DΣ,Λ (compare with

the last paragraph of §5.9). The induced continuous ∆Σ,Λ-action on the A(m)
cris -algebras D

(m)
Σ,Λ is

compatible as m varies, and the identification (5.30.1) is ∆Σ,Λ-equivariant.

5.31. The derivations ∂
∂ log(Xτ ) . Similarly to Proposition 5.23, the log derivations defined in

(5.10.1) with R�
Σ (resp., R�

λ ) in place of R give rise to the log Ainf -derivations
∂

∂ log(Xσ) : A(R�
Σ,Λ)→ A(R�

Σ,Λ) and ∂
∂ log(Xλ, i)

: A(R�
Σ,Λ)→ A(R�

Σ,Λ) (5.31.1)

for σ ∈ Σ and λ ∈ Λ with i = 1, . . . , d (as in §5.10, we do not explicate the accompanying
homomorphisms from the log structure). For brevity, let τ denote either the index “σ” for some
σ ∈ Σ or the index “λ, i” for some λ ∈ Λ and i = 1, . . . , d. Then, since each qλ0 is log étale (see
§5.27), the log Ainf -derivation ∂

∂ log(Xτ ) from (5.31.1) extends uniquely to a log Ainf -derivation

∂
∂ log(Xτ ) : A(R�

Σ,Λ)⊗Z[Q] Z[Pλ0 ]→ A(R�
Σ,Λ)⊗Z[Q] Z[Pλ0 ] for every λ0 ∈ Λ.

Consequently, by (5.23.4), that is, by [Bei13b, 1.7, Exercises, (i)], we obtain divided power Acris-
derivations

∂
∂ log(Xτ ) : DΣ,Λ → DΣ,Λ, (5.31.2)

where a divided power Acris-derivation ∂ is, as usual, in addition to Acris-linearity and the Leibniz
rule, required to satisfy ∂(x[m]) = x[m−1]∂(x) for divided powers x[m] with m ≥ 1. Likewise, we
obtain divided power A0

cris-derivations
∂

∂ log(Xτ ) : Djλ0
→ Djλ0

for λ0 ∈ Λ
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that are compatible with those in (5.31.2). Thus, ∂
∂ log(Xτ ) induces divided power A(m)

cris -derivations

∂
∂ log(Xτ ) : D

(m)
Σ,Λ → D

(m)
Σ,Λ for m ∈ Z≥1

that are compatible as m varies and recover (5.31.2) under the identification DΣ,Λ
∼=
(

lim−→D
(m)
Σ,Λ

) ̂.
Consequently, we may reexpress (5.23.3) as the Frobenius-equivariant identification

RΓlog cris(OXOC/p/Acris
) ∼=

(
lim−→m>0

K
D

(m)
Σ,Λ

((
∂

∂ log(Xσ)

)
σ∈Σ

,
(

∂
∂ log(Xλ, i)

)
λ∈Λ, 1≤i≤d

)) ̂ (5.31.3)

(the Frobenius action on the right side is defined via the identification with the right side of (5.23.3)).

5.32. A functorial complex that computes RΓlog cris(XOC/p/Acris). For a fixed R, the formation
of the rings DΣ,Λ, Dλ0 , D0

Σ,Λ, and D
(m)
Σ,Λ, as well as the morphisms jλ0 and qλ0 , is compatible with

enlarging Σ and Λ. Likewise, the formation of the identifications (5.23.3) and (5.31.3), is also
compatible with such enlargement. Consequently, by taking the filtered direct limit over all the
closed immersions (5.17.1) for varying Σ and Λ (but a fixed R), we may build the complex

lim−→Σ,Λ

((
lim−→m>0

K
D

(m)
Σ,Λ

((
∂

∂ log(Xσ)

)
σ∈Σ

,
(

∂
∂ log(Xλ, i)

)
λ∈Λ, 1≤i≤d

)) ̂) , (5.32.1)

where the direct limits and the p-adic completion are formed termwise, that, by the identification
with the direct limit of the right sides of (5.23.3), comes equipped with an Acris-semilinear Frobenius
endomorphism. By (5.31.3), this complex in the derived category is canonically and Frobenius-
equivariantly isomorphic to

RΓlog cris(OXOC/p/Acris
).

If R′ is a formally étale R-algebra equipped with a closed immersion as in (5.17.1) for some sets
Σ′ and Λ′, then we may also equip it with the induced closed immersion as in (5.17.1) for the sets
Σ̃ := Σ ∪ Σ′ and Λ̃ := Λ ∪ Λ′. The rings DΣ,Λ, Dλ0 (with λ0 ∈ Λ), D0

Σ,Λ, and D
(m)
Σ,Λ then map

to their counterparts for R′ constructed using Σ̃ and Λ̃: for this, the only slight subtlety is in the
case when R/p is not OC/p-smooth but R′/p is OC/p-smooth, when one uses the relations (5.27.3)
that describe the universal property of A(R�

Σ,Λ) ⊗Z[Q] Z[Pλ0 ]. Consequently, the term indexed by
Σ, Λ (and by a closed immersion (5.17.1)) of the direct limit (5.32.1) maps to the term indexed by
Σ̃, Λ̃ (and by a closed immersion of Spf R′) of the analogous direct limit for R′, compatibly with
the transition maps in (5.32.1). In other words, the complex (5.32.1) is functorial in the ring R
equipped with the closed immersion (5.17.1).

Since the formation of the maps (5.23.2) is compatible with enlarging Σ and Λ, and then also with
replacing R by R′, the map RΓlog cris(OXOC/p/Acris

)→ RΓlog dR(X/OC) is identified with a map

lim−→Σ,Λ

((
lim−→m>0

K
D

(m)
Σ,Λ

((
∂

∂ log(Xσ)

)
σ
,
(

∂
∂ log(Xλ, i)

)
λ∈Λ, 1≤i≤d

)) ̂)→ Ω•Spf(R)/OC , log (5.32.2)

whose formation is compatible is compatible with replacing R by R′.

Having constructed the functorial complexes (5.21.1) and (5.32.1), we seek to exhibit a natural map
between them and prove that this map is an isomorphism. These tasks, which will be completed in
§5.38 and Proposition 5.39, are the last stepping stones to the proof of Theorem 5.4 given in §5.40.

Lemma 5.33. For every m ≥ p2, the element δτ ∈ ∆, where the index τ is either “σ” for some
σ ∈ Σ or “λ, i” for some λ ∈ Λ and i = 1, . . . , d (see §5.19), acts on D(m)

Σ,Λ as the endomorphism∑
n≥0

(log([ε]))n

n! ( ∂
∂ log(Xτ ))n, (5.33.1)
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where (log([ε]))n

n! lies in A(m)
cris and p-adically converges to 0 (see §5.14).

Proof. By Lemma 5.15, the action of δτ on Acris(R
�
Σ,Λ) (defined in (5.22.2)) is given by the series

(5.33.1). Moreover, analogously to the proof of Lemma 5.15, the series (5.33.1) a priori defines an
Acris-algebra endomorphism of DΣ,Λ. Therefore, by the universal property of DΣ,Λ (see §5.22), the
action of δτ on DΣ,Λ, and hence also on D0, (m)

Σ,Λ and D(m)
Σ,Λ is given by the series (5.33.1). �

Proposition 5.34. In the local setup of §5.17, for every m ≥ p2, the additive morphisms(
D

(m)
Σ,Λ

∂
∂ log(Xτ )−−−−−→ D

(m)
Σ,Λ

) (
id,
∑
n≥1

(log([ε]))n

n!
( ∂
∂ log(Xτ )

)n−1
)

−−−−−−−−−−−−−−−−−−−−−−−→
(
D

(m)
Σ,Λ

δτ−1−−−→ D
(m)
Σ,Λ

)
(5.34.1)

of complexes concentrated in degree 0 and 1, where τ ranges over “σ” for σ ∈ Σ and “λ, i” for λ ∈ Λ
and i = 1, . . . , d, define a morphism (whose target is defined as in (1.7.3))

K
D

(m)
Σ,Λ

(
( ∂
∂ log(Xσ))σ∈Σ, (

∂
∂ log(Xλ, i)

)λ∈Λ, 1≤i≤d

)
→ η(µ)

(
K
D

(m)
Σ,Λ

((δσ − 1)σ∈Σ, (δλ, i − 1)λ∈Λ, 1≤i≤d)

)
.

Proof. The morphism (5.34.1) is well defined by Lemma 5.33. Moreover, the image of its degree 1

component lies in µ ·D(m)
Σ,Λ because, by §5.14, (log([ε]))n

µ·n! lies in A(m)
cris and p-adically tends to 0. The

rest of the claim then follows from the definitions (1.7.2) and (1.7.3). �

Proposition 5.34 essentially reduces the task of exhibiting a natural map from the complex (5.32.1) to
the complex (5.21.1) to that of exhibiting a natural ∆Σ,Λ-equivariant map D(m)

Σ,Λ → A(m)
cris (RΣ,Λ,∞).

For this, in Proposition 5.36, we will realize A(m)
cris (RΣ,Λ,∞) inside the following ring Acris(RΣ,Λ,∞).

5.35. The ring Acris(RΣ,Λ,∞). Let

A0
cris(RΣ,Λ,∞) ⊂ Ainf(RΣ,Λ,∞)[1

p ]

be the Ainf(RΣ,Λ,∞)-subalgebra generated by the elements ξn

n! for n ∈ Z≥1. Analogously to §5.8, by
[Tsu99, proof of A2.8],

A0
cris(RΣ,Λ,∞) ∼= (Ainf(RΣ,Λ,∞)[T

n

n! ]n≥1)/(T − ξ), so A0
cris(RΣ,Λ,∞) ∼= Ainf(RΣ,Λ,∞)⊗Ainf

A0
cris

and A0
cris(RΣ,Λ,∞) agrees with the divided power envelope of (Ainf(RΣ,Λ,∞), (ξ, p) · Ainf(RΣ,Λ,∞))

over (Zp, pZp). Thus, again as in §5.8,

Acris(RΣ,Λ,∞) := Ainf(RΣ,Λ,∞)⊗̂Ainf
Acris is identified with (A0

cris(RΣ,Λ,∞))̂.
Similarly to §3.26, for an m ∈ Z≥1, we let A0, (m)

cris (RΣ,Λ,∞) ⊂ A0
cris(RΣ,Λ,∞) be the Ainf(RΣ,Λ,∞)-

subalgebra generated by the divided powers of order at mostm, that is, by the ξn

n! with n ≤ m. Since
(p, ξ) is a regular sequence in Ainf(RΣ,Λ,∞), the quotient of Ainf(RΣ,Λ,∞)[T

n

n! ]n≥1 by the subalgebra
Ainf(RΣ,Λ,∞)[T

n

n! ]m≥n≥1 is (T − ξ)-torsion free. Consequently,

A0, (m)
cris (RΣ,Λ,∞) ∼= (Ainf(RΣ,Λ,∞)[T

n

n! ]m≥n≥1)/(T − ξ), (5.35.1)

to the effect that
A0, (m)

cris (RΣ,Λ,∞) ∼= Ainf(RΣ,Λ,∞)⊗Ainf
A

0, (m)
cris .

Thus, by letting the completion be p-adic if m ≥ p and (p, µ)-adic if m < p, we get the identification

(A0, (m)
cris (RΣ,Λ,∞))̂ ∼= A(m)

cris (RΣ,Λ,∞). (5.35.2)
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Proposition 5.36. For any m ∈ Z≥1, the following natural maps are injective:

A0, (m)
cris (RΣ,Λ,∞) ↪→ A(m)

cris (RΣ,Λ,∞) ↪→ Acris(RΣ,Λ,∞) ↪→ B+
dR(RΣ,Λ,∞) := (Ainf(RΣ,Λ,∞)[1

p ])̂
where the completion is ξ-adic and the definition of the last map will be explained in the proof.

Proof. Since (p, ξ) is a regular sequence in Ainf(RΣ,Λ,∞) and Ainf(RΣ,Λ,∞) is ξ-adically separated
(see [SP, 090T]), the ring Ainf(RΣ,Λ,∞)[1

p ] is also ξ-adically separated. Consequently, the map

Ainf(RΣ,Λ,∞)[1
p ]→ B+

dR(RΣ,Λ,∞) is injective, so A0, (m)
cris (RΣ,Λ,∞)→ B+

dR(RΣ,Λ,∞) is also injective.

For varying n ∈ Z≥0, the Ainf(RΣ,Λ,∞)-submodules

Fil0n ⊂ A0
cris(RΣ,Λ,∞) generated by the ξn

′

n′! for n′ ≥ n

form a decreasing filtration of A0
cris(RΣ,Λ,∞) by ideals. By [Tsu99, A2.9 (2)],11 each

A0
cris(RΣ,Λ,∞)/Fil0n is p-torsion free and p-adically complete, (5.36.1)

so the p-adic completions Filn := (Fil0n)̂ form a decreasing filtration of Acris(RΣ,Λ,∞) by ideals with

A0
cris(RΣ,Λ,∞)/Fil0n

∼= Acris(RΣ,Λ,∞)/Filn . (5.36.2)

The p-torsion freeness also supplies a decreasing filtration modulo p:

Fil0n /pFil0n ↪→ A0
cris(RΣ,Λ,∞)/pA0

cris(RΣ,Λ,∞). (5.36.3)

The isomorphism A0
cris(RΣ,Λ,∞) ∼= (Ainf(RΣ,Λ,∞)[T

n

n! ]n≥1)/(T − ξ) gives the explicit description

A0
cris(RΣ,Λ,∞)/pA0

cris(RΣ,Λ,∞) ∼= (R[Σ,Λ,∞/ξ
p)[Y1, Y2, . . .]/(Y

p
1 , Y

p
2 , . . .) (5.36.4)

where Yj corresponds to ξp
j

(pj)!
(compare with [BC09, 9.4.1 (3)]), so the filtration {Fil0n /pFil0n}n≥0 of

(5.36.3) is separated. In particular, since

Fil0n /pFil0n
∼= Filn /pFiln compatibly with A0

cris(RΣ,Λ,∞)/p ∼= Acris(RΣ,Λ,∞)/p,

the p-adic separatedness of Acris(RΣ,Λ,∞) ensures that the filtration {Filn}n≥0 is also separated:

Acris(RΣ,Λ,∞) ↪→ lim←− (Acris(RΣ,Λ,∞)/Filn)
(5.36.2)∼= lim←− (A0

cris(RΣ,Λ,∞)/Fil0n) ↪→ B+
dR(RΣ,Λ,∞),

where the last map is injective because so is each

A0
cris(RΣ,Λ,∞)/Fil0n ↪→ (A0

cris(RΣ,Λ,∞)/Fil0n)[1
p ] ∼= (Ainf(RΣ,Λ,∞)[1

p ])/ξn ∼= B+
dR(RΣ,Λ,∞)/ξn.

This gives the desired natural injection Acris(RΣ,Λ,∞) ↪→ B+
dR(RΣ,Λ,∞) of A0

cris(RΣ,Λ,∞)-algebras.

The filtration {Fil0n}n≥0 defines the decreasing filtration

Fil
0, (m)
n := Fil0n

⋂
A0, (m)

cris (RΣ,Λ,∞) ⊂ A0, (m)
cris (RΣ,Λ,∞)

of A0, (m)
cris (RΣ,Λ,∞) by ideals. Explicitly, Fil

0, (m)
n is generated by the products ξn1

n1! · · ·
ξns

ns!
with

n1 + . . .+ ns ≥ n and 0 ≤ ni ≤ m. By (5.36.1), the quotients

A0, (m)
cris (RΣ,Λ,∞)/Fil0, (m)

n are p-torsion free, (5.36.5)

so we again get the induced filtration modulo p:

Fil0, (m)
n /pFil0, (m)

n ↪→ A0, (m)
cris (RΣ,Λ,∞)/pA0, (m)

cris (RΣ,Λ,∞).

11Loc. cit. is written in a different setting, but its proof continues to work if A there is replaced by our RΣ,Λ,∞.
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Similarly to the case of the filtration {Fil0n /pFil0n}n≥0, the analogous to (5.36.4) explicit description
of A0, (m)

cris (RΣ,Λ,∞)/pA0, (m)
cris (RΣ,Λ,∞) supplied by the isomorphism (5.35.1) shows that the filtration

{Fil
0, (m)
n /pFil

0, (m)
n }n≥0 is separated.

For each n > 0, there is a jn > 0 such that pjn kills

A0
cris(RΣ,Λ,∞)/(A0, (m)

cris (RΣ,Λ,∞) + Fil0n)

(for instance, jn := ordp(n!) has this property). Consequently, pjn kills the kernel of the map

A0, (m)
cris (RΣ,Λ,∞)/Fil

0, (m)
n

pj ·(A0, (m)
cris (RΣ,Λ,∞)/Fil

0, (m)
n )

→ A0
cris(RΣ,Λ,∞)/Fil0n

pj ·(A0
cris(RΣ,Λ,∞)/Fil0n)

for each j > 0,

so, for j > jn, every element of this kernel is a multiple of pj−jn . The short exact sequences

0→ Fil
0, (m)
n

pj ·Fil
0, (m)
n

(5.36.5)−−−−→ A0, (m)
cris (RΣ,Λ,∞)

pj ·A0, (m)
cris (RΣ,Λ,∞)

→ A0, (m)
cris (RΣ,Λ,∞)/Fil

0, (m)
n

pj ·(A0, (m)
cris (RΣ,Λ,∞)/Fil

0, (m)
n )

→ 0

then show that modulo p every element of Ker(A(m)
cris (RΣ,Λ,∞)→ Acris(RΣ,Λ,∞)), that is, of

Ker
(

lim←−j>0
(A0, (m)

cris (RΣ,Λ,∞)/pj)→ lim←−j>0
(A0

cris(RΣ,Λ,∞)/pj)
)

(5.36.6)

(see §5.35), lies inside Fil
0, (m)
n /p ⊂ A0, (m)

cris (RΣ,Λ,∞)/p for each n > 0. However, by the previous
paragraph,

⋂
n>0 (Fil

0, (m)
n /p) = 0, so every element that lies in the kernel in (5.36.6) is divisible by

p in A(m)
cris (RΣ,Λ,∞). This implies that A(m)

cris (RΣ,Λ,∞)→ Acris(RΣ,Λ,∞) is injective, as desired. �

Lemma 5.37. For each λ0 ∈ Λ, there is a divided power morphism

Djλ0
→ A0

cris(RΣ,Λ,∞) (5.37.1)

whose formation is compatible with the isomorphisms Djλ0

∼= Djλ′0
discussed in (5.28.1).

Proof. By construction, Ainf(RΣ,Λ,∞) is an A(R�
Σ)-algebra and an A(R�

λ )-algebra for every λ ∈ Λ

(compatibly with the maps θ of (3.14.3) and (5.19.1)), so it is also an A(R�
Σ,Λ)-algebra. Moreover,

since Ainf(RΣ,Λ,∞) is ξ-adically complete with Ainf(RΣ,Λ,∞)/ξ ∼= RΣ,Λ,∞, if tλ, i is a unit in R, so
also in RΣ,Λ,∞, then, since Xλ, i mod ξ is tλ,i (see (3.14.3)), Xλ, i is a unit in Ainf(RΣ,Λ,∞). Thus,
if R/p is OC/p-smooth, then the equations (5.26.3) have a unique solution in Ainf(RΣ,Λ,∞), to the
effect that, in this case, Ainf(RΣ,Λ,∞) is naturally an (A(R�

Σ,Λ) ⊗Z[Q] Z[Pλ0 ])-algebra, compatibly
with the “change of λ0” isomorphisms exhibited in (5.26.7) and the maps (5.26.4) and (5.19.1) to R
and RΣ,Λ,∞, respectively.

If R/p is not OC/p-smooth, then, in the notation of §5.27, for each m ∈ Z≥0 and y ∈ Y, the element
t
1/pm

λ0, iλ0
(y) is not a zero divisor in RΣ,Λ,∞ and is a unit in RΣ,Λ,∞[1

p ], so, since RΣ,Λ,∞ is integrally

closed in RΣ,Λ,∞[1
p ], we conclude from (5.27.1) that

t
1/pm

λ, iλ(y)/t
1/pm

λ0, iλ0
(y) ∈ R

×
Σ,Λ,∞ for every λ ∈ Λ.

Thus, for such m, y, and λ, there is a unique u(m)
λ, λ0, y

∈ R×Σ,Λ,∞ such that

t
1/pm

λ, iλ(y) = u
(m)
λ, λ0, y

· t1/p
m

λ0, iλ0
(y) in RΣ,Λ,∞.
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The uniqueness ensures that (u
(m)
λ, λ0, y

)p = u
(m−1)
λ, λ0, y

, so the system u[λ, λ0, y
:= (u

(m)
λ, λ0, y

)m≥0 is an
element of (R[Σ,Λ,∞)× for which (see §3.11 and §3.14)

Xλ, iλ(y) = [u[λ, λ0, y] ·Xλ0, iλ0
(y) in Ainf(RΣ,Λ,∞). (5.37.2)

Since [(p1/p∞)], and hence also each Xλ, i, is a nonzero divisor in Ainf(RΣ,Λ,∞), the equalities
(5.37.2) provide a solution in Ainf(RΣ,Λ,∞) to the equations (5.27.3) that lifts the solution in
R ⊂ RΣ,Λ,∞ provided by (5.27.4). Thus, also in the nonsmooth case, Ainf(RΣ,Λ,∞) is naturally
an (A(R�

Σ,Λ)⊗Z[Q] Z[Pλ0 ])-algebra, compatibly with the “change of λ0” isomorphisms and the maps
(5.27.4) and (5.19.1) to R and RΣ,Λ,∞, respectively.

In conclusion, in all cases we get the compatible with change of λ0 commutative square

A(R�
Σ,Λ)⊗Z[Q] Z[Pλ0 ]

jλ0 // //

��

R

��

so also

A(R�
Σ,Λ)⊗Z[Q] Z[Pλ0 ]

jλ0 // //

��

R

��

Ainf(RΣ,Λ,∞)
θ // // RΣ,Λ,∞, A0

cris(RΣ,Λ,∞)
θ // // RΣ,Λ,∞.

The universal property of Dλ0 now supplies the desired divided power morphism (5.37.1). �

5.38. The comparison map. Upon p-adic completion, the map (5.37.1) induces a map

DΣ,Λ → Acris(RΣ,Λ,∞), (5.38.1)

which, by Lemma 5.37, does not depend on the choice of λ0. By its construction, the map (5.38.1)
is compatible with the maps

DΣ,Λ
(5.22.3)

// // R and Acris(RΣ,Λ,∞)
θ−→ RΣ,Λ,∞. (5.38.2)

The restriction of this map toD0, (m)
Σ,Λ factors through the subring A0, (m)

cris (RΣ,Λ,∞)
5.36
⊂ Acris(RΣ,Λ,∞),

so, by passing to p-adic completions and using (5.35.2), we obtain compatible maps

D
(m)
Σ,Λ → A(m)

cris (RΣ,Λ,∞) for m ≥ p. (5.38.3)

By construction, the maps (5.38.3) are ∆Σ,Λ-equivariant, so they give to the morphisms

K
D

(m)
Σ,Λ

((δσ − 1)σ∈Σ, (δλ, i − 1)λ∈Λ, 1≤i≤d)→ KA(m)
cris (RΣ,Λ,∞)

((δσ − 1)σ∈Σ, (δλ, i − 1)λ∈Λ, 1≤i≤d).

After applying the functor η(µ) (see (1.7.3)), these morphisms compose with the ones constructed
in Proposition 5.34 and give rise to the desired comparison map of complexes:(

lim−→m>0
K
D

(m)
Σ,Λ

((
∂

∂ log(Xτ )

)
τ

)) ̂ → (
lim−→m>0

(
η(µ)

(
KA(m)

cris (RΣ,Λ,∞)
((δτ − 1)τ )

)))
,̂ (5.38.4)

where the direct limits and the p-adic completions formed termwise and, for brevity, we let the label
τ range over “σ” for σ ∈ Σ and “(λ, i)” for λ ∈ Λ and i = 1, . . . , d. The source (resp., target) of this
map is a term of the direct limit (5.32.1) (resp., (5.21.1)) and its formation is compatible with the
transition maps of the direct limits (5.32.1) and (5.21.1) (in other words, with enlarging Σ and Λ).
Moreover, if R′ is a formally étale R-algebra equipped with a closed immersion as in (5.17.1) for
some sets Σ′ and Λ′, then the map (5.38.4) and its analogue for R′ and the sets Σ∪Σ′, Λ∪Λ′ (and
the induced closed immersion) are compatible with the maps between their sources (resp., targets)
discussed in §5.21 and §5.32.

In conclusion, by taking the filtered direct limit of the maps (5.38.4) over all the closed immersions
(5.17.1) for varying Σ and Λ (but a fixed R), we obtain a comparison map from the complex (5.32.1)

54



to the complex (5.21.1), and the formation of this map is compatible with replacing R by a formally
étale R-algebra R′. It follows from the following proposition that this map is a quasi-isomorphism.

Proposition 5.39. The comparison map (5.38.4) is a Frobenius-equivariant quasi-isomorphism.

Proof. The proof is similar to that of [BMS16, 12.8], and the key idea is to reduce to the case of a
single coordinate morphism settled in Proposition 5.16. More precisely, for m ≥ p, let

Spec(R/p) ↪→ Spf(D
(m)
Σ,Λ) (5.39.1)

be the closed immersion induced by its analogue for DΣ,Λ, that is, by the first map in (5.22.2). For
each λ0 ∈ Λ, the ideal of A(R�

Σ,Λ)⊗Z[Q] Z[Pλ0 ] that cuts out R/p (see (5.27.5)) is finitely generated.

Consequently, for each m ≥ p, the ideal of D(m)
Σ,Λ that cuts out R/p is finitely generated, too, and

hence, due to divided powers, it is also topologically nilpotent. Thus, if we fix a λ ∈ Λ and for
m ≥ p let A(m)

cris (R)λ be the ring A(m)
cris (R) of §3.27 constructed using the semistable coordinate map

R�
λ → R, then the formal étaleness of A(m)

cris (R�
λ ) → A

(m)
cris (R)λ (see §3.14) ensures the existence of

the unique indicated lifts in the commutative diagram

Spec(RΣ,Λ,∞/p)� _

θ
��

// Spec(R/p)� _

��

// Spf(A
(m)
cris (R)λ)

��

Spf(A(m)
cris (RΣ,Λ,∞))

33

(5.38.3)
// Spf(D

(m)
Σ,Λ)

77

// Spf(A
(m)
cris (R�

λ ))

in which the bottom horizontal map results from the fact that, by construction, each D(m)
Σ,Λ is an

A(R�
λ )-algebra and an A(m)

cris -algebra. The uniqueness ensures that the resulting maps

A
(m)
cris (R)λ → D

(m)
Σ,Λ (5.39.2)

are compatible as m varies, Frobenius-equivariant, ∆Σ,Λ-equivariant, where ∆Σ,Λ acts on A(m)
cris (R)λ

through the projection ∆Σ,Λ � ∆λ, and are compatible with the maps from its source and target
to A(m)

cris (RΣ,Λ,∞). By construction, these maps are also compatible with the derivations ∂
∂ log(Xλ, i)

for i = 1, . . . , d discussed in §5.10 and §5.31. Consequently, we get a commutative diagram

K
A

(m)
cris (R)λ

(
∂

∂ log(Xλ, 1) , . . . ,
∂

∂ log(Xλ, d)

)
(5.39.2)
��

(5.16.2)
// η(µ)

(
KA(m)

cris (Rλ,∞)
(δλ, 1 − 1, . . . , δλ, d − 1)

)
��

K
D

(m)
Σ,Λ

((
∂

∂ log(Xτ )

)
τ

)
5.34 and (5.38.3)

// η(µ)

(
KA(m)

cris (RΣ,Λ,∞)
((δτ − 1)τ )

) (5.39.3)

where we again let the label τ range over “σ” for σ ∈ Σ and “(λ′, i)” for λ′ ∈ Λ and i =
1, . . . , d. By Proposition 5.16, the top horizontal map in (5.39.3) is a Frobenius-equivariant quasi-
isomorphism and, by Lemma 3.7, Remark 3.35, and the Frobenius-equivariance of the homomor-
phism A(m)

cris (Rλ,∞)→ A(m)
cris (RΣ,Λ,∞), so is the right vertical map. By Proposition 5.13 and (5.31.3),

the left vertical map in (5.39.3) becomes a Frobenius-equivariant quasi-isomorphism after applying
lim−→m>0

and forming the termwise p-adic completion. These operations turn bottom horizontal map
in (5.39.3) into the comparison map (5.38.4), so we conclude that the latter is also a Frobenius-
equivariant quasi-isomorphism, as desired. �
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5.40. Proof of Theorem 5.4. By §5.38 and Proposition 5.39, the functorial in R complexes (5.21.1)
and (5.32.1) define canonically and Frobenius-equivariantly quasi-isomorphic complexes of presheaves
on a basis for the topology of Xét. Their associated complexes of sheaves on Xét are then also canon-
ically and Frobenius-equivariantly quasi-isomorphic. By §5.21 and §5.32, these complexes of sheaves
represent AΩX⊗̂

L
Ainf

Acris and Ru∗(OXOC/p/Acris
), respectively, so that, in conclusion, Proposition 5.39

supplies a Frobenius-equivariant isomorphism

Ru∗(OXOC/p/Acris
)
∼−→ AΩX⊗̂

L
Ainf

Acris, (5.40.1)

which gives the desired identification (5.4.1). �

We now have two ways to identify the de Rham specialization of AΩX: we could either use (4.16.1)
or combine (5.4.1) with the fact that the logarithmic crystalline cohomology of XOC/p over OC is
computed by Ω•X/OC , log. We now check that the two identifications agree (this will be used in §8).

Proposition 5.41. The following diagram commutes:

Ru∗(OXOC/p/Acris
)

''

∼
(5.40.1)

// AΩX⊗̂
L
Ainf

Acris

(4.16.1)
ww

Ω•X/OC , log

(5.41.1)

where the left diagonal map is induced by the identification Ru∗(OXOC/p/Acris
)⊗L

Acris, θ
OC ∼= Ω•X/OC , log

supplied by [Bei13b, (1.8.1)]. In particular, the two ways to identify AΩX⊗L
Ainf , θ

OC with Ω•X/OC , log

mentioned in the preceding paragraph agree.

Proof. We build on the corresponding proof given in the smooth case in [BMS16, proof of 14.1].

The claim is local, so we place ourselves in the setup of §5.17. Then, since the terms of Ω•Spf(R)/OC , log

are p-torsion free, each tλ, i is a unit in R[1
p ], and the elements d log(Xσ) and d log(Xλ, i) generate the

commutative differential graded algebra Ω•DΣ,Λ/Acris, log,PD from Proposition 5.23 over DΣ,Λ, there
is a unique map of commutative differential graded algebras

Ω•DΣ,Λ/Acris, log,PD → Ω•Spf(R)/OC , log (5.41.2)

that in degree 0 is given by the map DΣ,Λ � R from (5.22.3). By Proposition 5.23, the left diagonal
map of (5.41.1) is described by this unique map (5.41.2). Thus, it remains to show that so is the
composition in (5.41.1).

We recall from the proof of Theorem 4.16 that the right diagonal map in (5.41.2) is defined by using
the Frobenius endomorphism of AΩX and the canonical identification (supplied by [BMS16, 6.11]) of
(Lη(ϕ(ξ))(AΩX))/ϕ(ξ) with the complex12 H•(AΩX/ϕ(ξ)) whose differentials are given by Bockstein
homomorphisms (defined in loc. cit. using AΩX/ϕ(ξ)2; a posteriori, H•(AΩX/ϕ(ξ)) is canonically
identified with Ω•Spf(R)/OC , log). Letting τ range over the same indexing set as in the proof of Propo-

sition 5.39, this construction also applies to the complex η(µ)

(
KAinf(RΣ,Λ,∞)((δτ − 1)τ )

)
: Frobenius

maps it isomorphically to η(ϕ(µ))

(
KAinf(RΣ,Λ,∞)((δτ − 1)τ )

)
, for which the reduction modulo ϕ(ξ)

map is

η(ϕ(µ))

(
KAinf(RΣ,Λ,∞)((δτ − 1)τ )

)
→ H•

((
η(µ)

(
KAinf(RΣ,Λ,∞)((δτ − 1)τ )

))
/ϕ(ξ)

)
. (5.41.3)

12For the sake of simplicity, we notationally suppress the twists inherent in the construction H•(−) of loc. cit.
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Since, by Theorem 4.2 and Remarks 3.10 and 3.35,(
η(µ)

(
KAinf(RΣ,Λ,∞)((δτ − 1)τ )

))
/ϕ(ξ) ∼= η(ζp−1)

(
KRΣ,Λ,∞((δτ − 1)τ )

)
, (5.41.4)

the cited remarks imply that the composition of Frobenius and (5.41.3)–(5.41.4) gives the de Rham
specialization map AΩX → Ω•X/OC , log in terms of the complex η(µ)

(
KAinf(RΣ,Λ,∞)((δτ − 1)τ )

)
.

We can now describe the right diagonal map of (5.41.1) in terms of η(µ)

(
KA(m)

cris (RΣ,Λ,∞)
((δτ − 1)τ )

)
,

which is a variable term that comprises the target of the comparison map (5.38.4). Namely, we
first let ϕ(A(m)

cris (RΣ,Λ,∞)) be the analogue of the ring A(m)
cris (RΣ,Λ,∞) built using the element ϕ(ξ)

instead of ξ, so that the Frobenius gives the isomorphism A(m)
cris (RΣ,Λ,∞)

∼−→ ϕ(A(m)
cris (RΣ,Λ,∞)).13

Then Frobenius maps the complex η(µ)

(
KA(m)

cris (RΣ,Λ,∞)
((δτ − 1)τ )

)
isomorphically to the complex

η(ϕ(µ))

(
K
ϕ(A(m)

cris (RΣ,Λ,∞))
((δτ − 1)τ )

)
, for which the reduction modulo ϕ(ξ) map is

η(ϕ(µ))

(
K
ϕ(A(m)

cris (RΣ,Λ,∞))
((δτ − 1)τ )

)
→ H•

(
η(µ)

(
K
ϕ(A(m)

cris (RΣ,Λ,∞))
((δτ − 1)τ )

)
/ϕ(ξ)

)
. (5.41.5)

The target of the map (5.41.5) maps to

H•
(
η(ζp−1)

(
KRΣ,Λ,∞((δτ − 1)τ )

)) 3.10 and 4.11∼= Ω•Spf(R)/OC , log (5.41.6)

via a morphism induced by the map θ ◦ ϕ−1 : ϕ(A(m)
cris (RΣ,Λ,∞)) � RΣ,Λ,∞; indeed, since each

H i
(
η(ζp−1)

(
KRΣ,Λ,∞((δτ − 1)τ )

))
is p-torsion free, the agreement of the Bockstein differentials may

be checked after inverting p by using the fact that (Ainf(RΣ,Λ,∞)/ϕ(ξ)2)[1
p ] is an algebra over

ϕ(A(m)
cris (RΣ,Λ,∞)) via a map that lifts θ ◦ ϕ−1. The resulting composition

η(µ)

(
KA(m)

cris (RΣ,Λ,∞)
((δτ − 1)τ )

)
→ H•

(
η(ζp−1)

(
KRΣ,Λ,∞((δτ − 1)τ )

)) 3.10 and 4.11∼= Ω•Spf(R)/OC , log

gives the promised description of the right diagonal map of (5.41.1) and, by construction and
[BMS16, 6.13], is a morphism of commutative differential graded algebras14 that in degree 0 is given
by the map θ of (5.19.3). On the other hand, the comparison map

Ω•DΣ,Λ/Acris, log,PD
∼= KDΣ,Λ

(( ∂
∂ log(Xτ ))τ )→

(
lim−→m>0

(
η(µ)

(
KA(m)

cris (RΣ,Λ,∞)
((δτ − 1)τ )

)))̂
from (5.38.4) would only become a morphism of commutative differential graded algebras if in the
formula log([ε]) ·

∑
n≥0

(log([ε]))n

(n+1)! ( ∂
∂ log(Xτ ))n that describes the morphism (5.34.1) in degree 1 we

could ignore the terms with n ≥ 1. However, log([ε]) and µ are unit multiples of each other and
θ( µn

(n+1)!) = 0 in OC for n ≥ 1 (see §5.14), so we can indeed ignore these terms if we are only
interested in the composition

Ω•DΣ,Λ/Acris, log,PD →
(

lim−→m>0

(
η(µ)

(
KA(m)

cris (RΣ,Λ,∞)
((δτ − 1)τ )

)))̂→ Ω•Spf(R)/OC , log.

that describes the composition in (5.41.1). In conclusion, this composition is a morphism of commu-
tative differential graded algebras that, due to (5.38.2), is given in degree 0 by the map DΣ,Λ � R
from (5.22.3), so, as desired, it is indeed the unique morphism (5.41.2). �

We now use Theorem 5.4 to analyze the crystalline specialization of RΓ(X, AΩX) in Corollary 5.43.

13Composition with the map ϕ(A(m)
cris (RΣ,Λ,∞))→ A(m)

cris (RΣ,Λ,∞) recovers the Frobenius of A(m)
cris (RΣ,Λ,∞).

14See [BMS16, 7.5] and its proof for the description of the commutative differential graded algebra structure on
the Koszul complex K∗((δτ − 1)τ ) that computes continuous group cohomology.
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5.42. The crystalline specialization map. The Witt vector functoriality gives the surjection

Ainf �W (k), the so-called crystalline specialization map of Ainf .

Since ξ maps to p in W (k), this surjection factors through Acris as follows: Ainf ↪→ Acris � W (k).
We equip W (k) with the pullback of the log structure on Acris defined in §5.2. Explicitly, the
resulting log structure on W (k) is associated to the prelog structure Q≥0

0−→W (k).

Corollary 5.43. If X is quasi-compact and quasi-separated, then we have the Frobenius-equivariant
identifications

RΓ(Xét, AΩX)⊗̂L
Ainf

Acris
∼= RΓlog cris(XOC/p/Acris),

RΓ(Xét, AΩX)⊗̂L
Ainf

W (k) ∼= RΓlog cris(Xk/W (k)).
(5.43.1)

If X is even proper over OC , then we have the Frobenius-equivariant identifications

RΓ(Xét, AΩX)⊗L
Ainf

Acris
∼= RΓlog cris(XOC/p/Acris),

RΓ(Xét, AΩX)⊗L
Ainf

W (k) ∼= RΓlog cris(Xk/W (k)),
(5.43.2)

and the cohomology groups of RΓ(Xét, AΩX)⊗L
Ainf

Acris[
1
p ] are finite free as Acris[

1
p ]-modules.

Proof. By [BMS16, 4.9], any finitely presented Ainf/p
n-module is perfect as an Ainf -module. Conse-

quently, any Ainf/p
n-module M is a filtered direct limit of perfect Ainf -modules, so, by [SP, 0739],

RΓ(Xét, AΩX ⊗L
Ainf

M) ∼= RΓ(Xét, AΩX)⊗L
Ainf

M.

In particular, this applies to M = Acris/p
n, so, since RΓ(Xét,−) commutes with derived limits (see

[SP, 0A07]), the first identification in (5.43.1) follows from Theorem 5.4.

For each finite subextension of C/Frac(W (k)), consider its ring of integers O ⊂ OC equipped with
the (fine) log structure associated to the prelog structure O ∩ (O[1

p ])× ↪→ O. By using étale local
semistable coordinates (1.5.1) and Claim 1.6.1, we may employ limit arguments to find such an O
together with a quasi-compact and quasi-separated log smooth log scheme X over O/p that descends
XOC/p and is of Cartier type (see [Kat89, 4.8]). Then the base change theorem [Bei13b, (1.11.1)]
applies15 and shows that

RΓlog cris(XOC/p/Acris)⊗̂
L
Acris

W (k) ∼= RΓlog cris(Xk/W (k)), (5.43.3)

so that the second identification in (5.43.1) follows from the first.

If X isOC-proper, then, by Corollary 4.19, the objectRΓ(Xét, AΩX) is quasi-isomorphic to a bounded
complex of finite free Ainf -modules, so the identifications in (5.43.2) follows from those in (5.43.1).
Moreover, then X is O-proper and [Bei13b, 1.18, Theorem] proves that the cohomology groups of

RΓlog cris(XOC/p/Acris)⊗L
Ainf

Acris[
1
p ], and hence also of RΓ(Xét, AΩX)⊗L

Ainf
Acris[

1
p ],

are finite free Acris[
1
p ]-modules. �

Remarks.

15In loc. cit., the map f of fine log schemes is quasi-compact and separated. One may relax this to quasi-compact
and quasi-separated: once Y there is affine, the iterated intersections of opens in an affine cover of Z are quasi-compact
and separated over Y , so the Čech technique (compare with [SP, 08BN]) reduces to the original assumptions.
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5.44. In the notation of the preceding proof, the special fiber Xk of X is a descent of Xk to a fine log
scheme over the “standard log point” k whose log structure is associated to N≥0

0−→ k (the base
change map is a “change of log structure” self-map of k determined by the map N≥0 → Q≥0

that sends 1 to the valuation of a uniformizer of O). Given any such descent, the base change
theorem [Bei13b, (1.11.1)] also gives the further Frobenius-equivariant identification

RΓlog cris(Xk/W (k)) ∼= RΓlog cris(Xk/W (k)), (5.44.4)

where W (k) on the right side is equipped with the log structure associated to N≥0
0−→W (k).

Likewise, if Xk is k-smooth, then loc. cit. gives the Frobenius-equivariant identification

RΓlog cris(Xk/W (k)) ∼= RΓcris(Xk/W (k)). (5.44.5)

5.45. The identification (5.43.3) expresses RΓlog cris(Xk/W (k)) in terms of RΓlog cris(XOC/p/Acris).
Further results from [Bei13b] imply that for proper X a converse holds after base change to
B+

st : see (9.2.1) below (when Xk is smooth, Acris[
1
p ] in place of B+

st suffices, see [BMS16, 13.9]).

The results of [Bei13b] also give a Hyodo–Kato type isomorphism in our context:

Proposition 5.46. If X is proper over OC , then there is an isomorphism

RΓlog dR(X/OC)⊗L
OC C ' RΓlog cris(Xk/W (k))⊗L

W (k) C. (5.46.1)

Proof. By [Bei13b, (1.8.1)], letting pOC ⊂ OC be endowed with its standard divided powers, we have

RΓlog dR(X/OC) ∼= RΓlog cris(XOC/p/OC). (5.46.2)

Moreover, letting X be a descent of XOC/p as in the proof of Corollary 5.43, by [Bei13b, (1.16.2)
and §1.15, Remarks, (iv)],16 we have a (noncanonical) isomorphism

RΓlog cris(XOC/p/OC)⊗L
OC C ' RΓlog cris(Xk/W (k))⊗L

W (k) C, (5.46.3)

where W (k) is equipped with the log structure associated to N≥0
0−→ W (k). It remains to combine

the isomorphisms (5.44.4), (5.46.2), and (5.46.3). �

6. The comparison to the B+
dR-cohomology

The main goal of this section is Theorem 6.6, which, for quasi-compact and quasi-separated X,
identifies the B+

dR-base change of the absolute crystalline cohomology RΓlog cris(XOC/p/Acris) with
the “crystalline cohomology of Xad

C over B+
dR,” denoted by RΓcris(X

ad
C /B

+
dR), that was defined in

[BMS16, §13] (see §6.2 for a brief review). The definition of RΓcris(X
ad
C /B

+
dR) is purely in terms

of Xad
C and was engineered in op. cit. to be compatible with RΓlog cris(XOC/p/Acris) in the case

when X is smooth. Therefore, for the desired base change, we only need to check that a slightly
more general definition of RΓcris(X

ad
C /B

+
dR) that uses the étale topology instead of Zariski and more

general embeddings than those furnished by annuli leads to the same cohomology (see §§6.2–6.3).
For this, we adapt the arguments of op. cit.; in fact, our C is given as (Frac(W (k)))̂ (see §1.5),
so we may simplify the “descent to a discretely valued base” aspects of these arguments by taking
advantage of a result of Huber on the local structure of étale maps of adic spaces (see §6.3).

16We are citing the post-publication arXiv version of the article, which slightly differs from the published version.
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6.1. The ring B+
dR. Since ξ is not a zero divisor in Ainf [

1
p ] and generates Ker(θ[1

p ]), the Ker(θ[1
p ])-

adic completion of Ainf [
1
p ] is a complete discrete valuation ring B+

dR with ξ as a uniformizer and
C as the residue field. By Proposition 5.36, both Ainf and Acris are subalgebras of B+

dR. By the
“glueing of flatness” [RG71, II.1.4.2.1], the ring B+

dR is flat as an Ainf -algebra. We set

BdR := Frac(B+
dR).

Our Ainf is a W (k)-algebra (see §2.1), so, by Hensel’s lemma, B+
dR is naturally a W (k)[1

p ]-algebra.

6.2. The B+
dR-cohomology using the étale topology. In [BMS16, §13], Bhatt–Morrow–Scholze

used the Zariski site of a smooth adic C-space X to define the “B+
dR-cohomology” of X, denoted by

RΓcris(X/B
+
dR) ∈ D≥0(B+

dR).

We will now review their construction to show that it may also be carried out in the étale topology.

By [Hub94, 1.6.10, 2.2.8], the Zariski (resp., étale) topology of X has a basis of affinoid opens
Spa(A,A◦) each of which admits a map

Spa(A,A◦)→ TdC := Spa(C〈T±1
1 , . . . , T±1

d 〉,OC〈T
±1
1 , . . . , T±1

d 〉) for some d ∈ Z≥0 (6.2.1)

that is a composition of a rational embedding, a finite étale map, and a rational embedding. Since A
is topologically of finite type over C and for any a ∈ A there exists an n > 0 with 1 + pna ∈ (A◦)×,
there is a finite subset Ψ ⊂ (A◦)× such that the following map is surjective:

C
〈
(X±1

u )u∈Ψ

〉 Xu 7→u−−−−→ A. (6.2.2)

Thus, endowing each Ainf/ξ
n with the p-adic topology, each (Ainf/ξ

n)[1
p ] with the unique ring

topology for which Ainf/ξ
n is an open subring, setting

B+
dR

〈
(X±1

u )u∈Ψ

〉
:= lim←−n>0

((B+
dR/ξ

n)
〈
(X±1

u )u∈Ψ

〉
), (6.2.3)

and composing the projection onto the n = 1 term with (6.2.2), one obtains the surjection

s : B+
dR

〈
(X±1

u )u∈Ψ

〉
� A and sets DΨ(A) := lim←−n>0

((B+
dR

〈
(X±1

u )u∈Ψ

〉
)/(Ker s)n). (6.2.4)

By the Leibniz rule, any derivation of B+
dR

〈
(X±1

u )u∈Ψ

〉
extends to DΨ(A). In particular, the

derivations ∂
∂ log(Xu)

:= Xu · ∂
∂Xu

allow one to define the Koszul complex

Ω•
DΨ(A)/B+

dR

:= KDΨ(A)

(
( ∂
∂ log(Xu))u∈Ψ

)
that is functorial in enlarging Ψ. The resulting complex

Ω•
A/B+

dR

:= lim−→Ψ

(
Ω•
DΨ(A)/B+

dR

)
(6.2.5)

is functorial in A. Consequently, by varying Spa(A,A◦), we obtain a complex of presheaves on a
basis for the Zariski (resp., étale) topology of X. The cohomology of the associated complex of
sheaves is, by definition, the B+

dR-cohomology of X:

RΓcris(X/B
+
dR) (resp., its variant for the étale topology RΓcris(Xét/B

+
dR)) (6.2.6)

By [BMS16, 13.5 (ii)], if A is fixed and Ψ is sufficiently large, then DΨ(A) is ξ-torsion free and
ξ-adically complete. Consequently, the B+

dR-cohomology objects

RΓcris(X/B
+
dR) and RΓcris(Xét/B

+
dR) are derived ξ-adically complete. (6.2.7)
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By [BMS16, 13.6], their (derived) reductions modulo ξ are canonically and compatibly identified with
the de Rham cohomology objects RΓ(X,Ω•, cont

X/C ) and RΓ(Xét,Ω
•, cont
X/C ), respectively, for instance:

RΓcris(X/B
+
cris)⊗

L
B+

dR

C ∼= RΓ(X,Ω•, cont
X/C ) =: RΓdR(X/C). (6.2.8)

Thus, since, by the Hodge-to-de Rham spectral sequence and [Sch13, 9.2 (ii)], the formation of de
Rham cohomology is insensitive to passage to the étale topology, we have the pullback isomorphism:

RΓcris(X/B
+
dR)

∼−→ RΓcris(Xét/B
+
dR). (6.2.9)

In addition, if (for simplicity) X is proper over C and there is a complete discretely valued subfield
K ⊂ C with a perfect residue field and a proper, smooth adic space X0 over K equipped with an
isomorphism X ∼= X0⊗̂KC, then, by [BMS16, 13.7], there is a canonical identification

RΓcris(X/B
+
dR) ∼= RΓdR(X0/K)⊗K B+

dR, where RΓdR(X0/K) := RΓ(X0,Ω
•, cont
X0/K

). (6.2.10)

In this situation, by the proof of loc. cit., the reduction modulo ξ of the identification (6.2.10) recovers
the identification (6.2.8) under the canonical identification RΓdR(X/C) ∼= RΓdR(X0/K)⊗L

K C.

6.3. The B+
dR-cohomology using more general embeddings. To relate the B+

dR-cohomology
and the logarithmic crystalline cohomology studied in §5, we wish to mildly generalize the con-
struction of RΓcris(Xét/B

+
dR). Namely, we consider the (larger) basis of Xét that consists of those

affinoids Spa(A,A◦) that have an étale morphism

Spa(A,A◦)→ Spa(C〈T1, . . . , Tr, T
±1
r+1, . . . , T

±1
d 〉,OC〈T1, . . . , Tr, T

±1
r+1, . . . , T

±1
d 〉) (6.3.1)

for some r, d ∈ Z≥0 with r ≤ d such that Ti ∈ A× for each i (even when 1 ≤ i ≤ r). By [Hub96,
1.7.3 iii)]17 and limit arguments, there is a complete discretely valued subfield K ⊂ C with the ring
of integers O and a perfect residue field together with a finite type O[T1, . . . , Tr, T

±1
r+1, . . . , T

±1
d ]-

algebra A0 that is étale after inverting p, flat over O, and normal such that the morphism (6.3.1) is
the C-base change of an étale Spa(K,O)-morphism

Spa((Â0)[1
p ], Â0)→ Spa(K〈T1, . . . , Tr, T

±1
r+1, . . . , T

±1
d 〉,O〈T1, . . . , Tr, T

±1
r+1, . . . , T

±1
d 〉) (6.3.2)

such that Ti ∈ ((Â0)[1
p ])×. For each element Spa(A,A◦) of this basis, we consider variable finite

subsets Ψ ⊂ (A◦)× and Ξ ⊂ A◦ ∩A× such that the map

C〈(X±1
u )u∈Ψ, (Xa)a∈Ξ〉

Xu 7→u,Xa 7→a−−−−−−−−−→ A (6.3.3)

is surjective and Ψ (resp., Ξ) contains the images of the Ti with r+ 1 ≤ i ≤ d (resp., 1 ≤ i ≤ r) for
some coordinate map as in (6.3.1) whose choice, together with a choice of its descent (6.3.2), we fix
when discussing fixed Ψ and Ξ. Defining the ring B+

dR

〈
(X±1

u )u∈Ψ, (Xa)a∈Ξ

〉
analogously to (6.2.3),

so that the map (6.3.3) gives rise to the surjection

s : B+
dR

〈
(X±1

u )u∈Ψ, (Xa)a∈Ξ

〉
� A,

for n ∈ Z>0 we set

DΨ,Ξ, n(A) := (B+
dR

〈
(X±1

u )u∈Ψ, (Xa)a∈Ξ

〉
)/(Ker s)n and DΨ,Ξ(A) := lim←−n>0

DΨ,Ξ, n(A).

17Noncomplete A are allowed in loc. cit., so we choose A+ := W (k)[T1, . . . , Tr, T
±1
r+1, . . . , T

±1
d ] and AB := A+[ 1

p
].
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The ring B+
dR is naturally a K-algebra and, for each n > 0, we let (B+

dR/ξ
n)0 ⊂ B+

dR/ξ
n be the

Ainf/ξ
n-subalgebra generated by the image of O. The proof of [BMS16, 13.4] shows18 (with RA

there replaced by our (Â0)[1
p ]) that the B+

dR-algebra

B+
dR⊗̂K(A0[1

p ]) := lim←−n>0

(
((B+

dR/ξ
n)0 ⊗O A0)̂[1

p ]
)

(6.3.4)

is ξ-adically complete and ξ-torsion free with

(B+
dR⊗̂K(A0[1

p ]))/ξ ∼= A and, more generally, (B+
dR⊗̂K(A0[1

p ]))/ξn ∼= ((B+
dR/ξ

n)0 ⊗O A0)̂[1
p ].

Moreover, we have the following analogue of [BMS16, 13.5 (ii)] whose proof will be given in §6.4:

Lemma 6.3.5. If Ξ contains the images of the Ti with 1 ≤ i ≤ r under some coordinate morphism
as in (6.3.1) and Ψ is large enough, then we have the isomorphism

DΨ,Ξ(A) ∼= (B+
dR⊗̂K(A0[1

p ]))J(Xa − ã)a∈(Ψ∪Ξ)\{T1,...,Td}K (6.3.6)

where ã ∈ B+
dR⊗̂K(A0[1

p ]) denotes a fixed lift of a. In particular, for large Ψ and Ξ, the B+
dR-algebra

DΨ,Ξ(A) is ξ-adically complete and ξ-torsion free.

Similarly to §6.2, for any Ψ and Ξ the derivations ∂
∂ log(Xa)

:= Xa · ∂
∂Xa

with a ∈ Ψ ∪ Ξ extend to
DΨ,Ξ(A) and we may define the Koszul complex

Ω•
DΨ,Ξ(A)/B+

dR

:= KDΨ,Ξ(A)

(
( ∂
∂ log(Xu))u∈Ψ, (

∂
∂ log(Xa))a∈Ξ

)
that is functorial in replacing Ψ and Ξ by larger Ψ′ and Ξ′. Since a ∈ A× for every a ∈ Ψ ∪ Ξ,
Lemma 6.3.5 and the proof of [BMS16, 13.6] show that

Ω•
DΨ,Ξ(A)/B+

dR

/ξ ∼= Ω•, cont
A/C in the derived category, (6.3.7)

compatibly with enlarging Ψ and Ξ. In particular, due to the derived ξ-adic completeness supplied
by Lemma 6.3.5, if Ψ is large enough, then the map

Ω•
DΨ,Ξ(A)/B+

dR

→ Ω•
DΨ′,Ξ′ (A)/B+

dR

is a quasi-isomorphism.

Thus, if Spa(A,A◦) even has a coordinate map as in (6.2.1), then we obtain the functorial in
Spa(A,A◦) quasi-isomorphism with the complex Ω•

A/B+
dR

of (6.2.5):

Ω•
A/B+

dR

∼−→ lim−→Ψ,Ξ

(
Ω•
DΨ,Ξ(A)/B+

dR

)
. (6.3.8)

Since those Spa(A,A◦) for which the coordinate map as in (6.2.1) exists also form a basis for Xét,
we conclude that the cohomology of the sheafification of the complex of presheaves furnished by the
target of (6.3.8) is identified with RΓcris(Xét/B

+
cris). In conclusion, we may summarize informally:

the complexes Ω•
DΨ,Ξ(A)/B+

dR

also compute the B+
dR-cohomology RΓcris(X/B

+
cris) (6.3.9)

and the maps (6.3.7) recover the following identification (6.2.8).

18In fact, in our case the argument is simpler than in loc. cit. and we sketch it here. We may assume that Spec(A0)
has no connected components on which p is a unit (such components do not contribute to (6.3.2)), so, by [RG71, 3.3.5]
and [SP, 0593], the ring A0 is free as an O-module. Consequently, the nth term of the inverse limit in (6.3.4) is a
p-adically completed direct sum of copies of (Ainf/ξ

n)[ 1
p
]. This makes the multiplication by ξm map on this nth term

explicit and the desired claims follow by passing to the inverse limit over n.
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6.4. Proof of Lemma 6.3.5. We adapt the proof of [BMS16, 13.5 (ii)] as follows.

In addition to the fixed coordinate morphism (6.3.1) used in the statement and its descent (6.3.2),

we set Ξ0 := {T1, . . . , Tr}
(6.3.2)
⊂ Â0 ∩ (Â0[1

p ])× and fix a subset Ψ0 ⊂ (Â0)× such that the map

s0 : K
〈
(x±1
u )u∈Ψ0 , (xa)a∈Ξ0

〉 xu 7→u, xa 7→a−−−−−−−−→ Â0[1
p ]

is surjective and Ψ0 contains the images under the map (6.3.2) of the variables Ti with r+1 ≤ i ≤ d.
We require that Ψ contains the image of Ψ0 in R◦ (this is the meaning of “large enough” in the
statement). We set

D0, n := K
〈
(x±1
u )u∈Ψ0 , (xa)a∈Ξ0

〉
/(Ker s0)n for n > 0 and D0 := lim←−n>0

D0, n,

so that, by the K[T1, . . . , Tr, T
±1
r+1, . . . , T

±1
d ]-étaleness of A0[1

p ], the map

A0[1
p ]→ Â0[1

p ] lifts to a map A0[1
p ]→ D0 with Ti 7→ xTi . (6.4.1)

By [GR03, 7.3.15] (alternatively, by [Hub93, 3.3] and the fact that D0, n is a Tate ring with a
Noetherian ring of definition), for each n > 0, the subring D◦0, n ⊂ D0, n of powerbounded elements
is the preimage of its counterpart (Â0[1

p ])◦ ⊂ Â0[1
p ]. Thus, the lift (6.4.1) maps A0 to D◦0, n and

hence also to some subring of definition of D0, n, to the effect that we obtain a continuous section

Â0[1
p ] ↪→ D0 of the surjection D0 � Â0[1

p ]. (6.4.2)

The continuous map K → B+
dR mentioned in §6.3 gives a compatible with s0 and s continuous map

K
〈
(x±1
u )u∈Ψ0 , (xa)a∈Ξ0

〉 xu 7→Xu, xa 7→Xa−−−−−−−−−−→ B+
dR

〈
(X±1

u )u∈Ψ0 , (Xa)a∈Ξ0

〉
, so also D0 → DΨ,Ξ(A).

Thus, the section (6.4.2) gives the continuous map y in the commutative diagram

(B+
dR⊗̂K(A0[1

p ]))J(Xa − ã)a∈(Ψ∪Ξ)\{T1,...,Td}K

y

��

(( ((
B+

dR

〈
(X±1

u )u∈Ψ, (Xa)a∈Ξ

〉
//

XTi 7→Ti 11

A

DΨ,Ξ(A)

z

WW

44 44

in which the continuous map z is defined by combining the top part of the diagram, the ξ-adic
completeness of B+

dR⊗̂K(A0[1
p ]) (see §6.3), and the definition of DΨ,Ξ(A). By construction, y ◦ z =

id. By the O[T1, . . . , Tr, T
±1
r+1, . . . , T

±1
d ]-étaleness of A0, the B+

dR-algebra endomorphism z ◦ y of
(B+

dR⊗̂K(A0[1
p ]))J(Xa−ã)a∈(Ψ∪Ξ)\{T1,...,Td}K is the identity on A0, so also on (B+

dR⊗̂K(A0[1
p ])). Since,

in addition, it fixes every Xa, it must be the identity. Thus, z is the desired isomorphism (6.3.6). �

6.5. The map from the absolute crystalline cohomology. Returning to the X of §1.5, our
next goal is to use the discussion of §§6.2–6.3 to exhibit a map

RΓlog cris(XOC/p/Acris)→ RΓcris(X
ad
C /B

+
dR). (6.5.1)

For this, we work on the basis for Xét consisting of affine opens Spf R as in the “all possible coordi-
nates” setup of §5.17 and use the notation introduced in §§5.17–5.40. To relate to §6.3, we set

A := R[1
p ], Ψ := {tσ}σ∈Σ ∪

⋃
λ∈Λ{tλ, rλ+1, . . . , tλ, d}, and Ξ :=

⋃
λ∈Λ{tλ, 1, . . . , tλ, rλ} (6.5.2)

(so that A◦ ∼= R and tλ, 0 is omitted). For each λ ∈ Λ, the adic generic fiber of

Spf(OC{tλ, 0, . . . , tλ, rλ , t
±1
λ, rλ+1, . . . , t

±1
λ, d}/(tλ, 0 · · · tλ, rλ − p

qλ))
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is the rational subset of

Spa(C〈Tλ, 1, . . . , Tλ, rλ , T
±1
λ, rλ+1, . . . , T

±1
λ, d〉,OC〈Tλ, 1, . . . , Tλ, rλ , T

±1
λ, rλ+1, . . . , T

±1
λ, d〉)

cut out by the condition “|pq| ≤ |Tλ, 1 · · ·Tλ, rλ |,” so our Spa(A,A◦) is an element of the basis
considered in §6.3. Moreover, for each λ ∈ Λ, we may descend the étale map (5.17.3) to a discrete
valuation subring O ⊂ OC as in (1.5.2) and then obtain the descended coordinate map (6.3.2) on
the generic fiber. In conclusion, the above choices of A, Ψ, and Ξ satisfy the assumptions of §6.3:
specifically, due to (5.17.2), the resulting map (6.3.3) is surjective and, by construction, Ξ contains
{tλ, 1, . . . , tλ, rλ}. We assume that Σ is large enough, so that so is Ψ and the entire §6.3 applies.

By [BMS16, 13.3 (ii) (b)], eachDΨ,Ξ, n(A) is a complete Tate ring (in the sense of [Hub93, §1]), whose
ring of definition may be taken to be the image of (Ainf/ξ

n)
〈
(X±1

u )u∈Σ, (Xa)a∈Ξ

〉
endowed with its

p-adic topology, and, by construction, DΨ,Ξ, n(A) is a nilpotent thickening of DΨ,Ξ, 1(A) ∼= A. For
each λ ∈ Λ, the relation “|[(p1/p∞)qλ ]| ≤ |Xtλ, 1 · · ·Xtλ, rλ

| ” holds in A, and hence also in every
DΨ,Ξ, n(A), so DΨ,Ξ(A) is naturally an algebra over the ring A(R�

Σ,Λ) defined in (5.22.1). In fact,
since each DΨ,Ξ, n(A) is a Q-algebra in which ξ is nilpotent and each Xa is a unit in DΨ,Ξ(A), the
universal relations (5.26.3) and (5.27.3) imply that DΨ,Ξ(A) is naturally an algebra even over every

(A(R�
Σ,Λ)⊗Ainf

A0
cris)⊗Z[Q] Z[Pλ0 ] for λ0 ∈ Λ, (6.5.3)

compatibly with the isomorphisms (5.26.7). Moreover, the elements ξm

m! with m ≥ n vanish in
DΨ,Ξ, n(A), so the algebra structure map factors through some (necessarily p-adically complete)
ring of definition (DΨ,Ξ, n(A))0 (see [Hub93, 1.3 and 1.5]):

(A(R�
Σ,Λ)⊗Ainf

A0
cris)⊗Z[Q] Z[Pλ0 ]→ (DΨ,Ξ, n(A))0 ↪→ (DΨ,Ξ, n(A))◦ ↪→ DΨ,Ξ, n(A).

The maps (the first of which was described in (5.26.4) and (5.27.4))

(A(R�
Σ,Λ)⊗Ainf

A0
cris)⊗Z[Q] Z[Pλ0 ] � R and (DΨ,Ξ, n(A))◦ → A◦ ∼= R (6.5.4)

are compatible, so the map (DΨ,Ξ, n(A))0 → R is surjective. In addition, by [SP, 07GM], the kernel
of the map (DΨ,Ξ, n(A))◦ � R/p has a unique divided power structure, so we obtain a map

Djλ0
→ (DΨ,Ξ, n(A))◦ (6.5.5)

from the divided power envelope Djλ0
defined in §5.28. Modulo the ideal generated by the ξm

m! with
m ≥ n for a fixed n, the kernel of the first surjection in (6.5.4) is finitely generated, so, since the
(A(R�

Σ,Λ)⊗Ainf
A0

cris)⊗Z[Q] Z[Pλ0 ])-algebra Djλ0
is generated by the divided powers of the elements

in this kernel, after enlarging (DΨ,Ξ, n(A))0 we may assume that the map (6.5.5) factors as follows:

Djλ0
→ (DΨ,Ξ, n(A))0 ↪→ (DΨ,Ξ, n(A))◦ ↪→ DΨ,Ξ, n(A), (6.5.6)

and hence induces a continuous map

D̂jλ0

∼= DΣ,Λ → (DΨ,Ξ, n(A))0 ↪→ DΨ,Ξ, n(A), (6.5.7)

which, by construction, does not depend on the choice of λ0. These maps are compatible as n varies,
so by passing to the limit in n we get compatible continuous maps (where Djλ0

is discrete)

Djλ0
→ DΨ,Ξ(A) and DΣ,Λ → DΨ,Ξ(A). (6.5.8)

By construction, the derivations ∂
∂ log(Xσ) for σ ∈ Σ and ∂

∂ log(Xλ,i)
for λ ∈ Λ and 1 ≤ i ≤ d ofDjλ0

are
compatible with their corresponding derivations of DΨ,Ξ(A) (see (6.5.2) and §6.3). Therefore, since
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all the derivations in question are continuous and Djλ0
is dense in DΣ,Λ, the map DΣ,Λ → DΨ,Ξ(A)

is also compatible with derivations, to the effect that we obtain a map of complexes

KDΣ,Λ

((
∂

∂ log(Xσ)

)
σ∈Σ

,
(

∂
∂ log(Xλ, i)

)
λ∈Λ, 1≤i≤d

)
→ KDΨ,Ξ(A)

(
( ∂
∂ log(Xa))a∈Ψ∪Ξ

)
. (6.5.9)

These maps are compatible with enlarging Σ and Λ (and correspondingly enlarging Ψ and Ξ), so
we obtain a map of complexes

lim−→Σ,Λ

(
KDΣ,Λ

((
∂

∂ log(Xσ)

)
σ∈Σ

,
(

∂
∂ log(Xλ, i)

)
λ∈Λ, 1≤i≤d

))
→ lim−→Ψ,Ξ

(
Ω•
DΨ,Ξ(R[ 1

p
])/B+

dR

)
(6.5.10)

whose formation is compatible with varyingR. Due to (5.23.3) and (6.3.8), after applyingRΓ(Xét,−),
the sheafification of the resulting map of complexes of presheaves gives the desired map (6.5.1).

In addition, since the map DΣ,Λ → DΨ,Ξ(R[1
p ]) is compatible with the maps of both sides to R[1

p ]

(see Lemma 5.29), the proof of [BMS16, 13.6] implies that the map (6.5.10) is compatible with the
maps (in the derived category) of both sides of (6.5.10) to Ω•, cont

R[ 1
p

]/C
(see (5.32.2) and (6.3.7)). In

conclusion, the map (6.5.1) fits into the commutative diagram:

RΓlog cris(XOC/p/Acris)

(5.23.2)
��

(6.5.1)
// RΓcris(X

ad
C /B

+
dR)

(6.2.8)
��

RΓlog dR(X/OC) // RΓdR(Xad
C /C).

(6.5.11)

Having constructed the map (6.5.1), we are ready for the following generalization of [BMS16, 13.11].

Theorem 6.6. If X is quasi-compact and quasi-separated, then (6.5.1) induces an identification

RΓlog cris(XOC/p/Acris)⊗̂
L
Acris

B+
dR
∼= RΓcris(X

ad
C /B

+
dR), (6.6.1)

where −⊗̂L
Acris

B+
dR := R limn(−⊗L

Acris
(B+

dR/ξ
n)).

Proof. Since both sides of (6.6) are derived ξ-adically complete (see (6.2.7)) and (6.5.1) induces a
map between them, it suffices to show that this map is an isomorphism modulo ξ. However, modulo
ξ both sides of (6.6.1) are identified with RΓdR(Xad

C /C) (see (5.24.1) and (6.2.8)), so the claim
follows from the commutativity of the diagram (6.5.11). �

Corollary 6.7. If X is OC-proper, then we have the identification

RΓ(Xét, AΩX)⊗L
Ainf

B+
dR
∼= RΓcris(X

ad
C /B

+
dR) (6.7.1)

that is compatible with the identifications given by (4.17.1) and (6.2.8) of the reductions modulo ξ
of both sides with RΓdR(Xad

C /C); in particular, then the cohomology groups of RΓcris(X
ad
C /B

+
dR) are

finite free B+
dR-modules.

Proof. A combination of (5.43.2) and (6.6.1) gives the identification. The asserted compatibility
of the reductions modulo ξ follows from Proposition 5.41 and the commutativity of the diagram
(6.5.11). By Corollary 5.43, each Hj(RΓ(Xét, AΩX)⊗L

Ainf
Acris[

1
p ]) is a finite free Acris[

1
p ]-module, so

Hj(RΓ(Xét, AΩX)⊗L
Ainf

B+
dR) ∼= Hj(RΓ(Xét, AΩX)⊗L

Ainf
Acris[

1
p ])⊗Acris[

1
p

] B
+
dR,

to the effect that also each Hj(RΓ(Xét, AΩX)⊗L
Ainf

B+
dR) is a finite free B+

dR-module. �
65



6.8. The B+
dR-cohomology and the étale cohomology. For any proper and smooth adic space

X over C, in [BMS16, 13.1] Bhatt–Morrow–Scholze proved the following identification:

RΓcris(X/B
+
dR)⊗B+

dR
BdR

∼= RΓét(X,Zp)⊗Zp BdR. (6.8.1)

Due to (6.2.10), when X ∼= X0⊗̂KC for a proper, smooth adic space X0 defined over a complete
discretely valued subfield K ⊂ C that has a perfect residue field, (6.8.1) supplies the “de Rham
comparison isomorphism”

RΓét(X0⊗̂KC,Zp)⊗Zp BdR
∼= RΓdR(X0/K)⊗K BdR. (6.8.2)

If C ∼= K̂, then, by transport of structure, the identification (6.8.2) is Gal(K/K)-equivariant (by
functoriality, Gal(K/K) acts nontrivially onBdR andRΓét(X0⊗̂KC,Zp)) and, by loc. cit., it recovers
the de Rham comparison isomorphism constructed in [Sch13, 8.4]. In particular, in this case (6.8.2)
is compatible with filtrations, where BdR is filtered by its discrete valuation and RΓdR(X0/K)
(resp., RΓét(X0⊗̂KC,Zp)) is equipped with the the Hodge (resp., trivial) filtration.

For proper X, we now have two ways to identify RΓ(Xét, AΩX)⊗L
Ainf

BdR with RΓét(X
ad
C ,Zp)⊗L

ZpBdR:
we can either base change (2.3.1) to BdR or combine (6.7.1) and (6.8.1). We now prove that the
two ways give the same identification; this will be important in the proof of Theorem 8.7 below.

Proposition 6.9. If X is OC-proper, then the map RΓcris(X
ad
C /B

+
dR) → RΓ(Xad

C ,Zp) ⊗Zp B
+
dR of

[BMS16, proof of 13.1] that underlies the identification (6.8.1) for X = Xad
C makes the diagram

RΓlog cris(XOC/p/Acris)

(5.40.1)
��

(6.5.1)
// RΓcris(X

ad
C /B

+
dR)

��

RΓ(Xét, AΩX)⊗L
Ainf

Acris
[BMS16, 6.10]

// RΓét(X
ad
C ,Ainf,Xad

C
)⊗L

Ainf
B+

dR RΓ(Xad
C ,Zp)⊗L

Zp B
+
dR.∼

(2.3.2)
oo

commute; in particular, the identification of RΓ(Xét, AΩX) ⊗L
Ainf

BdR with RΓét(X
ad
C ,Zp) ⊗L

Zp BdR

that results from (2.3.1) (and is encoded by the bottom part of the above diagram) agrees with the
identification that results from (6.7.1) and (6.8.1) (and is encoded by the top part of the diagram).

Proof. Since ϕ−1(µ) lies inW (m[) and is a unit in B+
dR, the discussion after Theorem 2.3 implies that

the map labeled “(2.3.2)” in the diagram is an isomorphism. We will now review the definition given
in [BMS16, proof of 13.1] of the composition f of the right vertical map with this map “(2.3.2).”

Let Spa(A,A◦) be an element of the basis for the Zariski topology of Xad
C discussed in §6.2. For a

large enough set Ψ as in §6.2, consider the surjection C
〈
(X±1

u )u∈Ψ

〉 Xu 7→u−−−−→ A from (6.2.2), as well

as the perfectoid (
∏

Ψ Zp(1))-cover C
〈

(X
±1/p∞
u )u∈Ψ

〉
of C〈(X±1

u )u∈Ψ〉. The base change of this
cover to Spa(A,A◦) is a perfectoid (

∏
Ψ Zp(1))-cover

Spa(AΨ,∞, A
+
Ψ,∞)→ Spa(A,A◦). (6.9.1)

By applying the definition given in Proposition 5.36 to the perfectoid ring A+
Ψ,∞, we obtain the

B+
dR-algebra B+

dR(A+
Ψ,∞) that may be viewed as a pro-(infinitesimal thickening) of AΨ,∞. By con-

struction, each u ∈ Ψ has a canonical system u1/p∞ of p-power roots in A+
Ψ,∞, which gives rise to the

element [u1/p∞ ] ∈ B+
dR(A+

Ψ,∞). The assignment Xu 7→ [u1/p∞ ] extends to a B+
dR-algebra morphism

DΨ(A)→ B+
dR(A+

Ψ,∞) (6.9.2)
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that is compatible with the map A→ AΨ,∞ and, for each u ∈ Ψ, intertwines exp(log([ε]) · ∂
∂ log(Xu))

defined by the formula (5.15.1) and viewed as an endomorphism of DΨ(A) with the action of the
generator [ε] of the uth copy of Zp(1) on B+

dR(A+
Ψ,∞). In particular, letting γu denote this generator,

one may use the same formula as in (5.16.1) to define a morphism of complexes

Ω•
DΨ(A)/B+

dR

= KDΨ(A)

(
( ∂
∂ log(Xu))u∈Ψ

)
→ KB+

dR(A+
Ψ,∞)((γu − 1)u∈Ψ), (6.9.3)

whose formation is functorial in Spa(A,A◦). The almost purity theorem identifies the cohomology
of the sheaf of complexes determined by the target of (6.9.3) with RΓét(X

ad
C ,Ainf,Xad

C
)⊗L

Ainf
B+

dR. On
the other hand, by definition, the cohomology of the sheaf of complexes determined by the source of
(6.9.3) is RΓcris(X

ad
C /B

+
dR). Thus, by sheafifying and forming cohomology, the maps (6.9.3) produce

the aforementioned composition f defined in op. cit.

We may carry out the construction of the morphisms (6.9.3) using the étale topology of Xad
C instead

of Zariski. Due to (6.2.9), this leads to the same map f . We may also generalize the construction
of (6.9.3) further by using both the étale topology of Xad

C and the more general embeddings (6.3.3)
described in §6.3: in this case, the cover (6.9.1) is replaced by the cover

Spa(AΨ,Ξ,∞, A
+
Ψ,Ξ,∞)→ Spa(A,A◦). (6.9.4)

that is the base change of the perfectoid (
∏

Ψ Zp(1)×
∏

Ξ Zp(1))-cover C〈(X±1/p∞
u )u∈Ψ, (X

1/p∞
a )a∈Ξ〉

of C〈(X±1
u )u∈Ψ, (Xa)a∈Ξ〉, and the rest of the construction remains the same. Due to (6.3.8) and

(6.3.9), this again gives the same map f .

In conclusion, since the construction of f may be carried out using the more general embeddings
described in §6.3 and follows the same pattern as the construction of the map (5.40.1) (namely, is
based on the map as in (5.16.1)), all we need to check is that, in the notation of §6.5, the following
diagram commutes:

DΣ,Λ

(5.38.1)
��

(6.5.8)
// DΨ,Ξ(A)

(6.9.2)
��

Acris(RΣ,Λ,∞)
5.36 // B+

dR(RΣ,Λ,∞),

(6.9.5)

where we have used the agreement RΣ,Λ,∞ ∼= AΨ,Ξ,∞ that results from the choices in (6.5.2). For
this desired commutativity, we may first replace B+

dR(RΣ,Λ,∞) by B+
dR(RΣ,Λ,∞)/ξn for a variable

n > 0, then replace DΣ,Λ by Djλ0
for some λ0 ∈ Λ, and, finally, since B+

dR(RΣ,Λ,∞)/ξn is a Q-
algebra and Djλ0

is generated by divided powers, replace Djλ0
by (A(R�

Σ,Λ)⊗Ainf
A0

cris)⊗Z[Q]Z[Pλ0 ].
However, each Xτ from (5.19.2) with either τ = σ for some σ ∈ Σ or τ = (λ, i) for some λ ∈ Λ and
1 ≤ i ≤ d maps to the (necessarily invertible) Teichmüller element [X

1/p∞
τ ] in B+

dR(RΣ,Λ,∞) under
either of the two maps from (A(R�

Σ,Λ)⊗Ainf
A0

cris)⊗Z[Q] Z[Pλ0 ] to B+
dR(RΣ,Λ,∞)/ξn supplied by the

diagram (6.9.5), so these two maps indeed agree, as desired. �

7. The Ainf-cohomology modules H i
Ainf

(X) and their specializations

We are ready to define the Ainf -cohomology groups H i
Ainf

(X) for a proper X and to detail some of
their properties. We prove that each H i

Ainf
(X) is a Breuil–Kisin–Fargues module (see Theorem 7.4)

and use this to deduce that, loosely speaking, the p-adic étale cohomology of Xad
C has at most

the amount of torsion that is contained in the logarithmic crystalline cohomology of Xk or the
logarithmic de Rham cohomology of X (see Theorems 7.10 and 7.13 for precise statements). Most
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of these results are variants of their analogues established in the smooth case in [BMS16]. Their
proofs, granted the inputs from §§3–6, are generally similar to those of op. cit. and in large part
rely on commutative algebra results over Ainf .

7.1. Properness of X. In §7 we assume that X is proper and Xk is purely d-dimensional.

7.2. The Ainf-cohomology RΓAinf
(X). We use the object AΩX ∈ D≥0(Xét, Ainf) of §2.2 to set

RΓAinf
(X) := RΓ(Xét, AΩX) ∈ D≥0(Ainf) and H i

Ainf
(X) := H i(RΓ(Xét, AΩX)) for i ∈ Z.

Since the functor Lη commutes with pullback along a flat morphism of topoi (see [BMS16, 6.14]),
the object RΓAinf

(X) and its cohomology groups H i
Ainf

(X) are contravariantly functorial in X: more
precisely, any OC-morphism X′ → X induces a morphism RΓAinf

(X) → RΓAinf
(X′) in D≥0(Ainf),

and hence, for i ∈ Z, also the morphism H i
Ainf

(X)→ H i
Ainf

(X′) of Ainf -modules.

By Corollary 4.19, the object RΓAinf
(X) is perfect, that is, isomorphic to a bounded complex of finite

free Ainf -modules. Moreover, by (2.3), (4.17.1), and (5.43.2), we have the following identifications:

RΓAinf
(X)⊗L

Ainf
Ainf [

1
µ ] ∼= RΓét(X

ad
C ,Zp)⊗L

Zp Ainf [
1
µ ];

RΓAinf
(X)⊗L

Ainf , θ
OC ∼= RΓlog dR(X/OC);

RΓAinf
(X)⊗L

Ainf
W (k) ∼= RΓlog cris(Xk/W (k)).

(7.2.1)

In the case when X is OC-smooth, one may drop “log” from the subscripts (compare with (5.44.5)).

The morphism (2.2.6) gives rise to the morphism

RΓAinf
(X)⊗Ainf , ϕ Ainf → RΓAinf

(X) in D≥0(Ainf) (7.2.2)

that becomes an isomorphism after inverting ϕ(ξ) (see (2.2.7)), and the last identification in (7.2.1)
is in fact Frobenius-equivariant (see (5.43.2)). Consequently the cohomology modules H i

Ainf
(X)

come equipped with the Ainf -module morphisms

ϕ : H i
Ainf

(X)⊗Ainf , ϕ Ainf → H i
Ainf

(X). (7.2.3)

that become isomorphisms after inverting ϕ(ξ). We will prove in Theorem 7.4 that these morphisms
make each H i

Ainf
(X) a Breuil–Kisin–Fargues module in the sense of [BMS16, Def. 4.22].

7.3. Breuil–Kisin–Fargues modules. A Breuil–Kisin–Fargues module is a finitely presented
Ainf -module M equipped with an isomorphism

ϕM : (M ⊗Ainf ,ϕ Ainf)[
1

ϕ(ξ) ]
∼−→M [ 1

ϕ(ξ) ] (7.3.1)

of Ainf [
1

ϕ(ξ) ]-modules such thatM [1
p ] is Ainf [

1
p ]-free. By [BMS16, 4.9 (i)], such anM is perfect as an

Ainf -module, that is, M has a finite resolution by finite free Ainf -modules. A morphism of Breuil–
Kisin–Fargues modules is an Ainf -module morphism that commutes with the isomorphisms ϕM .

Theorem 7.4. Each (H i
Ainf

(X), ϕ) is a Breuil–Kisin–Fargues module and vanishes unless i ∈ [0, 2d].
In particular, each H i

Ainf
(X) is perfect as an Ainf-module and each (H i

Ainf
(X))[1

p ] is Ainf [
1
p ]-free.

Proof. Due to the relation with RΓét(X
ad
C ,Zp), each (H i

Ainf
(X))[ 1

pµ ] is a free Ainf [
1
pµ ]-module. More-

over, by Corollary 5.43, the cohomology groups of RΓAinf
(X) ⊗L

Ainf
Acris[

1
p ] are finite free Acris[

1
p ]-

modules. Therefore, [BMS16, 4.20] applies and proves that each H i
Ainf

(X) is a finitely presented
Ainf -module that becomes free upon inverting p, so (H i

Ainf
(X), ϕ) is a Breuil–Kisin–Fargues module.
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Since RΓAinf
(X) is perfect, its top degree cohomology of is finitely presented and of formation

compatible with base change. Thus, by the de Rham specialization of (7.2.1) and the Nakayama
lemma, H i

Ainf
(X) = 0 for i > 2d. The same holds for i < 0 because RΓAinf

(X) ∈ D≥0(Ainf). �

Corollary 7.5. For each i ∈ Z, the rank of the finitely presented Zp-module H i
ét(X

ad
C ,Zp) is equal

to the rank of the finitely presented W (k)-module H i
log cris(Xk/W (k)), and is also equal to the rank

of the finitely presented OC-module H i
log dR(X/OC) := RiΓ(X,Ω•X/OC , log) (see also (7.11.1) below).

Proof. The finite presentation assertions follow, for instance, from the perfectness of RΓAinf
(X), the

comparisons (7.2.1), and the coherence of the ring OC . Due to Theorem 7.4 and the comparisons
(7.2.1), all the ranks in question are equal to the rank of the free Ainf [

1
p ]-module (H i

Ainf
(X))[1

p ]. �

7.6. Base change for individual H i
Ainf

(X). Since Ainf [
1
µ ] is Ainf -flat, for each i ∈ Z, (7.2.1) gives:

(H i
Ainf

(X))[ 1
µ ] ∼= H i

ét(X
ad
C ,Zp)⊗Zp Ainf [

1
µ ]. (7.6.1)

In particular, since µ is a unit in W (C[) and W (C[) is Ainf -flat (the localization of Ainf at pAinf is
a discrete valuation ring whose completion is W (C[), see [BMS16, proof of Lem. 4.10]),

H i
Ainf

(X)⊗Ainf
W (C[) ∼= H i

ét(X
ad
C ,Zp)⊗Zp W (C[). (7.6.2)

Analogous comparison to the logarithmic de Rham cohomology groups is more complex: by (7.2.1)
and [SP, 0662], for each i ∈ Z we have a short exact sequence

0→ H i
Ainf

(X)⊗Ainf , θ OC → H i
log dR(X/OC)→ (H i+1

Ainf
(X))[ξ]→ 0. (7.6.3)

Similarly, by Theorem 7.4 and [BMS16, 4.9], for each i ∈ Z we have a Frobenius-equivariant short
exact sequence

0→ H i
Ainf

(X)⊗Ainf
W (k)→ H i

log cris(Xk/W (k))→ Tor1
Ainf

(H i+1
Ainf

(X),W (k))→ 0. (7.6.4)

In particular, by Theorem 7.4, in addition to (7.6.1), we have

H2d
Ainf

(X)⊗Ainf , θ OC ∼= H2d
log dR(X/OC) and H2d

Ainf
(X)⊗Ainf

W (k) ∼= H2d
log cris(Xk/W (k)).

For general i, it is most pleasant to deal with such base changes when H i+1
Ainf

(X) is Ainf -free. For
such freeness, we have the following consequence of Theorem 7.4 and [BMS16, §4].

Proposition 7.7. For each i ∈ Z, the OC-module H i
log dR(X/OC) is p-torsion free (equivalently,

free) if and only if theW (k)-module H i
log cris(Xk/W (k)) is p-torsion free (equivalently, free), in which

case H i
Ainf

(X) is free as an Ainf-module and H i
ét(X

ad
C ,Zp) is free as a Zp-module.

Proof. Due to Theorem 7.4, we may apply [BMS16, 4.18] and combine it with (7.2.1) to conclude that
H i

log dR(X/OC) is p-torsion free if and only if so is H i
log cris(Xk/W (k)). When these conditions hold,

the freeness of H i
Ainf

(X) and H i
ét(X

ad
C ,Zp) follows from [BMS16, 4.17] and (7.6.1). The parenthetical

assertions follow, for instance, from the following elementary lemma.

Lemma 7.8. For a local domain (R,m), a finite R-module M is free if and only if

dimR/mR(M/mM) = dimFrac(R)(MFrac(R)). (7.8.1)

Proof. By the Nakayama lemma, a lift m1, . . . ,md ∈ M of an R/mR-basis of M/mM generates
M , and hence also contains a basis of MFrac(R). Thus, if (7.8.1) holds, then the mi can have no
R-relation, and hence must define an isomorphism Rd 'M . The converse is clear. � �
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Remark 7.9. As was observed by Jesse Silliman and Ravi Fernando during the Arizona Winter
School 2017, the first assertion of Proposition 7.7 may be strengthened as follows: for each i ∈ Z,

dimk

(
H i

log dR(X/OC)tors ⊗OC k
)

= dimk

(
H i

log cris(Xk/W (k))tors ⊗W (k) k
)
, (7.9.1)

that is, H i
log dR(X/OC) and H i

log cris(Xk/W (k)) have the same number of cyclic summands (in the
sense of (7.11.1) below). Indeed, by Corollary 7.5, the ranks ofH i

log dR(X/OC) andH i
log cris(Xk/W (k))

agree and, by [Bei13b, (1.8.1)], so do the k-fibers of RΓlog dR(X/OC) and RΓlog cris(Xk/W (k)), so the
claim follows by descending induction on i from the following exact sequences supplied by [SP, 0662]:

0→ H i
log dR(X/OC)⊗OC k →H

i(RΓlog dR(X/OC)⊗L
OC k)→ TorOC1 (H i+1

log dR(X/OC), k)→ 0,

0→ H i
log cris(Xk/W (k))⊗W (k) k →H i(RΓlog cris(Xk/W (k))⊗L

W (k) k)→ H i+1
log cris(Xk/W (k))[p]→ 0.

The following variant of [BMS16, 14.5 (ii)] strengthens the part of Proposition 7.7 that deduces the
freeness of H i

ét(X
ad
C ,Zp) from the freeness of H i

log cris(Xk/W (k)).

Theorem 7.10. For every i ∈ Z and n ∈ Z≥0, we have

lengthZp((H
i
ét(X

ad
C ,Zp)tors)/p

n) ≤ lengthW (k)((H
i
log cris(Xk/W (k))tors)/p

n),

lengthZp(H
i
ét(X

ad
C ,Z/pnZ)) ≤ lengthW (k)(H

i
log cris(Xk/Wn(k))).

(7.10.1)

Proof. The proof of the first inequality analogous to the proof of loc. cit. Namely, by Corollary 7.5,
we may drop the subscripts “tors” and, by Theorem 7.4, [BMS16, 4.15 (ii)], and (7.6.2), we have

lengthZp(H
i
ét(X

ad
C ,Zp)/pn) ≤ lengthW (k)(H

i
Ainf

(X)⊗Ainf
W (k)/pn). (7.10.2)

Moreover, since lengthW (k)(Q/p
n) = lengthW (k)(Tor

W (k)
1 (Q,W (k)/pn)) for every finite torsion

W (k)-module Q, the short exact sequence (7.6.4) yields the inequality

lengthW (k)(H
i
Ainf

(X)⊗Ainf
W (k)/pn) ≤ lengthW (k)(H

i
log cris(Xk/W (k))/pn),

and the first inequality in (7.10.1) follows. Due to the short exact sequences

0→ H i
ét(X

ad
C ,Zp)/pn →H i

ét(X
ad
C ,Z/pnZ)→ Tor

Zp
1 (H i+1

ét (Xad
C ,Zp),Z/pnZ)→ 0,

0→ H i
log cris(Xk/W (k))/pn →H i

log cris(Xk/Wn(k))→ Tor
W (k)
1 (H i+1

log cris(Xk/W (k)),W (k)/pn)→ 0

that result from [SP, 0662] and [Bei13b, §1.16, Theorem, (i)], the second inequality in (7.10.1)
follows from the first. �

The de Rham analogue of Theorem 7.10 (see Theorem 7.13) uses the following formalism.

7.11. The normalized length. Let o be a rank 1 valuation ring of mixed characteristic (0, p) and
normalize its valuation valo by requiring that valo(p) = 1. By the structure theorem [SP, 0ASP]
(see also [GR03, 6.1.14]), every finitely presented o-module M is of the form

M ∼=
⊕n

i=1 o/(ai) for some ai ∈ o. (7.11.1)

If M is, in addition, torsion, to the effect that the ai are nonzero, then we set

valo(M) :=
∑n

i=1 val(ai).

More intrinsically, valo(M) is the valuation of any generator of the 0th Fitting ideal Fitt0(M) ⊂ o
of M , so it depends only on M . If o is a discrete valuation ring for which p is a uniformizer, then

70

http://stacks.math.columbia.edu/tag/0662
http://stacks.math.columbia.edu/tag/0662
http://stacks.math.columbia.edu/tag/0ASP


valo(M) = lengtho(M). In general, valo has the advantage of being invariant under extension of
scalars to a larger o. Any short exact sequence

0→M1 →M2 →M3 → 0

of finitely presented torsion o-modules gives rise to the equality Fitt0(M2) = Fitt0(M1) Fitt0(M3)
(see [GR03, 6.3.1 and 6.3.5 (i)]), so the assignment valo(−) satisfies

valo(M2) = valo(M1) + valo(M3). (7.11.2)

The following lemma is the de Rham version of [BMS16, 4.14], which gave the inequality (7.10.2).

Lemma 7.12. For an n ∈ Z≥1 and a finitely presented Wn(O[C)-module M , we have

valW (C[)(M ⊗Ainf
W (C[)) = valOC (M/ξM)− valOC (M [ξ]). (7.12.1)

Proof. Since Wn(O[C) is a coherent ring (see [BMS16, 3.24]), the Wn(O[C)-module M [ξ] is finitely
presented. Moreover, due to (7.11.2), the flatness of Ainf →W (C[) (see §7.6), and the snake lemma,
both sides of (7.12.1) are additive in short exact sequences. Therefore, we may assume that n = 1

and, due to the structure theorem [SP, 0ASP], that M = O[C/(x) for some x ∈ O[C .

If x = 0, then both sides of (7.12.1) are equal to 1. If x 6= 0, then the left side vanishes, and so does
the right side because M [ξ] ∼= Tor1

O[C
(M,OC/p) and the following sequence is exact:

0→ Tor1
O[C

(O[C/(x),OC/p)→ OC/p
θ([x])−−−→ OC/p→M/ξM → 0. �

Theorem 7.13. For every i ∈ Z and n ∈ Z≥0, we have (recall from §7.11 that valZp = lengthZp)

valZp((H
i
ét(X

ad
C ,Zp)tors)/p

n) ≤ valOC ((H i
log dR(X/OC)tors)/p

n),

valZp(H
i
ét(X

ad
C ,Z/pnZ)) ≤ valOC (RiΓlog dR(XOC/pn ,Ω

•
XOC/pn/(OC/p

n), log)).
(7.13.1)

Proof. The proof is analogous to that of Theorem 7.10. Namely, we may drop the subscripts “tors”
and, by Theorem 7.4, (7.6.2), and Lemma 7.12, have

valZp(H
i
ét(X

ad
C ,Zp)/pn) ≤ valOC (H i

Ainf
(X)/(ξ, pn)).

The presentation (7.11.1) implies that valOC (Q/pn) = valOC (TorOC1 (Q,OC/pn)) for every finitely
presented torsion OC-module Q, so the short exact sequence (7.6.3) gives the inequality

valOC (H i
Ainf

(X)/(ξ, pn)) ≤ valOC (H i
log dR(X/OC)/pn).

This proves the first inequality in (7.13.1) and, analogously to the proof of Theorem 7.10, the second
inequality in (7.13.1) follows from the first. �

The results above, specifically, (7.9.1) and Theorems 7.10 and 7.13 prompt the following question.

Question 7.14. Are there examples of X as above for which

valOC (H i
log dR(X/OC)) 6= valW (k)(H

i
log cris(X/W (k)))?
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8. A functorial lattice inside the de Rham cohomology

For a proper smooth scheme X over a complete discretely valued extension K of Qp with a perfect
residue field, we explain in Example 8.6 how to functorially associate an OK-lattice

LidR(X) ⊂ H i
dR(X/K) for every i ∈ Z.

In fact, LidR(X) depends (functorially) only on H i
ét(XK ,Zp) and its construction, which in the form

given below is based on the theory of Breuil–Kisin–Fargues modules, proceeds along familiar lines
of integral p-adic Hodge theory (compare, for instance, with [Liu17, §4]). Using the work of the
preceding sections, for suitable X we interpret LidR(X) geometrically: we prove in Theorem 8.7 that
if X has a proper, flat, semistable OK-model X for which H i

log dR(X/OK) and H i+1
log dR(X/OK) are

p-torsion free, then

LidR(X) = H i
log dR(X/OK) inside H i

dR(X/K).

We do not know whether this equality continues to hold “modulo torsion” if H i
log dR(X/OK) and

H i+1
log dR(X/OK) are not assumed to be torsion free.

8.1. The base field K. Throughout §8, we assume that C ∼= K̂ for some fixed complete discretely
valued field K that is of mixed characteristic (0, p) and has a perfect residue field k0. We set

G := Gal(K/K),

so that G acts continuously on C and hence also on Ainf . The continuous maps ϕ and θ are
G-equivariant, and the ideals (ξ), (ϕ(ξ)), and (µ) of Ainf are G-stable (see §2.1).

Consequently, if X is a proper p-adic formal OK-scheme for which X := X⊗̂OKOC satisfies the
assumptions of §1.5, then the functoriality of RΓAinf

(X) (see §7.2) induces a semilinear G-action on
the finite Ainf -modules H i

Ainf
(X).

8.2. The Fargues equivalence. By [BMS16, 4.26], for any Breuil–Kisin–Fargues module (M,ϕM )
(see §7.3), its étale realization, namely,

Mét := (M ⊗Ainf
W (C[))ϕM⊗ϕ= 1, (8.2.1)

is a finitely generated Zp-module and comes equipped with an identification

M ⊗Ainf
W (C[) ∼= Mét ⊗Zp W (C[) under which M ⊗Ainf

Ainf [
1
µ ] ∼= Mét ⊗Zp Ainf [

1
µ ].

In particular, Mét is Zp-free if M is Ainf -free, and, for any M , we also have

M ⊗Ainf
BdR

∼= Mét ⊗Zp BdR, (8.2.2)

so that Mét comes equipped with a B+
dR-sublattice (recall that M [1

p ] is Ainf [
1
p ]-free, see §7.3)

M ⊗Ainf
B+

dR ⊂Mét ⊗Zp BdR.

By a theorem of Fargues [BMS16, 4.28, 4.29], the functor

(M,ϕM ) 7→ (Mét,M ⊗Ainf
B+

dR) (8.2.3)

from the category of Breuil–Kisin–Fargues modules for which M is Ainf -free to that of pairs (T,Ξ)
consisting of a finite free Zp-module T and a B+

dR-lattice Ξ ⊂ T ⊗Zp BdR is an equivalence.

8.3. Breuil–Kisin–Fargues G-modules. Granted the origin of our C, it is natural to consider
Breuil–Kisin–Fargues G-modules, that is, Breuil–Kisin–Fargues modules (M,ϕM ) equipped with an
Ainf -semilinear G-action on M for which ϕM is G-equivariant. For example, for X as in §8.1, each
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H i
Ainf

(X) is naturally a Breuil–Kisin–Fargues G-module (see Theorem 7.4). The étale realization
Mét of a Breuil–Kisin–Fargues G-module (M,ϕM ) carries an induced Zp-linear G-action.

Proposition 8.4. The category of those Breuil–Kisin–Fargues G-modules (M,ϕM ) for which M is
Ainf-free is equivalent via the functor

(M,ϕM ) 7→ (Mét,M ⊗Ainf
B+

dR)

to the category of pairs (T,Ξ) consisting of a finite free Zp-module T equipped with a G-action and
a G-stable B+

dR-lattice Ξ ⊂ T ⊗Zp BdR.

Proof. The claim follows immediately from the Fargues equivalence reviewed in §8.2. �

8.5. An étale lattice determines a de Rham lattice. Let T be a finite free Zp-module endowed
with a continuous action of G for which the G-representation T [1

p ] is de Rham, so that there is a
G-equivariant identification

T ⊗Zp BdR
∼= DdR(T )⊗K BdR where DdR(T ) := (T ⊗Zp BdR)G.

For such T , the B+
dR-lattice DdR(T ) ⊗K B+

dR is evidently G-stable in T ⊗Zp BdR. Therefore, by
Proposition 8.4, the pair (T,DdR(T ) ⊗K B+

dR), so, effectively, T , determines an Ainf -free Breuil–
Kisin–Fargues G-module

(M(T ), ϕM(T ))

that depends functorially on T and is determined up to a unique isomorphism by the G-equivariant
identification M(T )ét

∼= T . The de Rham realization

M(T )dR := M(T )⊗Ainf , θ OC of (M(T ), ϕM(T ))

is an OC-lattice in

(M(T )⊗Ainf
B+

dR)/ξ ∼= (DdR(T )⊗K B+
dR)/ξ ∼= DdR(T )⊗K C.

Therefore, we obtain the following OK-lattice that is functorial in T :

(M(T )dR)G inside the K-vector space DdR(T ).

Example 8.6. We fix a K-scheme (or even a K-rigid space19) X that is proper and smooth, and set

Liét(X) := H i
ét(XK ,Zp)/H

i
ét(XK ,Zp)tors

∼= H i
ét(XC ,Zp)/H i

ét(XC ,Zp)tors for i ≥ 0.

As is well known and follows from (6.8.2), the G-representation Liét(X)[1
p ] is de Rham and

DdR(Liét(X)) ∼= (Liét(X)⊗Zp BdR)G
(6.8.2)∼= (H i

dR(X/K)⊗K BdR)G ∼= H i
dR(X/K). (8.6.1)

Thus,
LidR(X) := (M(Liét(X))dR)G ⊂ H i

dR(X/K)

is an OK-lattice that is functorial inX. Its definition implies that for a finite Galois extensionK ′/K,

LidR(X) = (LidR(XK′))
Gal(K′/K) inside H i

dR(X/K) = (H i
dR(XK′/K

′))Gal(K′/K).

Due to GAGA techniques (see Remark 4.18 and the proof of Claim 4.14.2) and the discussion in
§§1.5–1.6, the following result implies that if X extends to a proper, flat, semistable OK-scheme X
such that H i

log dR(X/OK) and H i+1
log dR(X/OK) have no nonzero p-torsion (where we endow X with

the log structure OX ∩ (OX [1
p ])×), then

LidR(X) = H i
log dR(X/OK) inside H i

dR(X/K); (8.6.2)

19Which we view as an adic space, see [Hub96, 1.1.11 (d)].
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in particular, if X ′ is another such model of X, then

H i
log dR(X/OK) = H i

log dR(X ′/OK) inside H i
dR(X/K). (8.6.3)

Theorem 8.7. Let X be a proper, flat p-adic formal OK-scheme endowed with the log structure
OX ∩ (OX [1

p ])× such that X has an étale cover by affines U each of which has an étale morphism

U → Spf(OK{t0, . . . , tr, tr+1, . . . , td}/(t0 · · · tr − π)) for some nonunit π ∈ OK \ {0} (8.7.1)

(where π, r, and d may depend on U). If H i
log dR(X/OK) and H i+1

log dR(X/OK) are p-torsion free, then

LidR(X ad
K ) = H i

log dR(X/OK) inside H i
dR(X ad

K /K); (8.7.2)

in fact, then, setting X := X⊗̂OKOC , we have the identification

M(Liét(X ad
K )) ∼= H i

Ainf
(X) (8.7.3)

of Breuil–Kisin–Fargues G-modules.

Proof. By working locally on U , we may replace each ti with r + 1 ≤ i ≤ d in the target of (8.7.1)
by t±1

i , so X meets the requirements of §1.5. Moreover, by the Grothendieck comparison theorem
and flat base change (compare with Remark 4.18), for j = i and j = i+ 1, we have

Hj
log dR(X/OC) ∼= Hj

log dR(X/OK)⊗OK OC , so Hj
log dR(X/OK) ∼= (Hj

log dR(X/OC))G. (8.7.4)

Consequently, by Proposition 7.7, the Breuil–Kisin–Fargues G-modules H i
Ainf

(X) and H i+1
Ainf

(X) (see
§8.3) are Ainf -free. By Theorem 2.3, we have the G-equivariant identification of the étale realization:

(H i
Ainf

(X))ét
∼= H i

ét(X ad
C ,Zp)

(which is then torsion free). By Proposition 6.9, the BdR-base change of this identification agrees
with the identification H i

Ainf
(X)⊗Ainf

BdR
∼= H i

ét(X ad
C ,Zp)⊗Zp BdR that results by combining

H i
Ainf

(X)⊗Ainf
B+

dR

(6.7.1)∼= H i
cris(X ad

C /B+
dR)

(6.2.10)∼= H i
dR(X ad

K /K)⊗K B+
dR

and

H i
dR(X ad

K /K)⊗K BdR

(8.6.1)∼= H i
ét(X ad

C ,Zp)⊗Zp BdR.

In particular, we obtain the desired G-equivariant identification

M(Liét(X ad
K )) ∼= H i

Ainf
(X),

under which, by Corollary 6.7 and the sentence after (6.2.10), the identifications

M(Liét(X ad
K ))⊗Ainf , θ C

(8.6.1)∼= H i
dR(X ad

C /C) and H i
Ainf

(X)⊗Ainf , θ C
(4.17.1)∼= H i

dR(X ad
C /C)

agree. In particular, by (7.6.3), we obtain the following equality inside H i
dR(X ad

C /C):

M(Liét(X ad
K ))dR = M(Liét(X ad

K ))⊗Ainf , θ OC = H i
Ainf

(X)⊗Ainf , θ OC = H i
log dR(X/OC),

which, together with the second identification in (8.7.4), gives the desired (8.7.2). �

Remark 8.8. In the proof above we have seen that both H i
Ainf

(X) and H i+1
Ainf

(X) are Ainf -free, so,
by (7.6.4), we have the G-equivariant and Frobenius-equivariant identifications

H i
Ainf

(X)⊗Ainf
W (k) ∼= H i

log cris(Xk/W (k))
(5.44.4)∼= H i

log cris(Xk/W (k)),

and hence also the Frobenius-equivariant identification

(H i
Ainf

(X)⊗Ainf
W (k))G ∼= H i

log cris(Xk0/W (k0)). (8.8.1)
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In particular, (8.7.3) and (8.8.1) show that, under the assumptions of Theorem 8.7, the integral
p-adic étale cohomology H i

ét(X ad
K ,Zp) endowed with its Galois action functorially determines the

integral logarithmic crystalline cohomology H i
log cris(Xk0/W (k0)) endowed with its Frobenius.

9. The semistable comparison isomorphism

Our final goal is to use the preceding results to deduce the semistable comparison isomorphism
for suitable “semistable” formal schemes (see Theorem 9.5). This extends [BMS16, 1.1 (i)], which
treated the good reduction case (see also [TT15, 1.2] for a result “with coefficients” over an abso-
lutely unramified base), and is similar to the semistable comparison [CN17, 5.26]. More precisely,
loc. cit. also includes cases in which the log structures are not “vertical.”

9.1. The ring Bst. We consider the log PD thickenings Acris/p
n of OC/p of §5.2 and set

Jn := Ker(Acris/p
n � OC/p) and J := lim←−n≥1

Jn ∼= Ker(Acris � OC/p).

The element p ∈ OC \{0} belongs to the log structure of OC/p (see §1.6 (1)), so its preimage in the
log structure of Acris/p

n is a (1 + Jn,×)-torsor, which is trivial because (1 + Jn,×) is a successive
extension of Acris/p

n-modules (compare with [Bei13b, §1.15, p. 23]). Consequently, as n varies,
these torsors comprise a trivial (1 + J,×)-torsor τ0, whose base change along the logarithm map
(1 +J,×)→ (J,+) ⊂ (Acris,+) furnished by the divided power structure on J is a trivial (Acris,+)-
torsor τ , the so-called Fontaine–Hyodo–Kato torsor. The functor which to an Acris-algebra A assigns
the underlying set of the (A,+)-torsor τ ×(Acris,+) (A,+) is represented by the Acris-algebra Ast, so
Ast is the initial Acris-algebra over which the Fontaine–Hyodo–Kato torsor is canonically trivialized.

Concretely, we may noncanonically trivialize τ0 (for instance, [p1/p∞ ] is a trivialization, see (5.2.1))
to obtain an isomorphism Ast ' Acris[T ], which, upon adjusting the trivialization by an a ∈ 1 + J ,

gets postcomposed with the Acris-automorphism Acris[T ]
T 7→T+log(a)−−−−−−−−→ Acris[T ]. The Acris-derivation

− d
dT of Acris[T ] commutes with these automorphisms, so it induces a canonical Acris-derivation, the

monodromy operator,

N : Ast → Ast for which (Ast)
N=0 = Acris

(ourN agrees with that of op. cit., see [Bei13b, §1.15, Remarks (i)]; compare also with [Tsu99, 4.1.1]).

By [Bei13b, (1.15.2)], the Frobenius pullback of τ0 is isomorphic to the p-fold self-product of τ0, and
hence likewise for the base change of τ0 (that is, of τ) to any (A,+). Consequently, Frobenius base
change of torsors determines an Acris-semilinear “Frobenius” morphism

ϕ : Ast → Ast (9.1.1)

which in terms of an isomorphism Ast ' Acris[T ] obtained by trivializing τ0 is described by T 7→ pT .
The interaction of ϕ and N is described by the formula Nϕ = pϕN .

Since µ and log([ε]) are unit multiples of each other inAcris (see §5.14) and ϕ(log([ε])) = p log([ε]), the
Frobenius (9.1.1) and, evidently, also the derivation N induce their counterparts on the localizations

B+
st := Ast[

1
p ] and Bst := Ast[

1
pµ ].

The relation Nϕ = pϕN continues to hold for B+
st and Bst. As is explained in [Bei13b, §1.17], the

Acris-algebras B+
st and Bst reviewed above agree with the ones constructed in [Fon94, §3].

Proposition 9.2. Assume that X is OC-proper and let Y be a descent of XOC/p to a proper log
smooth fine log O/p-scheme of Cartier type, where O ⊂ OC is a discrete valuation subring with a
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perfect residue field k0 such that C ∼= (Frac(O)) .̂ Then we have the following identification that is
compatible with the actions of N and ϕ (which are described in the proof):

RΓlog cris(Yk0/W (k0))⊗L
W (k0) B

+
st
∼= RΓlog cris(XOC/p/Acris)⊗L

Acris
B+

st , (9.2.1)

where W (k0) is endowed with the log structure associated to N≥0
0−→W (k0).

Proof. A descent Y always exists by the proof of Corollary 5.43 and the claim is a direct consequence
of [Bei13b, (1.18.5)]. On the left side of (9.2.1), the operator N combines the monodromy operators
of RΓlog cris(Xk0/W (k0)) and B+

st , so is of the form N ⊗1+1⊗N ; on the right side, N is induced by
the monodromy operator of B+

st . On either side of (9.2.1), the Frobenius ϕ acts on both factors. �

Remark 9.3. One may eliminate the dependence of (9.2.1) on the choice of Y by forming a direct
limit over all the possible Y, see loc. cit.

9.4. The base field K. For the rest of §9, we assume that C = K̂ for a fixed complete discretely
valued subfield K ⊂ C with a perfect residue field k0 and set G := Gal(K/K) (compare with §8.1).
By functoriality, G acts continuously on Acris, Ast, B+

st , and, since the ideal (µ) does not depend on
the choice of ε (see §2.1), also on Bst. These G-actions commute with the operators ϕ and N .

In the case when O from Proposition 9.2 is our OK , the identification (9.2.1) is G-equivariant
granted that we let G act on both sides by functoriality.

Theorem 9.5. Let X be a proper p-adic formal OK-scheme that in the étale topology may be covered
by affines U each of which has an étale morphism

U → Spf(OK{t0, . . . , tr, t±1
r+1, . . . , t

±1
d }/(t0 · · · tr − π)) for some nonunit π ∈ OK \ {0} (9.5.1)

(where π, r, and d may depend on U) and endow X with the log structure OX ∩ (OX [1
p ])×. There

is the following G-equivariant natural isomorphism that is compatible with the action of ϕ and N :

RΓlog cris(Xk0/W (k0))⊗L
W (k0) Bst

∼= RΓét(X ad
C ,Zp)⊗L

Zp Bst, (9.5.2)

where W (k0) is endowed with the log structure associated to N≥0
0−→W (k0). In particular, for every

i ∈ Z, the G-representation H i
ét(X ad

C ,Qp) is semistable.

Proof. We set X := X⊗̂OKOC , so that X meets the requirements of §1.5. By Claims 1.6.1 and 1.6.3
and [Kat89, 4.8], the base change XOK/p is fine, log smooth, and of Cartier type over OK/p, so
Proposition 9.2 applies to it and gives the G-equivariant (see §9.4) identification

RΓlog cris(Xk0/W (k0))⊗L
W (k0) B

+
st
∼= RΓlog cris(XOC/p/Acris)⊗L

Acris
B+

st

(5.43.2)∼= RΓ(Xét, AΩX)⊗L
Ainf

B+
st

that is compatible with ϕ and N . In addition, by (2.3.1), we have a G-equivariant identification

RΓ(Xét, AΩX)⊗L
Ainf

Bst
∼= RΓ(Xad

C ,Zp)⊗L
Zp Bst

∼= RΓ(X ad
C ,Zp)⊗L

Zp Bst

that is trivially compatible with ϕ and N . By combining these two displayed equations, we obtain
the desired identification (9.5.2). �

Remark 9.6. The isomorphism (9.5.2) is compatible with filtrations in the following sense: by
[Fon94, §4.2], there is a (noncanonical) Acris-algebra homomorphism Bst → BdR and, by the proof
above and Proposition 6.9, the BdR-base change of the isomorphism (9.5.2) is identified with the
de Rham comparison isomorphism (6.8.2) (with X0 = X ad

K ) that is compatible with filtrations.
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