THE A;;;~-COHOMOLOGY IN THE SEMISTABLE CASE

KESTUTIS CESNAVICIUS AND TERUHISA KOSHIKAWA

ABSTRACT. For a proper, smooth scheme X over a p-adic field K, we show that any proper, flat,
semistable Og-model X of X whose logarithmic de Rham cohomology is torsion free determines the
same Ok-lattice inside Hig(X/K) and, moreover, that this lattice is functorial in X. For this, we
extend the results of Bhatt—Morrow—Scholze on the construction and the analysis of an Aj,¢-valued
cohomology theory of p-adic formal, proper, smooth Oz-schemes X to the semistable case. The
relation of the Ains-cohomology to the p-adic étale and the logarithmic crystalline cohomologies
allows us to reprove the semistable conjecture of Fontaine—Jannsen.
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1. INTRODUCTION

1.1. Integral relations between p-adic cohomology theories. For a proper smooth scheme
X over a complete discretely valued extension K of Q, with a perfect residue field k£, comparison
isomorphisms of p-adic Hodge theory relate the p-adic étale, de Rham, and, in the case of semistable
reduction, also crystalline cohomologies of X . For instance, they show that for i € Z, the Gal(K /K )-
representation H. (X7, Q,) functorially determines the filtered K-vector space Hiz(X/K). Even
though the “integral” analogues of these isomorphisms are known to fail in general, one may still

consider their hypothetical consequences, for instance, one may ask the following.

e For proper, flat, semistable Oxg-models X and X’ of X endowed with their “standard” log

structures, do the images of Hf;ng(X/(’)K) and Hliong(X’/(’)K) in Hiz(X/K) agree?
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One of the main goals of the present paper is to show that the answer is positive if the logarithmic
de Rham cohomology of the models & and X" is torsion free (see (8.6.3) and Theorem 8.7). More
precisely, in this case we show that both Hj 45 (X/Ok) and Hj , 4z (X'/OK) agree with the Ok-

lattice in Hir(X/K) that is functorially determined by H (X7,Z,). The good reduction case
of this result may be derived from the work of Bhatt-Morrow—Scholze [BMS16] on integral p-adic
Hodge theory, and our approach, as well as the bulk of this paper, is concerned with extending the
framework of op. cit. to the semistable case.

1.2. The A;j,;-cohomology in the semistable case. To approach the question above, we set

C =K, let Ajys = W((’)bo) be the basic period ring of Fontaine, and, for a semistable Og-model
X of X, similarly to the smooth case treated in [BMS16], construct the A;,s-cohomology

R4, (X) € DZ%(Ajn).
We show that various base changes of RI'4, ,(X') recover other cohomology theories:
RT 4, (X) @Y% W(C") = RTa (X5, Z,) @5 W(C");
RT 4, (X) @ g Oc = Rlogar(X/Ok) @, Oc; (1.2.1)
RT 4,0 () @3, W (k) 2 Rl 1og eis (X /W (k) @1 W (F),

where RI'ogcris denotes the logarithmic crystalline (that is, Hyodo-Kato) cohomology, W (k) is

endowed with the log structure associated to N>q N W(k), and X} is endowed with the base
change of the “standard” log structure Oy ¢ N (OX’ét[%])X of X.

If the cohomology of RT'jog ar (X /Ok) is torsion free, then that of RI' 4, (X') is Ajns-free and the base
changes (1.2.1) hold in each individual cohomological degree (see §7.6). In this case, the Fargues
equivalence and the formalism of Breuil-Kisin—Fargues Gal(/X /K )-modules allow us to prove that

the Gal(K /K )-representation HY (X7, 7Z,) determines Hfginf(/l’).

It follows that then HY, (X7, Z,) also determines Hf'og ar (X /Ok) (together with Hfog eris (/W (K))).
Since the same reasoning applies to another model X”, this leads to the result claimed in §1.1.

The base changes (1.2.1) also allow us to extend the cohomology specialization results obtained in
the good reduction case in [BMS16]. Qualitatively, in Proposition 7.7 we show that Hj,, 4g(X/Ok)
is torsion free if and only if so is Hf;)gcris(Xk/W(k)), in which case H} (Xz,Zp) is torsion free.
Quantitatively, in Theorems 7.10 and 7.13 we show that for every n > 0,

lengthy, ((Hé (X7, Zp)tors) /p") < lengthyy ) (Hiog cris (X /W (k) tors) /P"),

lengtth ( (Hét (XFa Z’p)torS) /p") : lengthoK ((Hliog dR (X/OK )tors)/P"™)-

<
~ lengthy, (Ok/p)

1.3. The semistable comparison isomorphism. The analysis of RI'4 (X)), specifically, its
relation to the p-adic étale and the logarithmic crystalline cohomologies, permits us to reprove in
Theorem 9.5 the “semistable conjecture” of Fontaine—Jansen [Kat94a, Conj. 1.1]:

RTUe (X5, Zp) @7, Bst = RUiogeris(X/W (k) @3y Bs- (1.3.1)

Other proofs of this conjecture have been given in [Tsu99], [Fal02], [Niz08], [Bhal2|, [Beil3a], and

[CN17|, whereas |[BMS16] used RIT' 4, . (X) to reprove the “crystalline conjecture.” Similarly to

[CN17], we establish (1.3.1) for a suitable class of proper, flat, “semistable” formal Og-schemes X.
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The key result that leads to (1.3.1) is the so-called absolute crystalline comparison isomorphism
RT 4, (X) @Y, Acis 2 Rl1og eris(Xo ./ Acxis) (1.3.2)

of Corollary 5.43, whose construction in §5 forms the technical core of this paper. This construction
is based on the “all possible coordinates” technique that is a variant of its analogue used to establish
(1.3.2) in the smooth case in [BMS16, §12]. The presence of singularities and log structures creates
additional complications that do not appear in the smooth case and are overviewed in §5.

Using the absolute crystalline comparison, in Corollary 6.7 we compare the Aj,¢-cohomology of X
with the BJR—cohomology of X defined by Bhatt—-Morrow—Scholze in [BMS16, §13]:

RFAinf (X) ®knf BIR = Rl ris (Xé‘d/B;rR)- (1.3.3)

The identification (1.3.3) is important for ensuring that our semistable comparison (1.3.1) is com-
patible with the de Rham comparison proved in [Sch13], and hence that it respects filtrations.

As for the question posed in §1.1, even though it only involves the étale and the de Rham cohomolo-
gies, the resolution of its “torsion free case” outlined in §1.2 uses both (1.3.2) and (1.3.3) (so also
the bulk of the material of this paper). This is because we need to ensure that the determination of
Hn (X/K) by HE, (X?,_ Qp) via the de Rham comparison of p-adic Hodge theory is compatible with
the determination of Hj, 4g (X /Ok) and Hj,, 45 (X'/Ok) by Hg (X7, Zp) via Aise-cohomology and
Breuil-Kisin-Fargues modules. In fact, even for showing that the cohomology modules of RT" 4, ,(X)
are Breuil-Kisin—Fargues, we already use the absolute crystalline comparison (1.3.2).

inf

1.4. The object AQx and its base changes. Even though above we have focused on schemes,
the construction and the analysis of RI'4,  (—) works for any p-adic formal Oc-scheme X that is
semistable in the sense described in §1.5 below (see (1.5.1)) and that, whenever needed, is assumed
to be proper. Specifically, for such an X, in §2.2 we use the (variant for the étale topology of the)
definition of Bhatt—Morrow—Scholze from [BMS16] to build an object

AQx € D=%(X¢, Aing),  and toset  RT4 (%) := RT(Xg, AQx).

As in the smooth case of [BMS16], the relation of RT'4, . (X¥) to the p-adic étale cohomology of the
adic generic fiber %%d of X follows from the results of [Sch13] (see §2). In turn, the relations to the
logarithmic de Rham and crystalline cohomologies are the subjects of §4 and §5, respectively, and
rest on the following identifications established in Theorems 4.16 and 5.4:

. ~LL ~
AQy ®ainf79 Oc = Q%/Oc,log and AQ}I®Aiancris = Ru*(OxOC/p/AmS), (1.4.1)

where u: (X0, /p/Acris)logeris — Xet is the forgetful map of topoi. The arguments for (1.4.1) are
built on the same general skeleton as in [BMS16] but differ, among other aspects, in handling the
interaction of the Deligne—Berthelot—Ogus décalage functor L7 used in the definition of AQy with the
intervening base changes and with the almost isomorphisms supplied by the almost purity theorem.
Namely, for this, the nonflatness over the singular points of X of the explicit perfectoid proétale
covers that we construct makes it difficult to directly adapt the arguments from op. cit. Instead, we
take advantage of several general results about L from [Bhal6]. Verifying their assumptions in our
case amounts to the analysis in §3 of a number of continuous group cohomology modules built using
the aforementioned perfectoid cover. The typical conclusion of this analysis is that these modules
have no nonzero “almost torsion” and that the element p € Aj,¢ kills their “nonintegral parts.”

Further and more specific overviews of our arguments are given in the beginning parts of the
sections that follow. In the rest of this introduction, we fix the precise notational setup for the rest
of the paper (see §1.5), discuss the logarithmic structure on X that we later use without notational
explication (see §1.6), and review the relevant general notational conventions (see §1.7).
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1.5. The setup. In what follows, we fix the following notational setup.

e We fix an algebraically closed field k of characteristic p > 0, let C' be the completed algebraic
closure of W (k)| p] and let m C O¢ be the maximal ideal in the valuation ring of C.

e For convenience, we fix an embedding p® C C, that is, for every prime £, we fix a system of
: n_ 1/€%° . (,1/e™ :
compatible ¢"-power roots p = (p"/" )pso of p in Oc¢.

e We fix a p-adic formal scheme X over O¢ that in the étale topology may be covered by open
affines 4l which admit an étale Oc-morphism

= Spf(R) — Spf(RY) with R":=O0c{to,....tr,t:5 1, ..., 15/ (to- - t, —p?) (1.5.1)
for some d > 0, some 0 < r < d, and some q € Qs (where d, r, and ¢ may depend on ).

For example, C' could be the completed algebraic closure of any discretely valued field K of mixed
characteristic (0, p) with a perfect residue field. In addition, no generality is gained by replacing p?
in (1.5.1) by any nonunit 7 € O¢ \ {0}. The role of the embedding p@ C C is to simplify arguments
with expllclt charts for the log structure on X (defined in §1.6); this is particularly useful in §5,
especially in §§5.25-5.26. Our C is less general than in [BMS16], where any complete algebraically
closed nonarchimedean extension of Q) is typically allowed. One of the main reasons for this is
that we want to be able to apply, especially in §5, certain auxiliary results from [Beil3b] (besides,
relations tg---t, — 7 in which 7 has, say, a transcendental valuation go beyond what is typically
understood by “semistable reduction”).

The existence of the étale local semistable coordinates (1.5.1) implies that each X, /pn is locally of
finite type and flat over O¢/p" and X3! o /pn is dense in X, /pn- By [SP, 04D1] and limit arguments,

the map (1.5.1) is the formal p-adic completion of the W (k)-base change of an étale O-morphism
U — Spec (Olto, - ., tryti, - 650/ (o -+t — p7)) (1.5.2)

for some discrete valuation subring @ C W (k) that contains p?. Loc. cit. and [GR03, 7.1.6 (i)] also
imply that R is RP-flat. In addition, if R/p is not O¢/p-smooth, then R determines ¢.*

Any smooth p-adic formal O¢c-scheme X meets the requirements above: indeed, then the cover {4}
exists already for the Zariski topology with 7 = 0 and ¢ = 1 for all 4, see [FK17, 1.5.3.18]. Another
key example is

X = Xo,, (1.5.3)
for some discrete valuation subring O C O¢ with a perfect residue field and a uniformizer = € O
and a locally of finite type, flat O-scheme X' that is semistable in the sense that X/, is a normal
crossings divisor in X' (as defined in [SP, 0BSF]), so that, in particular, X" is regular at every point
of X@/W.z Moreover, if X' is even strictly semistable in the sense that Xy, is even a strict normal

IThe following argument justifies this. Choose an n € Zs, and let A be the local ring of Spec(R/p") at some
singular point. Without loss of generality, all the ¢; with 0 < ¢ < r are noninvertible in A, so, in particular, » > 1.
The d-th Fitting ideal Fittq(Q} (RD /pm) /(O /o™ )) C RD/p is generated by the r-fold partial products to---#; - - - tr
with 0 < ¢ <7, so the same holds for Flttd(QA/(Oc/pn)) C A (see [SGA 71, VI, 5.1 (a)]). Consequently, the quotient
(RD/p")/(Fittd(QlRD/pn)/(oc/ n))) is faithfully flat over Oc¢/(p?), and hence so is A/(Fittd(ﬂg/(oc/pn))). It follows
that (p?) C Oc¢ is the preimage of Flttd(QA/(oc /) C A, to the effect that R determines g.
2To justify that any X as in (1.5.3) meets the requirements, we first note that étale locally on X there exists a
regular sequence such that the product its r + 1 first terms cuts out Xo,. Thus, since any finite extension of O/7
is separable, the miracle flatness theorem [EGA IV, 6.1.5] ensures that every & € Xo/ has an étale neighborhood
U — X that admits an étale O-morphism U — Spec(Olto, ..., tq]/(to - - tr — 7)) or, equivalently, an étale morphism

U — Spec(Olto, ... eyt . 85" /(b0 - - - tr — 7). (1.5.4)
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crossings divisor in X' (as defined in [SP, 0BI9]), then the étale maps (1.5.4) exist even Zariski
locally on X, and so also the cover {41} exists already for the Zariski topology of X.

e We let X1 denote the adic generic fiber of X. By (1.5.1) and [Hub96, 3.5.1], the adic space
i{acd is smooth over C; by [Hub96, 1.3.18 ii)|, if X is O¢-proper, then }%‘? is C-proper.

o We let (X21) 06t denote the proétale site of X2 (reviewed in [BMS16, §5.1] and defined in
[Sch13, 3.9] and [Sch13e, (1)]) and let

v (X2 ot — Xat (1.5.5)

be the morphism to the étale site of X that sends any étale 4 — X to the constant pro-system
associated to its adic generic fiber. By [SP, 00X6], this functor indeed defines a morphism of
sites: by [Hub96, 3.5.1], it preserves coverings, commutes with fiber products, and respects

final objects. Thus, v induces a morphism of topoi (v, v,) (see [SP, 00XC]).

1.6. The logarithmic structure on X. Unless noted otherwise, we always equip
(1) the ring O¢ (resp., O¢/p™ or k) with the log structure O¢ \ {0} — O¢ (resp., its pullback);

(2) the formal scheme X (resp., Xo/pn or Xj) with the log structure given by the subsheaf

associated to the subpresheaf’ Ox &N (Ox ¢ [%])X — Ogx, ¢ (resp., its pullback log structure).
Both (1) and (2) determine the same log structure on Spf(O¢), so the map X — Spf(O¢) is that
of log formal schemes. Moreover, étale locally on X, the log structure may be made explicit: in
the presence of a coordinate morphism (1.5.1), Claims 1.6.1 and 1.6.3 below give an explicit chart
for the log structure of i, namely, the chart (1.6.2) in which we replace O by O¢, replace U by
i and set m := p?. This chart shows, in particular, that {{ and Oc may be endowed with fine
log structures whose base changes along a “change of log structure” self-map of O¢ recover the log
structures described in (1)—(2). In practice this means that we may deal with the log structures in
(1)—(2) as if they were fine and, in particular, we may cite [Kat89] for certain purposes.

By the preceding discussion, all the log structures above are quasi-coherent and integral. Moreover,
by [Kat89, 3.7 (2)], each X, jpn is log smooth over O¢/p™, so that, by [Kat89, 3.10], the Ox-module
Q%E /0c, log of logarithmic differentials is finite locally free. We set

i . AtOL
Qx/OC7IOg '_ /\ Qx/OC710g7

let 2%

%/0c, log denote the logarithmic de Rham complex, and set

RTogar(X/Oc) == RI'(Xat, 0% /0, 10g)-

Claim 1.6.1. For a valuation subring O C W (k) and an O-scheme U that has an étale morphism
U — Spec (O[tg,...,tr,tf_&l,...,tfl]/(to---tr —m)) for some nonunit 7€ O\ {0},
the log structure on U associated to Oy & N (O, ét[%])x has the chart
NZE Ui, (O\{0}) = T(U, Op) (1.6.2)
ar—=m?

given by (ai)o<i<r = [lo<icr ' 0N NT;Ol, the diagonal N>o — N?Bl and N>og —— (O \ {0}) on
N>, and the structure map (O \ {0}) — I'(U, Oy) on O\ {0}.

3The subpresheaf and its associated subsheaf necessarily agree on every quasi-compact object Ll of X¢¢.
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Proof. Without loss of generality, U is affine, so, by a limit argument, we may assume that O is
discretely valued. Then U, endowed with the log structure associated to (1.6.2), is logarithmically
regular in the sense of [Kat94b, 2.1] (compare with [Beil2, §4.1, proof of Lemmal). Therefore, since
the locus of triviality of this log structure is U [%], the claim follows from [Kat94b, 11.6]. O
Claim 1.6.3. For O as in Claim 1.6.1, a flat O-scheme U (resp., and its formal p-adic completion
i) endowed with the log structure associated to Oy, & N (O, ét[%])x (resp., Oy ¢ N (O, ét[%])x),

the formal p-adic completion morphism — j: 4 — U  of log ringed étale sites is strict.  (1.6.4)

Proof. For a geometric point @ of 8, due to [SP, 04D1], the stalk map Op.z = i~ (Op.z) — Ou =
induces an isomorphism Oy z/p™ = Oy 3/p" for every n > 0. We consider the stalk map

Ov,a N (Oval,)* =57 (Ov,a N (Oval)*) = O N (Oyal;])*. (1.6.5)

Every element z of the target of (1.6.5) satisfies the equation zy = p™ for some n > 0. We choose
an ¥ € Oy z congruent to x modulo p"™1, so that Zy = p™ + p" ™% for some 7,z € Oy z. Since
1+pz € Oéﬂ, we adjust ¥ to get y = p”, which shows that z € Oy z N (Oyﬁ[%])x and (p™) C (T).
Thus, the image of Z in Oy 3 and x generate the same ideal, and hence are unit multiples of each
other. Conversely, if Z1,Z2 € Opy5 N ((’)Uﬁ[%])X are unit multiples of each other in Oy 7, then, by
reducing modulo p” for a large enough n, we see that they generate the same ideal in Oy 4, so are

unit multiples of each other already in Op 3. In conclusion, the map (1.6.5) induces an isomorphism
(Ov,5 1 (O, a2/ 0} 5 = (O 0 (O al 1))/ O

to the effect that the map (1.6.4) is indeed strict, as claimed. O

1.7. Conventions and additional notation. For a field K, we let K be its algebraic closure
(taken inside C'if K is given as a subfield of C). If K has a valuation, we let Ok be its valuation
subring and write O for the integral closure of O in K. In mixed characteristic, we normalize
the valuations by requiring that v(p) = 1. We let (=)™ denote the smooth locus of a (formal)
scheme over an implicitly understood base. For power series rings, we use {—} to indicate decaying
coefficients. For a topological ring R, we let R° denote the subset of powerbounded elements.

We let W(—) (resp. Wp(—)) denote p-typical Witt vectors (resp., their length n truncation), and
let [~] denote Teichmiiller representatives. We let Z,y be the localization of Z at p, let yyn be the
group scheme of p"-th roots of unity, and let (,» denote a primitive p"-th root of unity. For brevity,

we set Zp(1) := lim (upn (C)). We let M denote the (by default, p-adic) completion of a module M

and, similarly, let @ denote the completion of a direct sum. Unless specified otherwise, we endow
a p-adically complete module with the inverse limit of the discrete topologies.

We use the definition of a perfectoid ring given in [BMSI16, 3.5] (the compatibility with prior
definitions is discussed in [BMS16, 3.20]). Explicitly, by [BMS16, 3.9 and 3.10], a p-torsion free ring
S is perfectoid if and only if S is p-adically complete and the divisor (p) C S has a p-power root in

the sense that there is a w € S with (@?) = (p) and S/wS ?pr) S/pS. In particular, for such
an S, any p-adically formally étale S-algebra S’ that is p-adically complete is also perfectoid.

For a ring object R of a topos 7, we write D(.7, R), or simply D(R), for the derived category of
R-modules. For an object M of a derived category, we denote its derived p-adic completion by

M = Rlim, (M ®% Z/p"7Z), and also set £ @ — = Rlim,((x % —) @X Z/p"Z) (1.7.1)


http://stacks.math.columbia.edu/tag/04D1

(see [SP, 0940] for the definition of Rlim). For a morphism f of ringed topoi, we use the commutation
of the functor Rf, with derived limits and derived completions, see [SP, 0A07 and 0944].

For a profinite group H and a continuous H-module M, we write R cont(H, M) for the continuous
cochain complex. Whenever convenient, we also view Rlconi(H, —) as the derived global sections
functor of the site of profinite H-sets (see [Sch13, 3.7 (iii)] and [Sch13e, (1)]).

For commuting endomorphisms fi, ..., f, of an abelian group A, we recall the Koszul complex:

Ka(fis oo fa) =A@y @y (Zlans o ywa] D5 Zfor, o), (172)

where A is regarded as a Z[x1, ..., 2,]-module by letting x; act as f;, the tensor products are over
Z|x1,...,xy,], and the factor complexes are concentrated in degrees 0 and 1.

For an ideal I of a ring R and an R-module complex (M®,d®) with M7 = 0 for j < 0, the subcomplex
nr(M®) C M* is defined by (n1(M®)) :={m € DM |d(m) € DT MIT}, (1.7.3)

We will mostly (but possibly not always, see Proposition 5.34) use 7;(M*®) in the same context as
in [BMS16, 6.2]: when I is generated by a nonzerodivisor and the M7 have no nonzero I-torsion.

A logarithmic divided power thickening (or, for brevity, a log PD thickening) is an exact closed
immersion of logarithmic (often abbreviated to log) schemes equipped with a divided power structure
on the quasi-coherent sheaf of ideals that defines the underlying closed immersion of schemes.
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2. THE OBJECT A2y AND THE p-ADIC ETALE COHOMOLOGY OF X

As in the case when X is smooth treated in [BMSI16], the eventual construction of the Aj,¢-
cohomology modules of X rests on the object AQx that lives in a derived category of A;,r-module
sheaves on X. In this short section, we review the definition of AQy in §2.2 and then, in the case
when X is proper, review the connection between Ay and the integral p-adic étale cohomology of
%acd in Theorem 2.3. We begin by fixing the basic notation that concerns the ring Aj,s of integral
p-adic Hodge theory. The setup of §§2.1-2.2 will be used freely in the rest of the paper.

2.1. The ring A;,;. We denote the tilt of O¢ by
b T . . ~ . o b
Oy, = mywyp (Oc¢/p), so that, by reduction mod p, l&ny’_)yp Oc — l&lyHyp (Oc/p) = O

as multiplicative monoids (see [Sch12, 3.4 (i)]). We regard p'/P” fixed in §1.5 as an element of
(’)?J. Due to the fixed embedding p@° C O, this element comes equipped with well-defined
powers (p'/P7)4 ¢ (’)bc for ¢ € Q>¢. For each = € 02, we let (..., 21, z(0)) denote its preimage
in Y&nyHW Oc¢. The map z — Valoc(ac(o)) makes Obc a complete valuation ring of height 1 whose
fraction field C° := Frac(O,) is algebraically closed (see [Sch12, 3.4 (iii), 3.7 (ii)]). We let m’ denote

the maximal ideal of (’)bc.
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The basic period ring Aj,¢ of Fontaine is defined by
Aipg 1= W(O%) and comes equipped with the Witt vector Frobenius ©: Ainf — Ajns.

We equip the local domain Aj,¢ with the product of the valuation topologies via the Witt coordinate
bijection W(0%) = [[22, O%. Then Ajy is complete and its topology agrees with the (p, [z])-
adic topology for any nonzero nonunit x € (’)bc. We fix (once and for all) a compatible system
€= (...,G2,(p, 1) of p-power roots of unity in O¢, so that € € ©?,, and set

= le] =1 € Ajps. (2.1.1)
Since (p, p) = (p, [e — 1]), the topology of Ajns is (p, u)-adic. By forming the limit of the sequences
0 — Wn(0%) L W, (0%) = W, (OL)/u— 0, (2.1.2)

we see that Aj,¢/p is p-adically complete and that the ideal (1) C Ajn¢ does not depend on the
choice of € (use the fact that the valuation of (, — 1 does not depend on ().

The assignment [z] — (%) extends uniquely to a ring homomorphism
0: A — Oc¢, the so-called de Rham specialization map of Ajye, (2.1.3)

which is surjective, as indicated, and intertwines the Frobenius ¢ of A;,¢ with the absolute Frobenius
of O¢/p. Its kernel Ker(0) C Ajy is principal and generated by the element

€= S0 [€/] (2.1.4)
(see [BMS16, 3.16]). Analogues of the sequences (2.1.2) show that each Aj,/&™ is p-adically com-

plete. In fact, the map 0 identifies A;ye/€™ with the initial p-adically complete infinitesimal thick-
ening of O¢ of order n — 1, see [SZ17, 3.13|. The composition

Gopt: Ay — Oc is the so-called Hodge—Tate specialization map of A,
and its kernel is generated by the element p(§) = Zf:_ol [€7].
Due to the nature of our C' (see §1.5), the ring O¢/p is a k-algebra, so Ay is a W (k)-algebra.

2.2. The object AQx. The operations that define (’)"C and A;j,;r make sense on the proétale site
(.’facfl)pmét: namely, as in [Sch13, 4.1, 5.10, and 6.1], we have the integral completed structure sheaf

At + o Atb . +
Oxgd = gnn(Ox%dvpmét/pn), its tilt Oxgd = @yHyp(Oxgd,proét/p)’ (2.2.1)
and the basic period sheaf
Ainf,xgd = W(O+’b)- (2.2.2)

ad
xC

For brevity, we often denote these sheaves simply by O+, O+?, and Ayys. Affinoid perfectoids form
a basis for (X28),0¢¢ (see [Sch13, 4.7]) and the construction of the map 6 of (2.1.3) makes sense for
any perfectoid O¢-algebra (see [BMS16, §3]). In particular, A xad COMES equipped with the map

exaéd . Ainf, xz&d — @Jr (223)

x%d7
which, by construction, is compatible with the map 0: Aj,s — O¢, intertwines the Witt vector
Frobenius ¢ of A ; x2d with the absolute Frobenius of O;ad /p, and, by [Sch13, 6.3 and 6.5], is
’ c
surjective with Ker(@xzd) =& Ajpp xaa-
The key object that we are going to study in this paper is

AQz = L (Rva(Ajpg, xea)) € DZ%(Xst, Aing), (2.2.4)
8



where the décalage functor Ly of [BMS16, §6] is formed with respect to the ideal (u) of the constant
sheaf Ajnr of X¢; (the definition of L, builds on the formula (1.7.3) for 7,)). The formula (2.2.4)
may also be executed with the Zariski site Xz, as the target of v, and it then defines the object

Aszm € DZO(:{Zaru Ainf)u (225)

which is the AQyx that was used in [BMSI16]. We will only use AQy,  in Corollary 4.20 (and in
some results that lead to it) for comparison to AQy.

Since p(p) = p(§)u, the Frobenius automorphism of A, xnd gives the “Frobenius” morphism

- [BMS16, 6.11, 6.10, and 3.17 (ii)]
AQx @, ., Ant = Ln(p(e)) (AQx)

which, by [BMS16, 6.14], induces an isomorphism

AQx in DX, Aing), (2.2.6)

(AQx ®%mf’¢ Ainf)[ﬁ] = (AQx)[ﬁ] (2.2.7)
In addition, by loc. cit., we also have
AQx @l Aun[§] = (Rin(Aiyg xe0)) @, A1), (22.8)

so a result of Scholze [BMS16, 5.6] supplies the following relation to integral p-adic étale cohomology:

Theorem 2.3. If X is O¢-proper, then there is an identification
RT (X4, AQx) @Y, Ane[ 1] = RUa (X8, Zp) @7 Aine[11]. (2.3.1)

In broad strokes, the proof of Theorem 2.3 given in loc. cit. goes as follows: one considers the map
RT& (X, Zp) ®7F, Aint = RUproee(XE, Zp) @7, Aint = RUproe (X&', Ay, xa) (2.3.2)
induced by the inclusion Aj,;f — Ainﬂ

instance, Lemma 3.17 below that the ideal
W(m’) := Ker(W(O%) — W(k)) of A (2.3.3)

kills the cohomology of its cone. Since u lies in W (m”) and we have the identification (2.2.8), it
follows that the map (2.3.2) induces the identification (2.3.1).

i and deduces from the almost purity theorem with, for

Remark 2.4. In practice, X often arises as the formal p-adic completion of a proper, finitely
presented Oc-scheme X. In this situation, %acd agrees with the adic space associated to Xo (see
[Con99, 5.3.1 4.], [Hub94, 4.6 (i)], and [Hub96, 1.9.2 ii)]) and, by [Hub96, 3.7.2], we have

RU& (X% Z,) = RUg(Xc, Zy).

3. THE LOCAL ANALYSIS OF AQx

Even though the definition of the object AQy given in (2.2.4) is global, the key computations that
will eventually relate it to the logarithmic de Rham and crystalline cohomologies are local and are
presented in this section. Under the assumption that X has a coordinate morphism as in (1.5.1) (or
(3.1.1) below), their basic goal is to express the cohomology of the proétale sheaf Ainﬂ xads at least
after applying L(,), in terms of continuous group cohomology formed using an explicit perfectoid

proétale cover f{z&i oo Of f{z&i (see Theorem 3.20). The basic relation of this sort is supplied by the
almost purity theorem, so the key point is to explicate the appearing group cohomology modules
well enough in order to eliminate the “almost” ambiguities inherent in this theorem with the help of
Lemma 3.18 below that comes from [Bhal6]. We first carry out this program for the simpler sheaf
O;r%d, and then build on this case to address A ¢ xad-

9



In comparison to the local analysis carried out in the smooth case in [BMS16], one complication
is that the perfectoid cover of X that gives rise to %*&d ~ 1s not flat over the singular points of
Xi. This makes it difficult to transfer various arguments with “g-de Rham complexes” across the
coordinate morphism (3.1.1). In fact, we avoid g-de Rham complexes altogether and instead phrase
the intermediate steps of the local analysis purely in terms of continuous group cohomology modules.

3.1. The local setup. We assume throughout §3 that X = Spf R and for some d > 0, some
0 <r <d, and some ¢q € Qsg, there is an étale Spf(O¢)-morphism as in (1.5.1):

X =Spf(R) — Spf(RY) = X~ with R":=Oc{to,....tr,t:01,..., 5/ (to- - tr — p7). (3.1.1)

Due to our assumptions from §1.5, a general X is of this form on a basis for its étale topology.
3.2. The perfectoid cover %25100. For each m > 0, we consider the R™-algebra

RO, = Oc{ty™" 7" gm0 Y (e —ptPTand R = (lim R

»or
Explicitly, we have the p-adically completed direct sum decomposition
O ~ N a,
R = @(an-vad)e(Z[%]20)@(T+1)@(Z[%D®(d_”7 Oc - 15" - 14", (32.1)
aj =0 for some 0 < j <7

which shows that RS is perfectoid (see §1.7) and that, for each m > 0, the map R} — RY is an
inclusion of an RY)-module direct summand comprised of those summands O¢ - t§° - - - 5% of (3.2.1)
for which p™a; € Z for all j.

The corresponding R-algebras are
Ry :=R@po Ry, and  Reo:= (lmRy)” = (R@po RY)™

Each R,, (resp., Rso) is a p-torsion free p-adically formally étale R -algebra (resp., R -algebra).
In particular, R, is perfectoid (see §1.7). By [GRO03, 7.1.6 (ii)], each R,, is p-adically complete.

The summands in (3.2.1) with a; ¢ Z for some 0 < j < d comprise an R-submodule MY of R,
and we set M., := R® RO ME. Thus, we have the RZ-module (resp., R-module) decomposition

RY =R MY (resp., Reo 2 R&® My). (3.2.2)
The profinite group
: ®(d+1)
A = {(607 ‘e 7€d) S <£nmzoupm(oc)> ‘ €€ = 1} ~ Z;‘?d

acts RM-linearly on R-! by scaling each tjl./ r by the ji,m-component of €;. The induced actions of A

on R and R, are continuous, compatible, and preserve the decompositions (3.2.1) and (3.2.2). In

terms of the element € fixed in §2.1, A is topologically freely generated by the following d elements:
6= (e 1,...,1,61,...,1) fori=1,...,7, where the O-th and i-th entries are nonidentity;
0;i:=(1,...,1,e1,...,1) fori=r+1,...,d, where the i-th entry is nonidentity.

After inverting p, for each m > 0, we have

REL[%] o @a1,...,ad€{0, ) pmﬂzl}RD[%] AR

Wv'w D
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so R [1] is the RD[l]—algebra obtained by adjoining the (p™)' roots of t1,...,tq € (Rm[l])X and
hence is finite étale over RD[ ]. Therefore, lim ( el ]) is a pro-(finite étale) A-cover of RD[p]

The explicit description (3.2.1) implies that R = (R} [%]) so the pro-object

(x2)2, = “lim Spa(RZ[1], RS

is an affinoid perfectoid pro-(finite étale) A-cover of the adic generic fiber (XY)28 of Spf(RS).
Consequently, the f{ad base change of (%D)C ~» hamely, the tower

adoO i« m Spa(Rm[%], Rm)7 ”
is an affinoid perfectoid pro-(finite étale) A-cover of %ad.

By [Sch13, 4.10 (iii)], the value on :{ad of the sheaf (9 ad reviewed in (2.2.1) is the ring R

3.3. The cohomology of O* and continuous group cohomology. By [Sch13, 3.5, 3.7 (iii)
and its proof, 6.6, the Cech complex of the sheaf O;d with respect to the pro-(finite étale) affinoid
C

perfectoid cover
ad ad
X¢ 0o > X0

is identified with the continuous cochain complex RT'cont(A, Roo). In particular, by using [SP,
01GY], we obtain the edge map to the proétale cohomology of Oxad'

e: RTcont (A, Roo) = Rl progt (X, 07F), (3.3.1)

which on the level of cohomology is described by the Cartan—Leray spectral sequence (see loc. cit. or
[SGA 4y1, V.3.3]). By the almost purity theorem [Sch13, 4.10 (v)], the maximal ideal m C O¢ kills
the cohomology groups of Cone(e).

We will show in Theorem 3.9 that Ln,_1)(e) is an isomorphism, so that Ln¢,—1) (R prost (xad, o))
is computed in terms of continuous group cohomology. For this, we will use the following lemma.

Lemma 3.4 (|[BMS16, 8.11 (i)]). An O¢-module map f: M — M’ with M[m] = (ﬁ) [m] =0
: O

and both Ker f and Coker f killed by m induces an isomorphism M[é\;[—l] = M’f\é—l]'

In order to apply Lemma 3.4, we will check in Proposition 3.8 that the cohomology modules
H! (A, Ry) have no nonzero m-torsion. This will use the following general lemmas.

Lemma 3.5. For an inclusion o C O of a discrete valuation ring into a nondiscrete valuation ring
of rank 1, if N is an o-module and 9 C O denotes the maximal ideal, then (N ®@, O)[9M] = 0.

Proof. The o-flatness of £ reduces us to the case when N is finitely generated, so it suffices to
observe that (O/(a))[9M] = 0 whenever a € O. O

Lemma 3.6. Fiz an i € Z>o, let H be a profinite group, let {M;}jc; be p-adically complete,
p-torsion free, continuous H-modules, and suppose that either

(i) the group H!

cont

(H, Mj) is p-torsion free for every j, or

(ii) some p™ kills H: . (H, M;) for every j.
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Then the following map is injective:

Hi . (H, @]GJM ) = 1les H! . (H,M;), where the completion is p-adic.

In particular, in the case (i) (resp., (ii)), Hi, . (H, @jEJMj) is p-torsion free (resp., killed by p™).

cont

o~

Proof. Let ¢ be a continuous (@ csM; ) valued i-cocycle that represents an element of the kernel.

For each j, let ¢; be the “j-th coordinate” of c. We discard the j with ¢; = 0 and, for each remaining
J, we choose the maximal n; € Z>q such that ¢; is (p"7 M;)-valued, so that the function j — n; is
finite-to-one. Since each Mj is p-torsion free, each p~"ic; is an Mj-valued continuous i-cocycle.

i nt(H, M;) vanishes, so each ¢; is the coboundary of a
(p"i M;)-valued continuous (i — 1)-cochain bj. In the case (i), p" kills H¢ . (H, M;), so c; is the

cont
coboundary of a (p"i~"M;)-valued Continuous (¢ — 1)-cochain b, Whenever n; > n.

In the case (i), the class of p™™i¢; in H,

In both cases, the b; exhibit ¢ as a continuous coboundary. O

Lemma 3.7 (|[BMS16, 7.3 (ii)|). Let H be a profinite group isomorphic to Z@d for some d > 0, and
let M = @1 >1 M, be a continuous H-module with each M, a discrete, p"™ torswn continuous H -

module. For any v1,...,vq4 € H that topologically freely generate H, there is a natural identification
RUcont(H, M) = Kp(y1 —1,...,7¢ — 1), so also H’ (H,M)= H/ (Ky(n—1,...,7a— 1)),

cont
in the derived category (see §1.7 for the notation). O

Proposition 3.8. The element (, — 1 kills the Oc-modules HE (A, Ms). Moreover, for each
b€ Oc, the Oc-modules Roo /b and HE (A, Ry /b) have no nonzero m-torsion.

Proof. Let S := O¢-t(° - - - t5* be a summand of (3.2.1). By Lemma 3.7, the Oc¢- module Hiw(AS)

is the i-th cohomology of the O¢-tensor product of d complexes of the form O¢ ot Oc¢ for suitable
p-power roots of unity (. Moreover, since the d complexes may be defined over some discrete
valuation subring of O, Lemma 3.5 ensures that

H (A, S) has no nonzero m-torsion. (3.8.1)

If S contributes to M, that is, if a; € Z for some j, then some ( is not 1, and the corresponding
factor complex is quasi-isomorphic to O¢/(¢ — 1). Thus, in this case,

¢—1, andhencealso (,—1, kills H (A,S). (3.8.2)

cont

For m > 0, let M~} denote the p-adically completed direct sum of those summands O¢ - tg0 - - -t of

(3.2.1) for which m is the smallest nonnegative integer with p™ - (ag, . . ., aq) € Z&@) . Lemma 3.6
and (3.8.1)—(3.8.2) imply that the Oc-module
H (A, M) has no nonzero m-torsion and is killed by ¢, — 1. (3.8.3)

Since R is RP-flat and R ® po MY is p-adically complete (see §1.5 and §3.2), Lemma 3.7 gives

Hoi (A, R@po M) = R @po Hop (A, My). (3.8.4)
Since My, & @m(R(@RD ME), (3.8.3)~(3.8.4) and Lemma 3.6 imply that ¢, — 1 kills HZ, . (A, My).
Since R /b is p-adically complete and each of the summands of the decomposition

Roo/(b,p™) = R/ (b,p™) ® @,,20(R @ ML)/ (b,p")  forn >0
12



may be defined over a suitably large discrete valuation subring of O¢, Lemma 3.5 ensures that
R+ /b has no nonzero m-torsion. In addition, the A-action on each summand may be defined over
a possibly larger such subring, so, by Lemmas 3.5 and 3.7, in the case b # 0 each

H (A (R®po MIY/b), soalso H

cont

(A, My /b), has no nonzero m-torsion.
This conclusion extends to the case b = 0 because the ((, — 1)-annihilation of H¢ (A, M) supplies
the injection H,

Eont (A Moo) = HE (A, Moo /(¢ — 1)). It remains to observe that the O¢-module

chont (A, R/b) also has no nonzero m-torsion: A acts trivially on R/b, so Lemma 3.7 ensures that
H! (A, R/b) is a direct sum of copies of R/b. O

Theorem 3.9. The edge map e defined in (3.3.1) induces the isomorphism
Liye,—1y(€): Lne,—1)(Rleont (A, Roo)) — Ly, 1) (RTproct (X251, O1)). (3.9.1)

Proof. Proposition 3.8 ensures that the Og-modules HY (A, Rs) have no nonzero m-torsion and

Cont(A ROO) ~ Cont(A R)
that A Rl 1] © Al (A RIG 1
direct sum of copies of R (see Lemma 3.7), so, by Proposition 3.8, it has no nonzero m-torsion.

Consequently, since m kills the kernel and the cokernel of each map

H(e): H (A, Roo) — HY(XX, O1)

Since A acts trivially on R, this last quotient is a finite

Cont

(see §3.3), Lemma 3.4 applies to these maps and gives the desired conclusion. [l
Remark 3.10. Theorem 3.9 extends as follows: for a pro-(finite étale) affinoid perfectoid A’-cover
Spa(R’oo[%], R) — Spa(R[%], R) = x3 that refines .’{%foo — x3d of §3.2, (3.10.1)
the edge map e’ defined analogously to (3.3.1) induces the isomorphism
Liye,—1y(€'): L, 1) (RTeont (A, Rig)) = Ly, 1) (R proat (X2, O1)).

Indeed, by the almost purity theorem [Sch13, 4.10 (v)], the ideal m kills the cohomology of Cone(e’)
(in addition to that of Cone(e)), so the octahedral axiom (see [BBD82, 1.1.7.1]) ensures that it also
kills the cohomology of the cone of the map RT¢ont(A, Roo) = Rlcont(A’, R..); Lemma 3.4 then
applies to this map and combines with Theorem 3.9 to give the claim.

The main goal of this section is an analogue of Theorem 3.9 for the sheaf A, ¢ xad (see Theorem 3.20).

To prepare for it, in §3.11 and §3.14 we describe the values of the sheaves Oxad and A, xad 01 %%d -

inf,
3.11. The tilt R’ . Thanks to the explicit description (3.2.1) of the perfectoid ring RS, its tilt
(RY) = Y&ny’_)yp(Ro‘:'o /p) is described explicitly by the identification

—

(R = (1, (Oplat/”" ool 2 a7 )

o b .00, .. 0
= @m,...,ad)e(zg%]zo)@“w@(Z{iwd-m, Oc -z’ -2y’
aj =0 forsome 0 <j<r

1 / an

m+1
where /P e ) of elements of RS,

)7 Y Z
the completions are p*/P™-adic, and the decomposition is as (’)"C—modules. Thus,

corresponds to the p-power compatible sequence (. ..

the tilt R’ := yiny'_) ,(Rso/p) of the perfectoid ring Ry
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is identified with the p'/?™-adic completion of any lift of the étale RY /p-algebra R.,/p to an étale
(R )’-algebra (such a lift exists, see [SP, 04D1]). By [Sch13, 5.11 (i)], the value on %g?}oo of the

sheaf O1°

2 reviewed in (2.2.1) is the ring R_.

By functoriality, the group A acts continuously and (’)bo-linearly on (R3)” and R’_. Explicitly, A
respects the completed direct sum decomposition and an (eq, ..., €7) € A scales x?j by e?j € (’)bc.

Our analysis in §3.14 of the value on .’facd o Of the sheaf A; ¢ xad will hinge on the following lemmas.

Lemma 3.12. Both R’ /b and Hi,, (A, R%,/b) for each b € O\ {0} have no nonzero m’-torsion.

Proof. We may assume that b € m®, so, by using Frobenius, that b | pt/P™ in (’)bc. Then Proposi-
tion 3.8 and the A-isomorphism R’ /b2 Ry, /bt for some bf € O¢ give the claim. O

Lemma 3.13. For any affinoid perfectoid Spa(R(’)O[}D], R._) over Spa(C,O¢), the ring

Aing(RL) == W((BL))  (resp.,  Awnt(BL)/n)

is (p, u)-adically complete (resp., p-adically complete). Moreover, for any n,n’ > 0, the sequence
(p", 1) is Aing(R.)-regular and the Asg/(p", " )-algebra Ape(RL)/(p", 1) is flat.

Proof. By its definition, the perfect O%-algebra (R..)" := l'&nyHyp (R’ /p) has no nonzero p'/P™-
torsion (that is, it is O%-flat), so the regular sequence claim follows from [SP, 07DV]. The formal
criterion of flatness [BouAC, Ch. III, §5.2, Thm. 1 (i)<(iv)] then implies the A/ (p", 1™ )-flatness
of Aine(RL)/(®™, ") (even with n/ = 0). In addition, the short exact sequences (2.1.2) with (R/_)
in place of (9% imply the p-adic completeness of Ajns(RL)/ .

Analogously to the case of Ajy¢ discussed in §2.1, we use the Witt coordinate bijection and the
p-adic topology on (R.)’ to topologize Ain(RL) = [102,(R.,)” and we see that this topology
agrees with the (p, u)-adic topology. Thus, Aie(RL,) is (p, u)-adically complete. O

3.14. The ring A i(Ro). By [Schl3, 6.5 (i)], the value on %2?}00 of the sheaf A; ¢ xad 18 the ring

Ainf(-Roo) = W(Rio)

By Lemma 3.13 and the formal criterion of flatness, A (Roo) is (p, p)-adically formally flat as
an Aje-algebra and (p, p)-adically formally étale as an Aj,r(RS )-algebra. By using, in addition,
Lemma 3.12, we see that each quotient

Aime(Rso)/ (™, 1), so also Aint(Roo)/ 1, has no nonzero W(m’)-torsion.  (3.14.1)

In general, for a perfect Fp-algebra A, the Witt ring W(A) is the unique p-adically complete p-
torsion free 7Z, algebra A equlpped with an 1somorph1sm A /p =~ A (see |[Bhal6, 2.5]). For an a € A,
the Teichmiiller [a] € A is hm ( ") where @, € A is any lift of a'/?" (see [Bhal6, 2.4]). Therefore,

—

Aane(RD) 2= (i, A" X7 XX (T X = ()0

~ M .. X9, Y%
= D(ao,..a0)e@]50)2C D a@L)e@n), At Xo® - Xy,
aj =0 for some 0 < j <r
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where the completions are (p, u)-adic, the decomposition is as Aj,e-modules, and, in terms of §3.11,

we have Xil/ P = [le /p m]. The summands for which a; € Z for all ¢ comprise a subring

ARD) 2 Ape{ X0, X, X2, XY/ (Xo - X — [(0MP7)1]) inside Ape(RSL), (3.14.2)
where the convergence is (p, 1)-adic. The remaining summands, that is, those for which a; ¢ Z for
some i, comprise an A(R”)-submodule N C Aj¢(RY).

On sections over .’{%d ~» the map 6 from (2.2.3) is identified with the unique ring homomorphism

0: Ains(Roo) = Roo such that [z] — 20,
is surjective with the kernel generated by the regular element £ (see [BMS16, 3.10, 3.11]), and
intertwines the Witt vector Frobenius of Aj,f(Rs) with the absolute Frobenius of Ry, /p. Thus,
: A(R”) - R" is described by Xi— ti. (3.14.3)
We use the surjection (3.14.3) to uniquely lift the étale RY/p-algebra R/p to a (p, u)-adically
complete, formally étale A(RY)-algebra A(R). By construction, we have the identification
Ainf(Roo) = Ainf(R)® 4(zoy A(R), (3.14.4)

where the completion is (p, u)-adic. Therefore, by setting Ny, := NODO@\) A( RD)A(R), we arrive at the
decompositions of Aj,¢(RL) and Aj(Rso) into “integral” and “nonintegral” parts:

Aif(RL) Z ARD) @ N and  Apg(Roo) = A(R) ® Ny (3.14.5)
Modulo Ker @ (that is, modulo &), these decompositions reduce to the decompositions (3.2.2).

The Witt vector Frobenius of Ay,¢(RY) preserves A(RY); explicitly: it is semilinear with respect to

the Frobenius of Aj,¢ and raises each Xl-l/ P" to the p-th power. By construction, A(R) inherits a
Frobenius ring endomorphism from A(R"), and the identification (3.14.4) is Frobenius-equivariant.

The natural A-action on Ajyr(Reo) is continuous and commutes with the Frobenius. Explicitly, A
respects the completed direct sum decomposition and an (eq, ..., €7) € A scales X;j by [G?j | € Ains.

The A-action on A(RP) lifts uniquely to a necessarily Frobenius-equivariant A-action on A(R). In
particular, A acts trivially on A(R)/p. The identifications (3.14.4) and (3.14.5) are A-equivariant.

3.15. The cohomology of Ay, and continuous group cohomology. Similarly to §3.3, the
Cech complex of the sheaf Ay, xad with respect to the pro-(finite étale) affinoid perfectoid cover

%acd o %acd is identified with the continuous cochain complex RTcont(A, Ajnt(Roo)). Thus, by
using [SP, 01GY], we obtain the edge map to the proétale cohomology of A, xad

e: R cont (A, At (Roo)) — RT proct (X3, Aing). (3.15.1)

By the almost purity theorem, more precisely, by [Sch13, 6.5 (ii)], the subset [m?] C Ajy¢ that consists
of the Teichmiiller lifts of the elements in the maximal ideal m® C (’)bc kills all the cohomology groups
of Cone(e). Since € W(m’) (see (2.3.3)), it will be useful to strengthen this annihilation as follows.

Lemma 3.16. The ideal W (m®) C Ay defined in (2.3.3) kills each H'(Cone(e)).

Proof. We argue similarly to [BMS16, proof of Thm. 5.6]. Both the source and the target of e are
derived p-adically complete (see §1.7), so, by [BS15, 3.4.4 and 3.4.14], each H"(Cone(e)) is also
derived p-adically complete. Thus, the desired conclusion follows from the following lemma. ]

Lemma 3.17. If [mb}Ainf kills a derived p-adically complete Aine-module H, then so does W (m”).
15
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Proof. By the derived p-adic completeness, any free Aj,s-module resolution F'® of H satisfies
H = Coker (@n(F’I/p") — Y&nn(FO/p")) .
Moreover, for every n > 1 the ideals [m’] - W,(0%) and W, (m") := Ker(W,(0%) — W,(k)) of
W, (0%) agree. Thus, the ([m’] Ajy¢)-annihilation of H implies that W, (m’) kills both
Hip" 2 HO(F* @4, Aue/p")  and  Tor (H, Aue/p") = B~ (F* @, Aine/0").

Thus, since [m’)? = [m®] and Fy/p" has no nonzero m-torsion for every nonzero m € [m’], any element
x € Wyppi1(m?) - (Fo/p™h) may be lifted to Wi,y 1(m”) - (F_1/p™*!), compatibly with a specified lift
of its image T € W, (m®) - (Fy/p") to Wy (m®) - (F_1/p"™). In particular, W (m”) - (@n(FO/p”)) lies
in the image of T&nn(F_l/p”), that is, W (m") kills H, as desired. O

We will show in Theorem 3.20 that L, (e) is an isomorphism, so that continuous group cohomology
computes L1,) (R prost (Z{‘ZSI, Ajpnt)). For this, we will use the following variant of [Bhal6, 6.14].

Lemma 3.18. If B 2 B s a morphism in D(A) such that each H'(B ®ginf Aing/1v) has no
nonzero W(m®)-torsion and W (m®) kills each H*(Cone(b)), then Ly (b) is an isomorphism.

Proof. Since Ln is in general not a triangulated functor, the fact that Ln,)(Cone(b)) = 0 does not
a priori suffice. Nevertheless, the argument used to prove [Bhal6, 6.14] gives the claim. In more
detail, (W (m”))? kills the cohomology of Cone(b) ®H;1mf Aing /11, so the sequences

0— H'(B ®knf Aine/p) — H' (B’ ®H,mef A/ 1) — H*(Cone(b) ®Emf Aint/p) — 0
are short exact. By the Bockstein construction (see [BMS16, 6.12]), as i varies, they comprise a
short exact sequence whose terms are complexes that compute L, (B) ®HAM Ajng/p, ete. Thus,
the vanishing of Lnj,)(Cone(b)) implies that (L, (b)) @
that Cone(Ln,) (b)) ®%

But then, as we see after applying — ®HAM Ainf[i}, this cohomology vanishes. O

Ajng/p is an isomorphism. It follows

inf

Aint/p = 0, so p acts invertibly on the cohomology of Cone(Ln,(b)).

inf

We now verify that the edge map e defined in (3.15.1) also meets the first assumption of Lemma 3.18.

Proposition 3.19. For each i € Z, the Aip-module HE (A, Anp(Roo)/pt) is p-torsion free and
p-adically complete; moreover, the following natural maps are isomorphisms:

Hont (A Ain (Roo) /1) @ sye Aint /9" = Heont(8s Aing (o) / (,p™)) - for m>0 (3.19.1)

and
Honi (A, Aing(Roo) /1) — i (Hion (A, Aing(Roo) / (11, 2™))) - (3.19.2)
In addition, H? (A, Aing(Roo)/ (1, p™)) and H oy (A, Ainp(Roo) /1) have no nonzero W (m”)-torsion.

Proof. Since A(R)/u is p-adically complete and trivial as a A-module (see Lemma 3.13 and §3.14),
Lemma 3.7 implies that H¢ (A, A(R)/u) is a direct sum of copies of A(R)/u, and likewise for
Hi (A A(R)/(u,p")). Consequently, since, by (3.14.1), the rings A(R)/(u,p") and A(R)/p have
no nonzero W (m®)-torsion, the analogues of all the claims with A(R) in place of Ajyf(Ruo) follow.
Thus, due to (3.14.5), we only need to establish these analogues with N, in place of Aj¢(Rwo).

To prepare for treating N, we start by building on the ideas of [Bhal6, proof of Lem. 4.6] to
analyze a single summand S := A - X% --- XJ¢ that, as in §3.14, contributes to N, We set

bj:=aj—ay for 1<j<r and bj:=a; for r+1<j<d, (3.19.3)
16



and let m € Z~q be the minimal such that p"b; € Z for all j. Lemma 3. 7 applied with the topological
generators d1, . .., 64 of A defined in §3.2 gives an Ajye-isomorphism H, (A, S/u) ~ H'(C*®), where
C* is the (Ajne/p)-tensor product of the d complexes

b.
eJ]|—1 .
it/ S5 A /) 2 Ae /(2] — 1) @K, Aune/ 11 (3.19.4)

By reordering the b;, we may assume that for all j we have b; /b1 € Z, so that by € Z and both
[€?1] —1 | [e%] — 1 and [¢®'] — 1 | u. Then, by resolving Ap,¢/p in (3.19.4) with j = 1, we see that C*®
is quasi-isomorphic to a direct sum of shifts of Aj,¢/([€?] — 1) = Ajne/ "™ (). Thus, for i € Z,

Hi (A S/u) =~ @) A/ ™(n)  for some set I, and hence H (A, S/p)[p] =0. (3.19.5)
By Lemma 3.7 and [SP, 061Z, 0662], this implies that

Hciont(Av S/:u) ®Ainf Ainf/pn ; v:ont(A S/(M p )) (3196)

We now analyze NJ. Since Ai,¢(R5)/p is p-adically complete, §3.14 gives the A-decomposition

—

Aine(RS) /1 = EB (a0, +00) E(Z[L]30) 2T B(Z[E) S, Ajgg /- XG0 -+ X 54 (3.19.7)

aj =0 forsome 0 < j <r

in which the completion is p-adic. Lemma 3.6 (i) then combines with (3.19.5) to prove that

H! (A NZ/i)[p) =0 for each i€ Z. (3.19.8)
Analogously to (3.19.6), this, in turn, implies that
cont(A ND /:u) ®Ainf Ainf/pn ; cont( /(M p )) (3199)

Finally, we analyze N.,. The identification

Noo/(11,0™) 22 N/ (1, 9™) ® 450y A(R) (3.19.10)
is A-equivariant and A(R)/(u,p") is (A(RP)/(u, p"))-flat, so Lemma 3.7 gives the identifications
cont(A NOO/(:U’ p )) cont(A ND/(N’pn)) ®A(RD) A(R) for n > 1’ (31911)

which are compatible as n varies. Consequently, for n > 1, the sequences
0 = Hiong (A, Noo/ (11, P™)) [P = Heont(As Noo/ (1, P")) = Hégne (A, Noo/ (1,9 1)) = 0 (3.19.12)

are short exact because, by (3.19.5) and (3.19.9), so are their analogues with NJ in place of Nu.
By taking the inverse limit of these sequences for varying n and using [SP, 08U5|, we obtain

con‘c(A NOO/IU’ —> &_ ( cont(A7 NOO/(van))) ’ (31913)

which is the sought analogue of (3.19.2). The p-torsion freeness of H{ (A, Noo/p) follows from
(3.19.12)—(3.19.13) and, as in (3.19.6), it implies that

cont(A NOO/:U) @ Ay Ainf/pn — cont(A NOO/(/" p ))

It remains to show that each H’ (A, Nuoo/(11,p™)) has no nonzero W (m’)-torsion.

cont

The surjectivity aspect of the short exact sequences (3.19.12) implies that the sequences

0= Noo/(1:9) L Noo/(11,5™) = Noo/ (s p"1) = 0

stay short exact after applying H{, (A, —). Thus, H¢ (A, Noo/(p,p")) is a successive exten-
sion of copies of HZ,, (A, Noo/(11,p)). Consequently, it has no nonzero W (m”)-torsion because, by
Lemma 3.12, neither does H’, (A, Noo/(it,p))- O
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Theorem 3.20. The edge map e defined in (3.15.1) induces the isomorphism
Ly (€): Lnguy(RTcont (A, Ainr(Roo))) == Ly (BT proct (X&', Ay, x2))-

Proof. By the projection formula [SP, 0944],
chont(A7 Ainf(Roo)) ®ainf Ainf/ﬂ = RPCOHt<A7 Ainf(Roo>/:UJ)7 (3-20~1>

so Proposition 3.19 implies that the cohomology modules of R cont (A, Aing(Ro)) ®HAinf Ajne/p have
no nonzero W (m’)-torsion. Thus, the claim follows from Lemmas 3.16 and 3.18. O

Remark 3.21. Analogously to Remark 3.10, Theorem 3.20 extends as follows: for a pro-(finite
étale) affinoid perfectoid A’-cover

Spa(RL.[5], Ri) — Spa(R[J], R) = X' that refines X — X, (3.21.1)
the edge map e’ defined analogously to (3.15.1) induces the isomorphism
Ln(u)(el) : Ln(u)(chont(Ala Ainf(Rgo))) — Ln(u)(RFproét (%%’dv @+))

Indeed, like in Remark 3.10, by the almost purity theorem and the octahedral axiom, [mb]Ainf kills
the cohomology modules of the cone of the map ep: RTcont (A, Ainf(Roo)) — R cont (A’ Ajne(RL))
and, by |[BS15, 3.4.4 and 3.4.14|, these modules are derived p-adically complete; thus, by Lemma 3.17,
even W (m®) kills them, to the effect that Lemma 3.18 applies to the map ey and proves the claim.

As a final goal of §3, we wish to show in Theorem 3.34 that even the maps L, (e@ﬂg, A(m))

inf Cris

are isomorphisms for Aj,¢-algebras Agfs) reviewed in §3.26 below. This extension of Theorem 3.20
will be important for relating AQyx to logarithmic crystalline cohomology in §5. Our analysis of
Ln(u)(e&\)ﬂgmng;s) ) will use the following further consequences of the proof of Proposition 3.19.
3.22. The decomposition of N,. For m > 0, let NJ be the (p, u)-adically completed direct
sum of those summands Ay - X7 --- X3¢ that contribute to At (RY) in §3.14 for which m is the
smallest nonnegative integer such that p™a; € Z for all j (equivalently, in the notation of (3.19.3),
such that p™b; € Z for all j). For varying m > 0, the A(R”)-modules N}, and the A(R)-modules
Ny, := NS@A(RD)A(R) comprise the (p, u)-adically completed direct sum decompositions

NZ=@, NI and No=@®,.,N (3.22.1)

m>0 1Vm-
For a fixed i, Lemma 3.7 and (3.19.5)—(3.19.6) imply that
Hi (AN (,p™) = @) Aine/ (™™ (1), p")  for some set I’ and every n > 0. (3.22.2)
Corollary 3.23. For all i and n,m > 0,
Hion (A, Nin/ (11, p™)) s killed by ™™ (1) and s a flat Aing/(¢ ™™ (1), p")-module.

Proof. If R = RY, then (3.22.2) suffices. In addition, by Lazard’s theorem, A(R)/(u,p") is a filtered
direct limit of finite free A(R"Y)/ (i, p")-modules. Thus, the general case of the claim follows by using
(3.19.11) and its analogue for Ny and Ng. O

We wish to supplement Proposition 3.19 with Proposition 3.25 that analyzes the cohomology of N
without reducing modulo u. Its proof will use the following base change result for Ln.
18
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Lemma 3.24 ([Bhal6, 5.14]). For a ring A, a regular sequence f,g € A, and a K € D(A), if the
cohomology modules H' (K ®HA A/ f) have no nonzero g-torsion, then the natural map

L) (K) oL Alg — Ln(?)(K ok A/g), where f denotes the image of f in A/g,
18 an isomorphism. O

Proposition 3.25. The element u kills every HE (A, Noo).

Proof. Let 61, ...,94 be the free generators of A fixed in §3.2. By Lemma, 3.7, we need to prove that

Ly (Kn (81 = 1,64 — 1)) 0. (3.25.1)

The key point, with which we start, is to prove the vanishing (3.25.1) modulo ¢(§). The isomorphism
Kno(61—1,...,0 = 1) ®  Awe/pn = Knju(61—1,...,64— 1),

Lemma 3.7, and Proposition 3.19 show that the cohomology of Kn_ (61 —1,...,d4—1) ®HAM Ajng/
is p-torsion free. Therefore, Lemma 3.24 supplies the identification

Ly (Kne (01— 1,60 — 1)) ®, - Aine/90(€) = Ln,—1)(Kn joe) (01 — 1,...,64 — 1)). (3.25.2)

The inverse Frobenius ¢! maps NJ isomorphically onto a direct summand of N3, so it maps N

isomorphically onto a direct summand of Nu. Thus, o~ maps Na/p(€) isomorphically onto a
direct summand of Ny /£ = My (see (3.14.5)). In particular, by Lemma 3.7 and Proposition 3.8,
¢p — 1 kills the cohomology of Ky __ /,(¢)(01 —1,...,84 — 1), so both sides of (3.25.2) are acyclic.

Since Kn_ (61 — 1,...,0q — 1) is derived ¢(&)-adically complete (see [SP, 090T]), [BMS16, 6.19]
implies the same for Ln,)(Kn,, (01 —1,...,64 — 1)). The established acyclicity of the left side of

(3.25.2) therefore implies the desired vanishing (3.25.1). O
3.26. The A;r-algebras Agrls) The ring AEHS) for m € Z>; is the p-adic completion of the Aj,¢-
subalgebra Am(s ™) of Amf[ | generated by the elements E—T with s < m. In particular, Agrls) =~ Ais

(m)

cris

cris ?

for m < p. In contrast, if m > p, then, since ’;—! € the p-adic and (p, p)-adic topologies of A

(m) .

oris 18 p-torsion free; in fact, although we will not use this, Proposition 5.36

(m).

cris *

agree. By its definition, A"

below implies that A" i5 even a domain. The map 6 of (2.1.3) extends to A~

cris

0: A" s 0. (3.26.1)

Due to the “finite type nature” of the Aj,s-algebra Agrls) , more precisely, due to [BMS16, 12.7 (ii)],
the systems of ideals

(p nAlm ))nZI and ({z € Alm

cris

| px € A )}) >1 of A" are intertwined. (3.26.2)

cris cris cris

Equivalently,

for every n>1, the map (A(m /" )1 — Ag’fs)/p” vanishes for large n' >n. (3.26.3)

Cris

Therefore, by taking the inverse limit over n of the sequences

( cris /p )[ ] - Ac;?s)/p _> ACI‘IS /p - Aﬁrls)/(u7pn) - 07 (3264>
we conclude that
AEZQ is p-torsion free and AEZQ /i is p-adically complete. (3.26.5)
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The Frobenius automorphism of Aj,¢ preserves the subring A% - Amf[ |: indeed, for m > p,

since £ = Y 7~ 1[ i/P] and €P € pAm(S ), we have p(§) = fzol[ ] and ¢(¢&) € pACH(S ). Thus, the
Frobenius induces a ring endomorphism

g Ay A (3.26.6)

Cris cris’?

which, via the map 6, intertwines the absolute Frobenius of O¢/p (compare with (2.1.3)).

3.27. The A(R)-algebras A((:ZS) (R). We define the “relative version” of the ring Ag’fs) and its “highly
ramified cover” by

A"(R) := A(R)®4

Cris

A(”_l)

inf* “cris ?

A™ and A(Ry) = Api(Reo)®a

1nf Cris Cris
respectively, where the completion is (p, u)-adic (equivalently, p-adic if m > p). In the case m < p,
one has the identifications A" (R) =2 A(R) and A™(Ro ) = Ajns(Roo). Due to the decomposition

Cris cris (

(3.14.5), the A(R)-algebra Alm )(R) is an A" )(R) module direct summand of A" )(Roo).

cris cris cris

The completed direct sum decomposition of Ay¢(RY) (see §3.14) gives the decomposition

AlM) (R2) =

Cris

(m)
EB(ao,...,ad)eZ[ 1190 +D gz 1@ (d-r), A - X0 - X7, (3.27.1)

aj:Oforsome0<]<r

where the completion is (p, u)-adic (equivalently, p-adic if m > p), and, by Lemma 3.13, the al-
gebra Alm )(Roo) is (p, u)-adically formally étale over AT )(RD) In particular, (3.26.3) holds with

AT )(RD) in place of A ™) R) in place of A

oris o) and hence also with A% ( oris -
generalization of (3.26.5) holds, too:

Consequently, the

A(m)(Roo) is p-torsion free and A™(R (Roo)/p  is p-adically complete. (3.27.2)

Cris Cris

In addition, by (3.27.1) and the formal étaleness, each Alm )(ROO) is p-torsion free. By §3.14 and

cris

§3.26, the rings A((:ZLS) (R) and A (Rs) come equipped with A" _semilinear Frobenius endomor-

Cris cris
phisms that are compatible as m varies.

The group A acts continuously, Frobenius-equivariantly, and Al -linearly on A (R) and A (R ).

cris Cris Cris
For each § € A, the abelian group endomorphism 5_1 0

of A(R) induces the endomorphism % of

A (R) that satisfies § = 14+ pu->—= 5 , S0, in partlcular the induced A-action on 4" (R)/pu is trivial.

Cris cris

3.28. The A" base change of the edge map. Since A = Ayt for m < p (see §3.26), for

cris cris

the sake of analyzing the map e® Aian( ™) et us suppose that m > p. Then for each A((:?fs) /p",

we have Ag?}s /p" = Agm? /(p", ) for every large enough n/ > 0 (see §3.26). Consequently, since
each sequence (p", u™) is Amf(Roo)—regular with Ane(Roo)/(p", 1) flat over A/ (p", ™) (see
Lemma 3.13), the projection formula [SP, 0944] and Lemma 3.7 imply that

A" = BT 0o (A, A™ (Ro)).

inf = ~Cris Cris

~L
chont (A, Ainf(Roo))®A

Consequently, the edge map e defined in (3.15.1) gives rise to the map
@5 A R (A, AT (Ro)) = RTproge (X5, Ap) @5, AT (3.28.1)

Cris Cris inf =~ ~Cris

Since [m’] kills each H*(Cone(e)) (see §3.15) and Cone( ) is bounded, a spectral sequence (see

[SP, 0662|) shows that [m] also kills each H?(Cone(e) @ A Cm /p ). Consequently, by [SP, 08U5],
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the ideal [m®] Aj,¢ kills each H%Cone(e)@“j fA(m)) In fact, since H%Cone(e)@ﬂj fA( )) is derived

Cris cris

p-adically complete (see [BS15, 3.4.4 and 3.4.14]), by Lemma 3.17, even W (m) kills it. In conclusion,
W (m’) kills all the cohomology groups of Cone(e@ﬂjmf/l(m)) = Cone(e )®A A, (3.28.2)

Cris inf =~ ~Cris

We will show in Theorem 3.34 that Ln(”)(e@)ﬁ o A(m)) is an isomorphism by applying Lemma 3.18.

Cris
Thus, we need to know that the Aj,s-modules HY (A, A(m)( Roo)/ 1) have no nonzero W (m”)-torsion

Cris

(compare with Proposition 3.19 for Ajnf(Rso)/i). The following result is a step in that direction:
Proposition 3.29. The rings A )(R )/ and A )(Roo)/(u,p”) have no nonzero W (m?)-torsion.

cris cris

()(

Cris

A (Rxo)/(p,p") for every n € Z>;. The argument for the latter is similar to that of [BMSI6,

Cris
12.7 (iii)] and uses approximation by Noetherian rings. Namely, due to the p-adic completeness of

Ajnr, the assignment
T [ -1 defines a Z,-algebra morphism Zp[T] = Ains- (3.29.1)

By [BMS16, 4.31], this turns A, into a faithfully flat Zp[[T]] module, so, letting M be the mod
(", (T'+1)P —1) reduction of the Z,[T]-subalgebra of Z, [[T]][ ] generated by the & (30~ (T+ 1)H)s
with s < m, we have the identification

A (R)/(pyp™) = M 7,117/ (", (T+1)7—1) Aint(Roo) / (2", 1)
The (Z,[T]/(p", (T+1)P—1))-flatness of Ajnr(Roo)/(p", 1) ensures that the ¢! ()-torsion submod-
ule of A™ )(Roo) /(p, p™) is the base change of the T-torsion submodule M[T| C M. Consequently,

cris

since o~ 1(u) € W(m®), the consideration of the p-adic filtration of M[T] reduces us to proving that

Proof. Due to the p-adic completeness of A’ ."(Ro)/u, it suffices to establish the claim about

Fp ®z,111/ 7, (+1)p—1) Aint(Roo) /(P 1) = R o (1) has no nonzero m’-torsion,

which follows from Lemma 3.12. O
To relate HE . (A, Ams (Roo) /) to HY o (A, Ane(Reo) /1), we will use the following generality about

the exactness properties of p-adically completed tensor products (that has little to do with the
particular A;,s-algebra A" or even with Ajpg itself).

cris ?

Lemma 3.30. For a fired m € Z>1, consider the following condition on an Ajys-module L:
forj >0, {Tor inf(L, Ams /") a0 is Mittag—Leffler with vanishing eventual images, (%)

which means concretely that for every j,n, the map Tor?i“f( L, A /pY) — Torf“‘f (L,Ag?s)/p”)

Cris
vanishes for some n’ > n. For a bounded complex

M =... =M
of Aing-modules, if each M* and each HZ(M’) satisfy (%), then, for every i € Z, we have
Hi(M.®Aian£rls) = l# HZ (M. ®Amf Crls /p ) HZ(M.)®Amng‘?S) (3301)

Proof. For an inverse system {0 — I/ — I, — I/ — 0},>0 of short exact sequences of abelian
groups, {I, }n>0 is Mittag-Leffler with vanishing eventual images if and only if so are both {I] },~0
and {I)/},~0. Therefore, the short exact sequences

0— Kerd' - M' -Imd" -0 and 0—Imd ! — Kerd — H(M®*) -0  (3.30.2)
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imply, by descending induction on 4, that each Kerd® and each Imd’ satisfies (). Consequently,

these sequences stay short exact after applying —® Aian((:rls) , to the effect that the flanking terms of

(3.30.1) get identified. By construction, this identification is compatible with the canonical maps
to lim Hi{(M® ®4 A /p"), so it remains to establish the second identification in (3.30.1).

inf Cris

By [SP, 0662|, spectral sequences associated to a double complex give the following spectral se-
quences that converge to H**/ (M * ®]L A(m /p")

Cris

MWED — H(H (M) @ AT py and  OVEY = HI(MT @Y AU /p),

inf

where the differential on the (")/El—page is HI(d’ ®H;‘inf AEZLS) /p"). As n varies, both families of
spectral sequences form an inverse system. Moreover, by assumption, when j # 0, the systems
{(")E;j }nso0 and {(")’Eij }nso are Mittag—Leffler with vanishing eventual images. Thus, by the first
sentence of the proof, when j # 0, the same holds for the systems {(”)Eéj}nw and {(”)’Eéj}n>0 for
any s < co. Consequently, for ¢ € Z, the edge maps

Hi(M*) @ A™ /pr — Hi(M® @ A™) /p™)  and  HI(M® &% A" /pn) — Hi(M® @ A™ /p™)

Cris Cris Cris Cris

become isomorphisms after applying the functor gn It remains to note that then so does their

composition, which is the canonical map H*(M®) ®4, . A ms /p — HY (M® ®a,, A((:?fg/p") O

To make Lemma 3.30 practical to use, we now establish its condition () in several key cases.

Lemma 3.31. For a fivzed m € Z>1, the condition () of Lemma 3.30 holds for an Ain¢-module L
i any of the following cases:

(i) m < p and L has no nonzero p-torsion;
(ii) for any n,n’ > 0, the sequence (p", u™') is reqular on L and L](p™, u" ) is At/ (p™, " )-flat;

(iii) the module L has no nonzero p-torsion and for every n > 0, the quotient L/p™ is a filtered
direct limit of direct sums of modules of the form Ainf/(cp_s(u), p") for variable s € Z>.

Thus, (x) holds for Ait(Roo) and Aing(Roo) /1, and for each HE (A, Noo) and HE (A, At (Reo)/1t).

cont

Proof. 1f (i) holds, then Al Ajn and Tor; ‘“f( LA™ /p") =0 for j > 0, so (x) holds. Therefore,

Cris Cris
when arguing the assertions about (ii) and (111), we may assume that m > p, so that each AE:S) /p"
is an Ay, /(p", p" )-algebra for some n/ > 0 (see §3.26).
If (ii) holds, then the regular sequence aspect ensures that L ®HAinf e/ (0", ™) = L/ (", p).
Thus, the flatness aspect implies that L ®EAM AS:}S) /p™ is concentrated in degree 0, i.e., that the

systems in (x) vanish termwise, so that (x) holds in this case.

For s € Z>p, one has ¢ (u) | pu, so (3.26.3) ensures that for every n € Zx>¢ there is an n’ > n such
that the reduction modulo p™ map

Ain n’ — ! N~ ! —
Tor( ™" (Aunt /(0™ ()™ ), AL /9™) 2= (AT 9™ )™ ()] = AL /"
vanishes for every s > 0. Thus, if (iii) holds, then for every j > 0 the transition map from position

n/ to position n vanishes in the projective system

{Tor ™/ (L/p", A% /o) buso & {Tor ™ (L, AT /p™) }nso, (3.31.1)
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where the termwise identification follows from the p-torsion freeness of L, more precisely, from the
fact that L ®sz1in Ajne/p™ is concentrated in degree 0. Consequently, (iii) implies (*).

By §3.14 and Lemma 3.13, (ii) holds for Aj (R~ ) and, by additionally using Lazard’s theorem,
(iii) holds for Ajnf(Reo)/p. Likewise, Proposition 3.19, Corollary 3.23, and Lazard’s theorem imply
that (iii) holds for each H! (A, Apnt(Rso)/p). By Lemma 3.7, Cont(A Noo) vanishes for large i.
Therefore, similarly to the proof of Lemma 3.30, the following short exact sequences that result
from Proposition 3.25:

0— I_Iéont(A N ) - Héont(Aa NOO/IU') Hég_rllt(A N ) —0 (3312)
show, by induction on 4, that (x) for HZ (A, Ajnt(Reo)/ i) implies (x) for HE (A, Noo). O

Thanks to Lemma 3.31, we may apply Lemma 3.30 to draw the following concrete consequences.

Proposition 3.32. For every m € Z>1 and ¢ € Z, we have the identifications

cont(A NOO®Amf CI‘IS L Cont A N ®A1nf A((;?s /p ) cont(A N ) 1an((3:‘?S)' (3321)

A(m)

inf * ~cris )

In particular, p kills every He (A, Noo® 4,

Proof. By Lemma 3‘7, a Koszul complex M*® of N, with respect to A satisfies
Hi(M®) = A, Ny) and  H(M*BA™)

Cris

A(W.L)

inf “ “cCris ) )

A Noo@A

cont ( cont (

as well as H%M'@Ag’:s /p") =2 HY (A, Noo ®A£7:s /p") for every n > 0. Moreover, by Lemma 3.31,

each M* and each HZ(M’) satisfy (). Thus, (3.32.1) is a special case of (3.30.1). Finally, by Proposi-
(A, Noo), so, by (3.32.1), it also kills every H’. (A, Noo® 4, A(m)). O

inf © “cris

tion 3.25, p kills every H,

Cont

Proposition 3.33. For every m € Z>1 and i € Z, we have the identifications

Hion (A, AT (R >/u>~1<1_ (A, AT (Roo) /(11 07)) = Hioy (A, Aine (Roc) /18) 4,00 Al

(A, A )( Roo)/1t) has no nonzero W(m’)-torsion.

Moreover, the Ays-module H, oris

cont
Proof. Similarly to the proof of Proposition 3.32, Lemma 3.30 applied to the Koszul complex of
Aint(Roo) /1t proves the identifications. Thus, for the claim about the W (m®)-torsion, it suffices to
prove that each

3.19.1)
Hiont (A, Aint (Roc) /1) ® 4,0 Al /p = Hiont (A Aint(Roo)/(1,")) @ty AL /0"
has no nonzero W (m”)-torsion. Since A acts trivially on A(R)/(u,p"), Lemma 3.7 and Proposi-

tion 3.29 imply that each Ho (A, A(R)/(1,0")) @ Ay /pm AEZLS) /p™ has no nonzero W (m”)-torsion.
Consequently, due to the decomposition (3.22.1), it suffices to prove that each

m n .‘5.’ m . n
Hlono (A, N3/ (11, 9™) @y pon ALY /0" 22 HE (A NG/ (10, 9™) @ a0y ) A /(077 (1), )

with 7 > 0 has no nonzero W(mb)—torsion. For this, similarly to the proof of Proposition 3.29, we
will approximate by Noetherian rings. More precisely, similarly to (3.29.1), the assignment

T s [ P defines a Z,-algebra morphism Zp[T] — Aint,
with respect to which Ay is Z[T]-flat. The Ajne-algebra Alm )/ (077 (u),p™) is then identified with

cris

the Ajng/(¢ 77 (1), p")-base change of the mod (T,p") reduction M of the Z,[T]-subalgebra of
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Zp[[T]][%] generated by the elements ézif:_ol (T +1)P " with s < m. Consequently, we need
to prove that

cont(A N; /(:U’ p )) ®ZZ,[[T]]/(T pm) M

has no nonzero W (m®)-torsion. In fact, since, by Corollary 3.23, the module H (A, N;/ (1, p™))
is Zp[T]/(T, p™)-flat and M is a successive extension of direct sums of F), it suffices to prove that

H (A NG/ (1, p™))/p has no nonzero W (m”)-torsion. This, in turn, follows from Proposition 3.19
and Lemma 3.12. O

(m)).

inf* cris /°

With Proposition 3.33 in hand, we are ready for the promised claim about Ln(u)(e@@i

Cns from (3.28.1) induces the isomorphism

Theorem 3.34. For each m > p, the map e@il

~L m ~ a ~IL m
Ly (e®4 Almy . L) (RT cont (A, A (Ry))) = Ly (R proes (X 260> Aint, x )4 Al

inf cris cris inf = ~Cris

Proof. By (3.28.2), the ideal W(m") C Ay kills the cohomology of Cone(e@ﬁmfA( )) By Propo-

cris

sition 3.33 (and the projection formula [SP, 0944] with (3.27.2)), the cohomology of
RTcont (A, A(m)(ROO)) ®ainf Aing/ 1

Cris

has no nonzero W(mb)—torsion. Thus, Lemma 3.18 applies and gives the desired conclusion. ]

Remark 3.35. Analogously to Remark 3.21, we may extend Theorem 3.34 to any affinoid perfectoid
A’-cover that refines %%d o %ad: more precisely, in the notation used there, we have

~IL m m ~ 2 ~L m
L (€@ 4, AT+ Iy (R cont(A', AT (RA))) = Ly (RTprost (Xiiher, Aint, x)E 1, i),

inf =~ T CT1S cris inf = " CIlS

where A(m)(R’ ) i= Ajnr(RL)® mtA(m) Indeed, as there (see also Lemma 3.13 and §3.28), the ideal

Cris Cris

W (m®) kills the cohomology of the cone of the map R cont (A, A )(Roo)) — RT cont (4, A )(R’ ),

cris cris
so Lemma 3.18 applies to it and gives the claim.

4. THE DE RHAM SPECIALIZATION OF Ay

The main goal of this section is to identify the de Rham specialization of AQy with the logarithmic
de Rham complex of X over O¢ (see Theorem 4.16). The key steps for this are the identification
and the analysis of the Hodge—Tate specialization of AQy in Theorems 4.2 and 4.11. These steps
were also used in the smooth case in [BMS16, §8 and §9]| but, due to the difficulties mentioned in the
beginning of §3, we carry them out differently. Namely, we rely on the analysis of group cohomology
from §3 and, in the identification step, we use Lemma 3.24 (which comes from [Bhal6]).

4.1. The presheaf version AQI;Sh. In addition to the étale site X4, we consider the site .’{gtsh
whose objects are those connected affine opens of X4 that have an étale coordinate map (3.1.1) and

coverings are isomorphisms over X. Thus, the topology of }:Ié’tSh is the coarsest one possible and any
presheaf is already a sheaf. Since X%, Dis a subcategory of X¢, there is an evident morphism of sites

¢: X — xbh (4.1.1)

ét

for which the pushforward ¢, is given by restricting and, since the objects of .’{gfh form a basis of
X¢t, the pullback ¢~! is given by sheafifying. In particular, (¢!, ¢.) constitutes a morphism of

topoi, and, in addition, since any sheaf is the sheafification of its associated presheaf, ¢~!o ¢, = id.
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We set
PP = o (%?)pmét — f{gfh and AQI;ESh = L (RVfSh(Ainﬂ x%d)), (4.1.2)
so that, explicitly, for every object {4 of .’{pSh we have
shy ~u
RIS, AQE) 2 Ly (RT((5 ) protes Ao, ) (113)

Since, by [BMS16, 6.19], the functor Ln preserves derived completeness when used in the context of
a replete topos (such as that of sets), the identification (4.1.3) shows in particular that the object

AQI;ESh is derived &-adically (and also ¢(§)-adically) complete (compare with Corollary 4.6 below).

Since the functor of Ly commutes with pullback under flat morphisms of ringed topoi (see [BMS16,
6.14]) and any sheaf on X is the sheafification of its restriction to X", we have

¢THAQRM) = AQ. (4.1.4)

Armed with this formalism, we now identify the Hodge—Tate specialization of AQx.
Theorem 4.2. We have the identification
AQx @Y 4o Oc — L, - )(Ry*(oxdd)) (4.2.1)

where on the right side Ln is formed with respect to the ideal sheaf (¢, — 1)Ox,¢x C Ox 4. If the
étale morphisms (1.5.1) exist Zariski locally on X, then (4.2.1) also holds for AQx,.  (see (2.2.5)).

Proof. The kernel of 93%‘1 op~l: A, xad = 6;51 is generated by the nonzero divisor ¢(&) (see §2.2),
so the projection formula [SP, 0944| provides the identification

Rv. (A x0) @iy g0p1 Oc = Bve(O,). (4.2.2)
Since (6 o ¢~ 1) (1) = ¢, — 1, this identification induces the map (4.2.1), and likewise we also obtain
the presheaf version:
h
AT Y pop—1 Oc = Ln(cp,l)(qu*(Ru*(o;d))) (4.2.3)

The functor ¢! brings (4.2.3) to (4.2.1) (compare with (4.1.4)), so it remains to show that (4.2.3)
is an isomorphism.

For every object 4 = Spf(R) of XE¢ " equipped with an étale morphism as in (3.1.1), Proposition 3.19
and (3.20.1) ensure that the cohomology of RT cont (A, Ajnt(Rso)) ®Hﬁmf Ajng/ 1 is p-torsion free. Thus,
since (&) = p mod (p) (see §2.1), [Bhal6, 5.14 and its proof| imply that

LT](,u) (RFCOHt(Aa Amf(-Roo))) ®Hﬁinfygo<p—l OC L> L"?(Cp—l) (chont(Aa Ainf(-Roo)) ®HAmf790¢—1 OC)
Since the maps (3.3.1) and (3.15.1) are compatible, Theorem 3.9 and Theorem 3.20 then imply that
Ln(u) (Rr((u%d)proémAinf)) ®ginf7904p71 OC’ L> L77(gp—1) (RF((u%d)proéta Ainf) ®%inf,€oap*1 OC’)
This shows that (4.2.3) is indeed an isomorphism on every 4l, as desired. u

4.3. The object Qx To proceed further, we need to analyze the right side of (4.2.1). For the sake
of brevity, we denote it by

O = L, )(RV*(Oxad)) e D7%(Ox &), (4.3.1)

where, as in Theorem 4.2, the functor Ly is formed with respect to the ideal sheaf ({, — 1)Ox 4.
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Proposition 4.4. For each i > 0, the Ox & -module Hl(ﬁx) is locally free and its rank at a closed
point x of Xy is equal to (dim“;(xk)); in particular, each H'(Qx)/p™ is a quasi-coherent Ox, & /p"-
module. In addition,

e Ox, ¢t — V*(@;r%d), so that Ho(ﬁx) = Ox, 4. (4.4.1)

Proof. The claims are étale local (see [SP, 058S]), so we assume that X = Spf R, that X is connected,
and that for some g € Q, there is an étale Spf(O¢)-morphism as in (1.5.1):

X=SpfR— Spf R~ =: X" with R":=O0c{to,....tr,t:5 1, ..., 5" /(to- - tr — 7). (4.4.2)
In particular, this places us in the local setup of §3.1, so the results of §3 apply.

Since R is RP-flat and A acts trivially on R~ and R, Lemma 3.7 and Proposition 3.8 imply that

i Héont(A7 R‘O:‘O)
Héont(Aa RE@)[CP_”

@po R 5 1 hoone(8: Foo) (4.4.3)

o) = g
R - H Héont(AvROO)[Cp_l] ’

cont

(A,RY) @po R =
Therefore, since the map e of (3.3.1) is compatible with its analogue e for RV, Theorem 3.9 shows
that the base change morphism

Hi((xD)3, 01)
Hi((xO)3d, 0+)[¢p—1]

Hi(xad, O)
Hi(xzt, 01)[¢p—1)

©po R — (4.4.4)

is an isomorphism of free R-modules of rank (f) Since the connected affine X is arbitrary (subject
to (4.4.2)), we conclude that

N Riva (&%) [BMS;%, 6.4]

Q Oyad A+ o
A (X )y, O07) RO OSpr,ét — m = Hl(Q%) (4'4'5>

Hi((xO)ad, 0+)[¢p—1]

and that H*(Qy) is free of rank (f), as desired.

For (4.4.1), due to the discussion in §3.3, we need to show that R — (Ru.)?. However, this map is
an inclusion of a direct summand whose complementary summand MOAO is both p-torsion free and,
by Proposition 3.8, killed by ¢, — 1, so the claim follows. (Il

Remark 4.5. The proof of Proposition 4.4, specifically, (4.4.4) and (4.4.5), shows that if X is affine,
connected, and admits a coordinate map (4.4.2), then the presheaf which to a variable X-étale affine
Hi(x39,01)
Hi(xzd, 01)[¢p—1]

X’ assigns is already a sheaf and that

H(Qy0) @po R =5 HY (Qx). (4.5.1)

In particular, if the coordinate maps (4.4.2) exist Zariski locally on X (for instance, if X is O¢-smooth
or arises as in (1.5.3) from a strictly semistable X'), then the sheaves H'(Qy) may be computed

using the Zariski topology: more precisely, then the object Q,,  defined by the formula (4.3.1)
using the Zariski topology of X satisfies

H (Qx,,.) — (H'(%))|x,,  for every i € Zsq. (4.5.2)
Corollary 4.6. The following adjunction map is an isomorphism:
AP 5 Ro, (AQx) = R (61 (AQR™)) (4.6.1)

(see §4.1 for the identification) and AQyx is derived &-adically complete.
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Proof. Since ¢~ 'oR¢, =2 id and AQ&Sh is derived &-adically complete (see §4.1), the second assertion
follows from the first: indeed, for the derived £-adic completeness, it suffices to check that the map

AQx — Rlim, (AQx @Y Aing /")
becomes an isomorphism after applying Re,.
As for the first assertion, namely, (4.6.1), we may assume that X is connected and admits an étale
morphism (1.5.1). In addition, since AQ;Sh is derived ¢(§)-adically complete (see §4.1), the %Etsh—
analogue of [BMS16, 9.15] allows us to replace AQI;ESh in (4.6.1) by AQI;ESh ®Einf Aing/(¢(€)™). Then,
due to the five lemma, it suffices to establish (4.6.1) for AQI;eSh ®%. At/ (0(£)) in place of AQI;Sh.

However, by (4.2.3), the object AQ%Sh ®HAinf Aing/(¢(€)) is identified with the presheaf analogue QgSh
of Qy defined as the right side of (4.2.3). By Remark 4.5, the cohomology modules of this presheaf
analogue are already sheaves, so the desired (4.6.1) holds for ngh. O

Our next task is to identify the vector bundles H Z(ﬁx) with the twists of Eundles given Py the
logarithmic differentials (see Theorem 4.11). For this, we first express H Q) as A" HY(Qx) in
Proposition 4.8, and then construct a map (4.10.2) that relates H'(Qx) to Kihler differentials.
4.7. The cup product maps. By [SP, 0B6C],* there is a cup product map
Ru.(07) @, ,, Ra(OF) = Ru.(O7). (4.7.1)
Moreover, arguments analogous to those used to construct the map [SP, 068H] give product maps
Riv,(0%) @0y o R vi(OF) == HIY' (Rv.(07) ®p, ,, Rv.(01)), (4.7.2)
which satisfy z Uy = (=1)7'y Uz (see [SP, 0BYI]) and combine with (4.7.1) to give the map
®'_, R (OF) = Riv (OF)  for i€ Zsg. (4.7.3)
Proposition 4.8. For each i > 0, the map (4.7.3) induces the isomorphism

i Rw(ON) Y\ a N HO) s () B0
A (Rlu*(@ﬂ[gp_l]) =N H (Qx) — H' Q) = 57550 (4.8.1)

Proof. By Proposition 4.4, each H ’(SN)X) has no nontrivial 2-torsion, so the “antisymmetric in each
pair of variables” map (4.7.3) indeed induces the Ox ¢-module map (4.8.1). For the isomorphism
claim, we may work étale locally, so we put ourselves in the situation (4.4.2). The edge maps

€: Hgont(A7ROO) - Hi(:{acdv @+)
of (3.3.1) are compatible with cup products: in order to check this one identifies Hi(%%d,(5+)

with the direct limit of the ™ Cech cohomology groups of Ot with respect to a variable proétale
hypercovering of .’{acd (see [SP, 01HO]) and uses the hypercovering construction of the cup product
(see [SP, 01FP]). Due to Theorem 3.9 and (4.4.3), it then remains to argue that the identification

3.7

. 3.7 .
Hclont(AaRD) = (RD)d induces Héont(AvRD) = /\Z(RD)d
via the cup product, which follows from [BMS16, 7.3 and 7.5]. O

To relate H* ((NZ};) to Kéhler differentials, we now review the needed material on cotangent complexes.

4Loc. cit. applies in its present form because (X3)proet has enough points by [Sch13e, (2)].
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4.9. The completed cotangent complex IE@Jr /2, Affinoid perfectoids form a basis of the proé-

tale topology of X! (see [Sch13, 4.7]). Therefore, [BMS16, 3.14] ensures that for the sheaf of rings

O;rad defined in (2.2.1), the cotangent complex L5, 10 € DSO(O;Ead

(’);Fad -flat) satisfies

) (whose levelwise terms are

]]4 Y ~Y
Lo+ 0, 97 Z]pZ = 0, and hence also O+/Oc =0.
Consequently, derived p-adic completion turns the canonical morphism

Loe/z, ®oc Oxad — LO+/ZP into an isomorphism Log/z, ®oc (’);d) = }LOJr/Zp

in the derived category. By [GR03, 6.5.12 (ii)], the complex Le,, /7, is quasi-isomorphic to QOC /7,
placed in degree 0. The p-divisibility of Q}QC /2, then ensures that

L At AL n [S(:hlB,fé.Q (iii)] 1 " P
Loz, @6, (0T /p"0%) = (., /2, "] @0 O1)]1] = Qo /z,IP"1 @0 (OT /p"OT))[1],

where OF abbreviates the integral structure sheaf OF,,. Moreover, by [Fon82, Thm. 1’ (ii)],’

xad
Oc{l} := Hm <Q}90/Zp [p"]) is a free Oc-module of rank 1.
In conclusion, letting {1} abbreviate the O¢-tensor product with Oc{1}, we obtain an isomorphism

(Loe/z, ®oc (/')\;rad)A = O;rad{l}[l], and hence also L L5+ /7, = Oxad{l}[l], in D(O;“ad) (4.9.1)
4.10. The relation between ﬁx and Kéihler dlfferentlals We equip the étale site X¢ with the
sheaf of rings Ox ¢ and the proétale site (%ad)proet with Oxgd’ so that (v~ !, v,) from §1.5 becomes a
morphism of ringed of topoi (see [Hub96, 1.9.1 b)]). In particular, we obtain the pullback morphism

N . (4.9.1) .

Cor sz, Rnlorys) = R(@h, (1)) (110.1)
To explicate its source, we note that an argument analogous to that of §4.9 gives

R 0~ 0~ [GRO3, 7.24, 7.2.8]
(Low/z, ®0c Ox,é)” = Ox,e{1}[1], so H (Lo, ,/z,) = H (Lo . /0c) = Q200
Moreover, by [GR03, 7.2.10 (iii)], the last identification induces a quasi-isomorphism between
]/I:Oxsm /O and Q%esm /0 placed in degree 0.

Consequently, by applying H°(—) to the map (4.10.1) and twisting by Oc{—1} we obtain the first
map in the following composition of Ox ¢-module morphisms:
Rlv, o+ ~ -

) — ijg{” ~ 71 (Qy). (4.10.2)
By [BMS16, proof of Prop. 8.15|, the restriction of this composition to X*™ is an isomorphism onto
((¢p—1)- H'(Qx))|xsm. Moreover, by Proposition 4.4, H(Qx) is a vector bundle, so it is (¢p —1)-
torsion free and has no nonzero local sections that vanish on X*" (as may be seen using (1.5.1)). In
conclusion, we may divide the composition (4.10.2) by (, — 1 to obtain a map

Q%e/oc{—l} — H'(Qx) that is an isomorphism over X*™. (4.10.3)

33/(9 {-1} = RIV*(O;d

We are ready for the promised relation between H Z(ﬁx) and Qge Oe, log"

SFor passage from (% of loc. cit. to Q¢ , one may use [GR03, 6.5.20 to conclude that Q! p] = 0.
Zp/ Oc/Zp Oc¢/Zp

28

Zyp



Theorem 4.11. The restriction of (4.10.3) to X°™ extends uniquely to an Ox &-module isomor-
phism

H' (@) = Ok o, 10 {—1}: (411.1)
by (4.4.1) and Proposition 4.8, for every i > 0, it induces an Ox, ¢-module identification
HY(§35) O g g -} (1112

In the proof of Theorem 4.11 we will use the formal GAGA and Grothendieck existence theorems.
The Noetherian cases of these theorems proved in [EGA III;, §5] have been extended to suitable
non-Noetherian settings by K. Fujiwara and F. Kato (with important inputs due to O. Gabber).
The relevant to our aims special case of this extension is summarized in the following theorem.

Theorem 4.12 (Fujiwara—Kato). For a complete valuation ring V' of height 1, a nonzero nonunit
a €V, and a proper, finitely presented V -scheme Y, the category of finitely presented Oy -modules
is equivalent to that of sequences (Fp)nez, of finitely presented Oy,, Jam -modules F,, equipped with
isomorphisms ‘Fn+1’YV/an ~ F, via the functor

F = (F/a"Fnezso- (4.12.1)

Proof. The claim is a special case of [FK17, 1.10.1.2]. In order to explain why loc. cit. applies, we
first reinterpret our source and target categories.

By a result of Gabber [FK17, 0.9.2.7], the ring V is “a-adically topologically universally adhesive,”
so, by [FK17, 0.8.5.25 (2)], it is also “topologically universally coherent with respect to (a).” In
particular, by [FK17, 0.8.5.24|, every finitely presented V-algebra is a coherent ring, and hence, by
[FK17,0.5.1.2], the Oy-module Oy is coherent. In particular, by [FK17, 0.4.1.8], an Oy-module F
is finitely presented if and only if F is coherent, and likewise for Oy,, Jan -modules for n € Z~y.

By [FK17, 0.8.5.19 (3) and 0.8.4.2], the formal a-adic completion Y of ¥ may be covered by open
affines whose coordinate rings are “topologically universally adhesive” so also, by [FK17, 0.8.5.18],
“topologically universally Noetherian outside (a).” In particular, by [FK17, 1.2.1.7 and 1.2.1.1 (1)],
the formal scheme Y is “universally rigid-Noetherian.” In addition, by [FK17, 0.8.4.5|, it is locally
of finite presentation over Spf V', so [FK17, 1.7.2.2] applied with A = V and |FK17, 1.7.2.1] imply
that Y is “universally cohesive.” Then, by [FK17, 1.7.2.4 and 1.3.4.1], the functor (F,,) ~ lim F, is
an equivalence from the target category of (4.12.1) to the category of coherent Op-modules.

In conclusion, our claim is that the quasi-coherent pullback ¢* along the morphism : Y 5 Y of
locally ringed spaces induces an equivalence between the category of coherent Oy -modules and that
of coherent Ogp-modules. This is a special case of [FK17, 1.10.1.2] (see also [FK17, 1.89.1]). O

Remarks.

4.13. In Theorem 4.12, if each F, is locally free, then the Oy-module F that algebraizes the
sequence (JF,,) is also locally free. Indeed, it is enough to argue that the stalks of F at the
points of Yy, are flat, so, since, by [FK17, 1.1.4.7 (2)], the morphism 1 is flat, it suffices to
note that the Op-module ¢*F = lim F,, is locally free because the Nakayama lemma ensures
that Fp,11 is locally trivialized by any lifts of local sections that trivialize JF,.

4.14. Remark 4.13 and the proof of Theorem 4.12 also show that i is flat and that the functor
(Fn) — l'gl}"n is an equivalence to the category of finitely presented Ogp-modules.
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Proof of Theorem 4.11. As may be checked with the help of étale local semistable coordinates
(4.4.2), no nonzero local section of Oy vanishes on X*. Thus, the same holds for any vector
bundle in place of Oy, to the effect that the desired isomorphism (4.11.1) is unique if it exists.

Thanks to the uniqueness, we may assume the local setup of §3.1. Remark 4.5 then reduces us
further to the case when X = X". In this case, there exists a discrete valuation subring O C O¢
and a proper, flat O-scheme X which étale locally has étale “coordinate morphisms” (1.5.2) and
such that X is an open subscheme of the formal p-adic completion of X := Xo,. Thus, finally, we

may drop the previous assumptions and assume instead that X = X with X and X as above. We
equip X with the log structure O3 N ((’)y[%])x, so that X" is log smooth over O¢ (see Claim 1.6.1)

and the map X — X of log ringed étale sites is strict (see Claim 1.6.3).
By Theorem 4.12, the map (4.10.3) algebraizes to an Oz-module map

Fi Q%0 -1} = H

where, by Proposition 4.4 and Remark 4.13, H is a vector bundle on X of rank equal to the relative
dimension of X over O¢. Moreover, by (4.10.3) and the Nakayama lemma, f is surjective at every
point of X; .

Claim 4.14.2. There is an isomorphism ’H[}%] o~ QIEC/C'

Proof. By the adic GAGA (see [Sch13, 9.1 (i)]), it suffices to find an analogous isomorphism after

pullback to (X ) = x%1. Such a pullback of 7-[[%] is isomorphic to (RIV*(@;M))[%], and [Schl13,
C

6.19] supplies an isomorphism between (Rlv, (OF ))[1%] and the pullback of lec o to (Xe)®, O

ad
xC

/

Claim 4.14.2 ensures that f [%] is a generically surjective morphism between isomorphic vector
bundles on X¢. Since X ¢ is proper and smooth, every global section of the structure sheaf of each
connected component of X ¢ is constant, so det(f [%]) is an isomorphism, and hence f []%] is surjective
on the entire X¢. In conclusion, f|3=m is a surjection between vector bundles of the same rank, so

flzem: Ql?m/oc{—l} — Hlzom. (4.14.3)

Since & is Cohen—Macaulay and X'\ X" is of codimension > 2 in X, limit arguments and [EGA 1V,
5.10.5] ensure that # is the unique vector bundle extension of H|psm to X'. The isomorphism (4.14.3)

then leads to an isomorphism H ~ Qlf e log{—1} whose formal p-adic completion gives the desired

isomorphism (4.11.1). O

Remark 4.15. If the coordinate morphisms (1.5.1) exist Zariski locally on X, then, by Remark 4.5,
the identifications of Theorem 4.11 hold already for the Zariski topology; more precisely, then

H'(Qx, )= Q&/Oalog{—i} as Ogx,, -modules for every ¢ > 0.

We are ready to relate the de Rham specialization of AQy to differential forms.
Theorem 4.16. There is an identification
L ~J [ .
AQ% ®Ainf79 OC = f/Oc,log’ (4161)

If the étale morphisms (1.5.1) exist Zariski locally on X, then (4.16.1) also holds for AQx,_ .
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Proof. Similarly to [BMS16, proof of Thm. 14.1], since p(u) = @(&)p (see §2.1), [BMS16, 6.11] gives
AQ;{ ®HAinf79 Oc = AQx ®£inf790 Ainf ®ginf7‘90<,071 OC = (Ln(¢(§))(AQx)) ®HAinf790S071 Oc. (4.16.2)
By [BMS16, 6.12], since Aie/(p(€)) = Oc via § o =1, the object (Lne)) (AQx)) @Y Oc

is identified in the derived category with the complex whose i*® degree term is

inf» 9090_1

i Ker(fop—1 ®i Hil) i’y Ker(fop—1 ®i
H (AQ% ®£inf790@71 OC) ®oc ((Ker((ﬁof—l))F) = H (Q%) ®oc ((Ker((eo;p—l))ﬂ)

and the differentials are given by Bockstein homomorphisms.

The perfectness of (’)bC implies that I/L:Amf/zp >~ (0 and (4.9.1) (applied with X = Spf O¢) implies
that Lo, /z, = Oc{1}[1], so Lo, a,,, = Oc{1}[1] where O¢ is regarded as an Aj,s-algebra via
6 o =1 This combines with [[1171, 1I1.3.2.4 (iii)] to supply an isomorphism % = Oc{1}.
In conclusion, due to Theorem 4.11 and the previous paragraph, Ay ®H;‘inf’ g Oc is identified

with the complex whose i*" degree term is Q;e 106 and whose differentials are certain Bockstein

, log

homomorphisms. Since each Q% e is a vector bundle, the agreement of these differentials with

, log
those of Q3 10¢, log AY be checked over X (compare with the argument for (4.10.3)), where it

follows from [BMS16, 14.1 (ii)] (or from [Bhal6, proof of Prop. 7.9]).

Due to Remark 4.15, the proof for AQy,  is the same. ]

Corollary 4.17. The de Rham specialization of RT'(Xe, AQx) may be identified as follows:
RT(Xat, AQx) @34, 9 Oc = Rliogar(¥/Oc). (4.17.1)

Proof. The claim follows from the projection formula [SP, 0944] and Theorem 4.16. U

Remark 4.18. In the case when X & X for a proper and flat Og-scheme X that étale locally has
étale morphisms (1.5.2) (with O¢ there replaced by O), we have a further identification

RT(Xet, 2% /00 108) — B (Xets %00 10g)

granted that X is endowed with the log structure Oy N ((’)X[%])X (whose pullback to X is the
log structure of X, see Claim 1.6.3). Indeed, the natural pullback map between the FEj-spectral
sequences

H](X’ Q.i)(/(’)c,log) = Hi+j(RF(Xét’ ;C'Jog)) and HJ(%’ Q;/Oc,log) = Hi+j(RF(%éta Q;E/Oc,log))

is an isomorphism because, by the Grothendieck finiteness and comparison theorems [EGA 1115, 3.2.1
and 4.1.7] (combined with limit arguments; or, by [FK17, 1.9.2.1] directly),

Hi(x, Q;/Oalog) = HI(%, Q;/Oalog) for all 4, j.

Corollary 4.19. If X is proper over Oc, then RT(Xs, AQx) is a perfect object of DZ°(Any); in
other words, then RT(Xg, AQx) is quasi-isomorphic to a bounded complex of finite free Ajns-modules.

Proof. By the Grothendieck finiteness theorem [Ul195, 5.3] and the spectral sequence as in Re-
mark 4.18, the Oc-modules H7 (RT(X¢t, Q% 0c log)) are finitely presented, and hence also perfect
(see |SP, 0ASP|). Thus, by Corollary 4.17 and [SP, 066U], the object RT'(X¢;, AQx) ®sz1in At/ (€)
of DZ%(O¢) is perfect. Moreover, by Corollary 4.6, the object RI'(X4, AQyx) is derived &-adically
complete. Therefore, by [SP, 09AW], it is also perfect, as desired. O

We close the section by comparing RT'(X4;, AQx) to its analogue defined using the Zariski topology.
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Corollary 4.20. If the coordinate maps (1.5.1) exist Zariski locally on X, then RT'(X4, AQx) may
be computed using the Zariski topology of X; more precisely, then

RT(Xzar, AQx, ) — RT(Xg, AQx). (4.20.1)

Proof. By Theorem 4.16 and its corollary 4.17, the reduction of (4.20.1) modulo £ is identified with
RF(%Zarv f.f/(?c,log) L> RP(%ét, Q;/Oc,log%

and hence is an isomorphism. Thus, due to the derived &-adic completeness of RI'(Xzar, AQx,. ) and
RT'(X4;, AQx) ensured by Corollary 4.6 (and its analogue for the Zariski topology), the morphism
(4.20.1) is also an isomorphism. O

Example 4.21. By §1.5, Corollary 4.20 applies to any Oc-smooth X and, more generally, to any
X that Zariski locally arises from a strictly semistable scheme defined over a discrete valuation ring.

5. THE ABSOLUTE CRYSTALLINE COMPARISON ISOMORPHISM

In Theorem 4.16, we have identified the Oc-base change (along 6) of the object AQx with Q% 0¢, log"
The goal of the present section is to similarly identify the Ac.s-base change of AQy with an object
that computes the logarithmic crystalline (that is, Hyodo—Kato) cohomology of Xo,,/, over Acis
(see Theorem 5.4). This is more general because, on the one hand, 6 factors through the map
Aint — Acris, while, on the other, Q% 0c, log COMPULES the log crystalline cohomology of Xo,, /, over
Oc¢. In fact, even the map Ay — Ajnr/p factors through Ajye — Acris (see [BMS16, proof of Lemma
4.19]), so the identification of the Agys-base change of AQy will capture the entire p = 0 locus of
Ains (in contrast, the comparison with the p-adic étale cohomology captured the p # 0 locus, see

Theorem 2.3).

In comparison to the case when X is smooth treated in [BMS16, §12], it seems more subtle to control
the interaction of the functor L, with the relevant base changes. To overcome this, we resort
to the analysis of continuous group cohomology carried out in §3. Another major complication is
the presence of log structures. Specifically, not knowing the existence of logarithmic divided power
envelopes of certain (nonexact) logarithmic closed immersions in mixed characteristic, we are forced
to devise slightly indirect arguments when analyzing the relevant divided power envelopes. For this,
we rely on the results and arguments from [Kat89] and [Beil3b]; the latter reference is especially
useful for us because some log structures that we use are not coherent (only quasi-coherent).

5.1. The ring Ais. With the generator & of the kernel of §: Ay — O¢ in hand (see (2.1.4)), we
let A°. be the Aj¢-subalgebra of Aj¢[%] generated by the divided powers %7: for n € Z>1. The

1
cris D
induced map 0: A% . — Oc identifies A? . with the divided power envelope of 0: A;,e — O¢/p over

cris cris

(Zp,pZ,) (where pZy, is equipped with its canonical divided powers), see [Tsu99, A2.8].
We let A be the p-adic completion of A%. . The map A%. — A is injective (see [Tsu99, A2.13]

cris” cris
or Proposition 5.36 below), and the induced map 6: Aqis — Oc¢ identifies Aqys with the initial p-
adically complete divided power thickening of O¢ over Z,, (see [Tsu99, A1.3 and Al.5]). Moreover,
since O(u) = 0 (see (2.1.3) and (2.1.1)), we have pP € pA%. , so the p-adic topology of A%, agrees

with the (p, p)-adic topology, and hence As is complete for these topologies (see [SP, 05GG|). By
[Bri06, 2.33] (or Proposition 5.36 below), the Aj¢-algebra Ags is a domain of characteristic 0.

Analogously to §3.26, the ring Acys comes equipped with the Frobenius endomorphism ¢ that
intertwines the absolute Frobenius endomorphism of O¢/p via the map 6. The identification

Acris & (hgm AEZL))A, which results from the evident A0 = lim Aggi(sm) (5.1.1)

cris
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(see §3.20), is Frobenius equivariant and compatible with the maps 6.

5.2. The log structure on As. For each n € Z>;, the ring Aqis/p™ is a divided power thick-
ening of O¢/p over Z/p™. Therefore, by [Beil3b, §1.17, Lemmal, every quasi-coherent integral log
structure N' on O¢/p for which the multiplication by p map is an automorphism of N'/(O¢/p)*
lifts uniquely to a quasi-coherent integral log structure on Ags/p™. Thus, letting A be the “de-
fault” log structure on O¢/p (see §1.6 (1)), for which N'/(O¢/p)* = Q>0, we obtain compatible
quasi-coherent integral log structures on the rings Acs/p”, to the effect that each Acs/p™ becomes
a log PD thickening of O¢/p. Explicitly, these log structures are the pullbacks of the log structure
on Agis associated to the prelog structure

Op\ {0} = Acris, 1+ [a]. (5.2.1)
In what follows, we always equip
e cach Ags/p", as well as Ayis, with the log structures described above;

e cach Z/p"Z with the standard divided powers on pZ/p"Z and the trivial log structure.

By, for instance, [Tsu99, A1.5], for every O¢/p-scheme Z and every divided power thickening Z of
Z over Z/p"Z, the map z: Z — Spec(O¢/p) extends uniquely to a PD map z: Z— Spec(Acris/p™)-
If, in addition, 7 is equipped with a quasi-coherent integral log structure for which z is enhanced
to a map 2z of log schemes, then, by [Beil3b, §1.17, Exercise|, the map z* extends uniquely to a PD

map 2: Z — Spec(Aeis/p") of log schemes.
5.3. The absolute crystalline cohomology of Xo_/,. We let

(%Oc/p/Zp)log cris
be the log crystalline site of X¢, /, over Z, defined as in [Beil3b, §1.12]; each object of this site is
an étale Xp, /p-scheme Z equipped with a divided power thickening 7 over some Z/p"Z such that

Z is, in turn, equipped with a quasi-coherent integral log structure whose pullback to Z is identified
with the pullback of the log structure of Xo,,/, (which is defined in §1.6). The universal property
of Acis reviewed in the last paragraph of §5.2 gives the following identification of sites:

(foc/p/Zp)logcris = (%Oc/p/Acris)logcris'
The absolute logarithmic crystalline cohomology of Xp,/, is the cohomology of the structure sheaf:
erog cris(%OC/p/Acris) = RF((%OC/p/Zp)log criss O%oc/p/Zp);
equivalently (see also |Beil3b, (1.18.1)]),
erog cris (%Oc/p/Acris) = RF((xOC/p/ACI'iS)IOg cris O,%Oc/p/Acris)-
Letting
u: (-’{Oc/p/Acris)logcris — (x(’)c/p)ét = Xt
be the morphism of topoi that forgets the thickenings Z (see [Beil3b, §1.5]), we get the identification
RTlog cris(Xog /p/ Acris) = R (X, Ru*(OxOC/p/AmS)). (5.3.1)

By functoriality, the absolute Frobenius (which is the multiplication by p on the log structures)
induces the “Frobenius” endomorphisms of Ru*(OxOC ol A ) and RTlog cris (X0, /p/Acris) that are

semilinear with respect to the Frobenius endomorphism of A.s (see §5.1).

cris

The main goal of this section is to establish the following A s-comparison isomorphism.
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Theorem 5.4. There is a Frobenius-equivariant (see §2.1, §2.2, §5.1, §5.3) identification
AQ%®A fACUS - RU*(O%O /p/Acrls) (541)

where, consistently with the definition (1.7.1), we have AQ};@)AMACHS = Rlim, (AQx ®%inf Acris/P").

We will first prove a version of Theorem 5.4 in a local setting, that is, in the presence of semistable
coordinates. We will then complete the proof by using “all possible coordinates” to globalize the
argument. This overall strategy is similar to the one used in [BMS16, §12] in the smooth case.

5.5. The local setup. For the local argument, we assume until §5.17 that X = Spf(R), that X is
connected, and that for some 0 < r < d and g € Q¢ there is an étale Oc-morphism

X =Spf(R) —» Spf(R”)  with  R” =0Oc{to,....tr,t: ..., 5" /(to- - t. —p7?). (5.5.1)

We use the rings RS and R, and the group A introduced in §3.2, as well as the rings Ay,¢(RY),
Aint(Rso), A(RY), and A(R), and the modules N and N, introduced in §3.14.

Roughly speaking, in the local case we will access the right side of (5.4.1) through the de Rham
cohomology of an explicitly constructed log smooth lift Spf(Acsis(R)) of X, /p to Spf Acris. The de
Rham complex that computes this cohomology can be made explicit by expressing its differentials
in terms of the A-action on Aqis(R) (see Lemma 5.15). On the other hand, results from §3, namely
(3.25.1) and Theorem 3.20, make the left side of (5.4.1) explicit. Once both sides of (5.4.1) are
explicit, it is possible to identify them, and hence to establish (the presheaf version of) the local
case of Theorem 5.4.

However, this relatively short local proof, whose detailed version in the good reduction case is
given in [BMS16, 12.4], is ill-suited for globalizing. This is so because it appears difficult to ex-
tend the implicit exchange of the order of the functors L, and —@HAiancriS in this argument
to general perfectoid covers that appear in the “all possible coordinates” technique. For instance,
one may attempt to use the almost purity theorem and Lemma 3.18 to reduce such commuta-
tion to the “base case” of Ry, but this requires understanding the W (m’)-torsion in the groups
Hi (A, (Ainf(Roo)@) Ase Acris)/1t) that seem difficult to access due to pathologies of the ring Acyis/ .

cont

Similarly to [BMS16, §12.2], to overcome this difficulty we will use the Aj,¢-algebras Agfs) reviewed
in §3.26 that retain better finite type properties over Aj s than Acis. In particular, we commute

Cris

the functors Ln(,) and —@HAMA(”?) in the following proposition:

Proposition 5.6. In the local setting of (5.5.1), for every m > p, we have
(u) (RF( proet? Alnf X))®A fA((:rls) — Ln(u) (RF( proetv Ainf,X)®Al A((;:s)) (561)

Proof. The map (5.6.1) exists because its target is derived p-adically complete (see [BMS16, 6.19]).
Moreover, by Theorems 3.20 and 3.34, it suffices to prove that

L) (RTeont (A, Aint (Roo))) @1 AT 2 Ly (RTcomt (A, AT (Ro))).

inf* cCris cris

By Propositions 3.25 and 3.32, the “nonintegral” part N, does not contribute, which reduces to

L) (RTeont (A, A(R) &4 AT 5 L (RTcom (A, AU (R))). (5.6.2)

inf * T cCris cris

In turn, (5.6.2) follows from the triviality of the A-action on A(R)/u and Acm( )/ (see §3.14 and

§3.27): namely, due to Lemma 3.7 and this triviality, the left (resp., right) side of (5.6.2) becomes
Sa—1\5 _ Sy

K (R)(61 ! "‘7dT1)®Aian:(3;?s) (resp., KA(W)( )(51u1"'-,dT1))‘ U

cris
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Continuing to work in the local setting, we now express the (presheaf version of the) left side of
(5.4.1) in the form that will be convenient for the “all possible coordinates” technique.

Corollary 5.7. In the local setting of (5.5.1), there is a natural Frobenius-equivariant identification

RO, AR @3, Acris = (i, (90 (Ko (01 —1,...,5d—1)>)>A

Cris

(see (4.1.2) for AQI;Sh) where, on the right side, the direct limit and the p-adic completion are termwise.

(m)

Proof. The A-equivariant Frobenius action on each A_ (Ro) that is compatible as m varies (see

§3.27) and the divisibility © | ¢(u) supply the Frobenius action on the right side. The proof of
Proposition 5.6 gives the Frobenius-equivariant identification
h hy L (m) ~

RI’ (%gts ,AQ%S )®Aiancris = N (KA(m)(Rw)(él —1,...,0q — 1)) ,

cris

so it remains to pass to the direct limit and to form the p-adic completion. ]

We now turn our attention to the right side of (5.4.1) in a local setting and begin by constructing
the ring Agis(R) that underlies a log smooth lift of R/p to Aeyis.

5.8. The ring Aqis(R). The relative version of As and the corresponding variant that models a
“highly ramified cover” of the relative version are

Acris(R) = A(R)®A Acris and Acris(Roo) = Ainf(}{oo)@A Acris;

inf inf

respectively, where the completions are p-adic (equivalently, (p, u)-adic, see §5.1). Due to (3.14.5),

the ring Acis(R) is an Acig(R)-module direct summand of Agis(Roo). The maps 6 from §3.14 and
§5.1 induce compatible surjections (which we abusively also call ):

0: Ais(R) » R and  0: Agis(Roo) — Roo

Let AY. (Rx) be the Aj¢(Roo)-subalgebra of Ajye(Roo )[ | generated by the & > " for n € Zs1. By

[Tsu99, proof of A2.8], letting Ains(Roo)[Lr]n>1 denote the divided power polynomial algebra over
Ainf(Roo) in one variable, we have

Adis(Roo) = (Ainf(Roonﬂ]nzl)/(T — &), so also Ais(Roo) = Aing(Roc) @4,

cris n! cris

AY

inf cris®

Consequently, since & generates Ker(6) C Ajf(Roxo), the ring AY . (Rso) is identified with the divided
power envelope of (Ainf(Roo ), Ker(0)+pAins(Roo)) over (Zy, pZ,). Therefore, by §5.1 and base change
for divided power envelopes (see [BO78, 3.20 1)| and [SP, 07THB, 07HD)),

ACI“iS(]% ) (AngS(R ))A

Due to Lemma 3.13, Agis(Roo) (resp., Acris(R)) is p-adically formally étale as an As( RS )-algebra
(resp., as an A(R)-algebra) and p-adically formally flat as an Ais-algebra. In particular, Agis(Roso)
inherits p-torsion freeness from As. Moreover, even though we will not use this, Acis(Roo) is also
p-torsion free, as follows from Proposition 5.36 below (contrast with (3.26.2) and (3.27.2)).

Analogously to §3.27, the rings Acis(R) and Aqis(Rso) come equipped with Agis-semilinear Frobe-

nius endomorphisms that are compatible with their counterparts on A((:?fs) (R) and Ag’fs) (Roo)-

The profinite group A acts continuously, Frobenius-equivariantly, and Acis-linearly on Aqis(R) and
Acris(Roo)- As in §3.27, the induced A-action on Aqis(R)/p is trivial.
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5.9. The log structure on A(R). Provisionally, we consider the (fine) log structures on A(R) and
Ajnr associated to the prelog structures

a—[(p!/P™ )]

PR AR)  and Ny W 4

1

NTH

Moreover, we map N>g — N’;gl diagonally, so that A(R) becomes (p, u)-adically formally log smooth

over Ay (see (3.14.2) and [Kat89, 3.5]). To eliminate the dependence on ¢, we always, unless noted
otherwise, equip Aju¢ with the log structure associated to the prelog structure

0L\ {0} — Aj, z — [z].

Likewise, we always, unless noted otherwise, equip A(R) with the log structure that is the base
change of the fine log structure on A(R) described above along the “change of log structure” self-
i [(pt/P™)9)!

map of Ajy¢ determined by Nx>g Obc \ {0}. Explicitly, this log structure is associated

to the prelog structure
NZE U, (O3 \ {0}) = A(R)

that embeds N> diagonally into Nggl, sends an i € Nxq to [(p/7™)9]?, and sends the i*" standard

basis vector of N’;{)l (resp., an = € O \ {0}) to X; (resp., to [x]).

These latter “default” log structures on A(R) and Aj,s are quasi-coherent and integral and, by base
change, with them A(R) is log smooth over Aj,¢. Moreover, via the map 6, the ring A(R) becomes
a (p, p)-adically formally log smooth thickening of R/p over Spf(A;,¢) (where R/p is endowed with
the log structure discussed in §5.3).

The Frobenius on Ajyr and A(R) extends to the log structures: we may let it act as multiplication
by p on Nggl and N>g and as the p'' power map on (’)bc \ {0}. Consequently, the Frobenius of the
log Ajns-algebra A(R) lifts the absolute Frobenius of the log O¢/p-algebra R/p.

The Frobenius-equivariant A-action on the Aj s-algebra A(R) (see §3.14) extends to a Frobenius-
equivariant A-action on the log Ajn¢-scheme Spec(A(R)): indeed, a 6 € A sends each X; with
0 <i <rtous,; X; for some unit us ; € A(R)* that is a Teichmiiller element (see §3.14) and the
prelog structures

(ai)—~T1 X" (ai)—=T1(us, i X:)%
e

N A(R)  and  NZF A(R)
define the same log structure on Spec(A(R)), namely, the one defined by the prelog structure

((z3),(ai))=TT g’ TIXG

Z"+ x NCE! A(R).

5.10. The logarithmic de Rham complex. We let

QZ(R)/Ainf: log
be the (global section complex of the) logarithmic de Rham complex of Spf(A(R)) over Spf(Ains);
more precisely, Q.A(R) JAins, log is the (termwise) inverse limit over n,n’ > 0 of the logarithmic

de Rham complexes of A(R)/(p", ") over Apne/(p", ). Due to the formal log smoothness of
A(R) over Ajys, each QU (R Ay, log 18 & free A(R)-module: indeed, the logarithmic differentials

dlog(Xy),...,dlog(Xy) form a basis of Q}4(R)/Ainf log- We let

8105(Xi) : A(R> — A(R) for i= 17 ce 7d (5101)
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denote the dual basis of log Aj,¢-derivations (we do not notationally explicate the accompanying
homomorphisms from the log structure to A(R)). These derivations satisfy the following explicit
formulas derived using the relation dlog(Xy) + - - - + dlog(X,) = 0:

0, f0<j#i ~Xo, f0<i<r
o _ ) ) ) )
oo (Xi) = {X =i and it (Xo) = {0’ r (5.10.2)

They also define an isomorphism 9}4( R)/Auns. log =~ A(R)®?, which extends to an isomorphism

. ~ 9 9
QA(R)/Ainf,IOg = KA(R) <810g(X1)’ B 8log(Xd)) (5103)

that may be regarded to be canonical because its construction uses only data determined by the
local coordinate map (5.5.1).

The endomorphism induced by the Frobenius of the log Ajys-algebra A(R) multiplies each dlog(X;)
by p, so its effect on the right side of (5.10.3) is given in each degree j by p’ times the endomorphism
induced by the Frobenius of A(R).

5.11. The log structure on A.is(R). We always, unless noted otherwise, equip the A;,¢-algebras

Agis and Agrls) for m > 0, as well as Acis/p" and ACrlS /p" for n > 0, with the base changes of
the “default” log structure on Aj,¢ described in §5.9. In the case of Ay, this agrees with the log

structure defined in §5.2. Likewise, we always, unless noted otherwise equip the A(R)-algebras
Agris(R) and A(m)(R) for m > 0, as well as Auis(R)/p" and A (R)/p" for n > 0, with the base

Cris cris

changes of the “default” log structure on A(R), so that Aeis(R) and Alm )(R) are log smooth over

cris

Aqris and A respectively. We set

cris?

— QO > (m)
- QA(R)/Ainf, 10g®Ainf Acris :

i) Ao to = D) g tog DA Acris and - Q%
These complexes are identified with the (global section complexes of the) logarithmic de Rham

complexes of Spf(Aeis(R)) and Spf (A(m) (R)) over Spf(Acris) and Spf (A("-L)), respectively.

Cris Cris

We use the p-adic completeness of Aqis(R) and its p-adic formal flatness over Agis to extend the
divided power structure of Agis to Aeis(R) (see §5.8 and [SP, 07HI]). In effect, Spf(Aeis(R))
becomes a log PD thickening of Spec(R/p) that is log smooth over Spf(Acyis)-

Through the results of [Beil3b|, the following lemma will be key for relating the right side of (5.4.1)
to the logarithmic de Rham cohomology of Spf(Acis(R)) over Spf(Acris)-

Lemma 5.12. For eachn € Z>1, the log smooth log PD thickening Acyis(R)/p™ of R/p over Acis/p"
is PD smooth in the sense of [Beil3b, §1.4| (see the proof for the definition).

Proof. The PD smoothness is the claim that the indicated lift exists in every commutative square

U —— Spec(R/p)—— Spec(Auis(R)/p")

_
—
—
—
—
—
—
—
—

U=""_ Spec(Aeris/p")

of log schemes subject to the requirements that U is affine, U — U is an (exact) log PD thickening,
the log structure on U is integral and quasi-coherent, and the lift is a log PD morphism (see loc. cit.).

This sought property of Aqis(R)/p™ is invariant under base change that changes the log structure
on Aeis/p", so we may assume that Aeis/p" and Agis(R)/p™ are instead equipped with the base
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changes of the “provisional” fine log structures defined in §5.9. Moreover, since the PD structure
of Aqis(R)/p™ is extended from Aeis/p", the log PD thickening Spec(R/p) < Spec(Aais(R)/p™)
over Aeis/p™ is its own log PD-envelope (in the sense of [Beil3b, §1.3]). Thus, the claimed PD
smoothness follows from [Beil3b, §1.4, Remarks (ii)] and the log smoothness of Aqis(R)/p™ over

Acris/ pn. O
In a local setting, we are ready to express the (presheaf version of the) right side of (5.4.1) in the
form that will be convenient for the “all possible coordinates” technique.

Proposition 5.13. In the local setting of (5.5.1), there are Frobenius-equivariant identifications

~Y 8 -~
RUiog cris(Oxo, 1 /Acrie) = Lo (R)/Acrinslog (lﬂ 0 BAtm () <6log(xl) '“’alog(Xw))

Cris

(see §5.10 for the description of the Frobenius action on the last term).

Proof. By Lemma 5.12, each Aeis(R)/p™ is PD smooth over Aeis/p", so [Beil3b, (1.8.1)] gives the
Frobenius-equivariant identification®

RFlOg cris (O}:Oc/p/Acris) = RF(Spf(AC“S (R))ét’ Qépf(Acris(R))/ Spf(Acris)v IOg) ’

On the other hand, since the sheaves QSpf( Auie(R))/ Spf(Aeric), log AT€ locally free and, in particular,
coherent, they are acyclic for I'(Spf(Aeris(R))et, —) (see [UI195, 5.1]), so

RI(Spf (Acris(R))éts QSpe( 410 (R))/ Sp(Acris),log) = L (SPE(Acris (B))sts Q3pt( A (R))/ Spt(Aers), log)-

It remains to observe that the latter complex is identified with Q;lms( R)/Acsis, log"

O
Having rewritten both the left side of (5.4.1) in Corollary 5.7 and the right side in Proposition 5.13
in the desired forms, we would now like to exhibit an isomorphism between them. We will achieve
this in Proposition 5.16 after the following preparations.

5.14. The element log([e]). Let us fix an m > p?. The elements € Alm )[ | lie in Am)

(n +1) cris cris
topologically nilpotent in Agrls) if n > 1, and tend to 0 in the p-adic topology of Agrls) as n — oo
(see the proof of [BMS16, 12.2]).” Consequently, recalling that u = [¢] — 1, we may define

2 3
log([e]) =p— G + 5 —... in Ag?s)
By loc. cit.,® the elements log([¢]) and p are unit multiples of each other in Ag”fs) , SO (logu(% lies in
Agng , is topologically nilpotent if n > 1, and tends to 0 in the p-adic topology of A((ms) as n — 00.

The Frobenius of A" maps log([e]) to p - log([e]).

cris
6Loc. cit. uses the logarithmic PD de Rham complex, that is, the quotient of Q&,¢(4_ . (r))/ Spf(Acns), 10g PY the PD
relations d(ul™) = u[™"Ydu, see [Beil3b, §1.7]. In our situation, there is no difference: since the PD structure of
Ams( )/p" is extended from the base Acris/p", the PD relations hold already in Q%,¢4_ . (r)) spt(a

aris (

cris)s log”
"For completeness, we review an argument that gives these claims. Since p, u€ is an Ajn¢-regular sequence, pu? —

pEP € p§uding, so ”ppA ﬁ + &a for some a € Ajns. Thus, since (’;p) € pZ, we have (”ppil) € pA™) so % is

cris?
L

topologically nilpotent in A(m> In effect, since 1l e Z, the elements

cris (n_,l_mp tend to 0 in the p-adic topology

(n+1)‘
of A" and are topologically nilpotent.

CI‘lb

(m) p"
n>p gy lies in pA ;. Thus, since each ;25 with

0 < n < pis topologically nilpotent in A, so is Dot :—:1 In conclusion, logﬁe] is a unit in AT,
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The following lemma uses the element log([¢]) and the A-action on Aln )(R) to describe the deriva-

cris

tions ﬁ(&): A(m)(R) A (R) that are induced from those in (5.10.1).

Cris Cris

Lemma 5.15. For every m > p?, the element §; € A withi = 1,...,d (see §3.2) acts on Agrls) (R)
as the series

exp(l0g([e]) - 51xcy) = Lons0 (os([e)” Ty (5.15.1)
6i—1.
=1,

In particular, for such m and i, we have the following description of the “q-derivative”

il = oty (Do P GpZe) ) asmaps ATN(R) » ATN(R),  (5.15.2)

(m)

cris

linear additive automorphism of AT (R).

where the parenthetical factor defines an A, - orie

Proof. The argument is similar to that of [BMSlG 12.3]. Firstly, (lo ([ED) tends to 0 in A™ for the

cris

)—hnear additive endomorphism

p-adic topology (see §5.14), so the series (5.15.1) does define an Alm

of A )(R). This endomorphism is actually also multiplicative because, by the Leibniz rule,

(logg!e]))” (alog(xi))n(ab) = E?:o (1og§!e}))f (aloga(xi))j(a) : (l°g(£f€_}}))’f_] (alog(xi))nfj(b)-

Therefore, in the case R = R the desired equality
8; = exp(log([e]) - ﬁ(&)) of endomorphisms A (RY) — Alm )(RD) (5.15.3)

Cris cris

follows by noting that, due to the formulas (5.10.2), both of its sides send X; to [e]X;, fix each X
with 0 < j # 4, and send X to [e 1] Xq if i <r and to Xg if r < i.

In the general case, since p, and hence also £, divides each M with n > 1 (see §5.14), both
sides of the equality (5.15.3) induce the trivial action modulo (p, €). Therefore, due to the formal

étaleness of A .)(R) over A" )(RD) and the settled R = R" case, the sides agree.

Cris cris

Since A" )(R) is p-torsion free (see (3.27.2)) and pu | M in A (see §5.14), the equality

cris Cris

(5.15.2) follows from (5.15.3). Since (loi(# is a unit for n = 1, is topologically nilpotent if n > 1

(see §5.14), and p-adically tends to 0 as n — oo, the parenthetical factor of (5.15.2) is indeed an
automorphism, as desired. O

We are ready to settle the (presheaf version of the) local case of Theorem 5.4.

Proposition 5.16. In the local setting of (5.5.1), for everym > p® andi = 1,...,d, the morphism

() oy T () | (0D Son P Gl ™)y e ()
ARy D, 4m) () (A (R) 2= Al (R)) (5.16.1)

Cris cris cris Cris

of complexes concentrated in degrees 0 and 1 is Frobenius equivariant, where the Frobenius action

(m) : : .y ; ' 2
on the A ;i (R) in degree 1 of the source is multiplied by p (compare with §5.10). For every m > p=,
these morphisms induce a Frobenius-equivariant quasi-isomorphism

o) 2] ~
K oy (o a1 ) —= ) (Ko oy 01 = Lo, 82 = 1)) (5.16.2)

cris

which, as m varies, induces a Frobenius-equivariant identification that is a local version of (5.4.1):

Rliogeris (Ox, /Ay) = REGER AQEM)E 4 Acris (5.16.3)
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Proof. The Frobenius-equivariance of (5.16.1) follows from the equations ¢(log([e])) = p - log([e])
(see §5.14) and ﬁ(&) ocp=rp- ((p o %) (see §5.10). Since A acts trivially on A(m)(R)/u,

cris
the subcomplex

7](“) (KA(’"})(R) (51 - 17 s )5d - 1)) C KA(“})(R) (51 - 17 s 75d - 1)
is obtained by letting its j*" term for j > 0 be the submodule of p/-multiples inside the j* term of

KA(m)(R) (01 —1,...,05 — 1), see (1.7.2) and (1.7.3). In particular, since u | ¢(u), this subcomplex

cris

is Frobenius-stable. Thus, Lemma 5.15 implies that the morphisms (5.16.1) induce an isomorphism

o) 2] ~
KA(m)(R) (8log(X1)’ e 8log(Xd)) — M) (KA(m)(R) (61 —1,...,04 — 1)) . (5.16.4)

cris cris

Proposition 3.32 then implies that the natural inclusion of the target of (5.16.4) into the target
of (5.16.2) is a quasi-isomorphism, and (5.16.2) follows. The maps (5.16.2) are compatible as m
varies, so, by passing to the limit over m, forming the termwise p-adic completions, and applying
Corollary 5.7 and Proposition 5.13, we obtain the desired identification (5.16.3). ]

We now turn to the “all possible coordinates” technique that will globalize the arguments and
eventually prove Theorem 5.4. For globalizing, the key point is to build, for a small enough affine
X, a functorial in X explicit complex that computes the presheaf version of the left side of (5.4.1)
(see §5.21), to then also build such complex for the right side of (5.4.1) (see §5.32), and, finally, to
build a natural isomorphism between the two complexes (see §5.38 and Proposition 5.39). Virtually
every step of this process will rely on our work in the local case (5.5.1) discussed so far.

5.17. More general coordinates. Continuing to work locally, we now assume until the proof of
Theorem 5.4 given in §5.40 that X is affine, that is, X = Spf R, and connected, and that we are
given

e a finite set X that indexes the coordinates of a formal torus

RS = Oc{tf'|o € B},

e a nonempty finite set A and for each A € A a ¢\ € Q¢ and an O¢-algebra

RY = Oc{tr0,- -t by s o B ad/ (a0 ta g = pP);

e a closed immersion

X = Spf R — Spf R x [, Spf RY (5.17.1)
where the products are formed over Spf O¢, subject to the requirements that already
X = Spf R — Spf RY is a closed immersion, (5.17.2)
the induced map
X =SpfR— SpfRY  is étale for each \ € A, (5.17.3)

and for some A € A, each irreducible component of Spec(R ® k) is cut out by a (unique) ¢y ;
with 0 < < r) (which is equivalent to the intersection of any two irreducible components of
Spec(R ® k) being nonempty, and hence implies this condition for every A € A: indeed, by
(5.17.3), the irreducible components of Spec(R®k) are a priori identified with the connected
components of | |, Spec((R ® k)/(ty,;)) for any A € A).
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By §1.5, if R/p is not O¢/p-smooth, then gy is determined by R and does not depend on A. On the
other hand, if R/p is O¢/p-smooth, then the ¢\ may differ; this and also the possibility that ry > 0
complicate matters in the “simpler” smooth case but are crucial to allow in order for the eventual
“all possible coordinates” constructions to be functorial in R.

For any X, the data above exists on a basis for Xg: to see this, first fix a geometric point = of X.
If x lies in X°™, then it has a required basis of étale neighborhoods because any X is étale locally
the formal spectrum of the p-adic completion of a finite type O¢-algebra, the spectrum of which
Zariski locally embeds into some G,. If x does not lie in X5™, then it has a basis of affine étale
neighborhoods Spf R that admit semistable local coordinates (5.5.1) for which (¢o,...,¢,) cuts out
x; further Zariski localization at x then ensures the existence of a closed immersion into some @EZ

Each (5.17.3) is an instance of the local setup (5.5.1), so the local discussion between §5.5 and
the present section applies to it. Another instance (with » = 0 and d = #X) is the identity map
Spf Rg = Spf Rg, so the indicated discussion also applies to the ring R% in place of R".

Our first aim in this setup is to reexpress the (presheaf version of the) left side of (5.4.1) in §5.21.

5.18. The perfectoid cover Rx A . For each A € A, we set
)EB(d-i—l)

Ay = {(60,. .., €4) € (@mzoupm(Oc) € €py = 1} ~ Z?d

and let
Spa(R), oo[ |, Ry o) — Spa(R[ |,R) and Spa(REOO[%],RE ) — Spa(RD[ J,RY) (5.18.1)

be the affinoid perfectoid pro-(finite étale) Ay-covers defined as in §3.2 using the coordinate map
(5.17.3). Similarly, we set

>
Ay i= (@mzo upm(oc)) ~ 7E
and let
Spa(Ry [3], RS, ) = Spa(R5[1], RY)

be the affinoid perfectoid pro-(finite étale) Ay-cover defined as in §3.2 using the coordinate map
Spf RS — Spf RY. Explicitly,

R = (lm,  Oclts""" |0 e5})
By taking products over Spa(Oc[ |, O¢) and setting
AE,A = Ag X HAEA A/\, (5.18.2)

we obtain the affinoid perfectoid pro-(finite étale) Ay, p-cover
Spa(Rs 3], RS, o) % [Thea Spa(RY L [3], RS o) = Spa(RS[1], RS) x [Thea Spa(RY[L], BY),
which we abbreviate as
Spa(Rz A, oo[ B Rz Aoo) = Spa(Rg,A[p] Ry A)-

Its base change along the generic fiber of the closed immersion (5.17.1) gives the pro-(finite étale)
Ay, p-cover

Spa(Rs, A, 0l 1]s B, A, 00) = Spa(R[1], R), (5.18.3)
which contains each Spa(Rj, oo[ |, Ry o) = Spa(R[ |, R) as a subcover. Thus, by the almost purity
theorem [Sch12, 7.9 (iii)], the (’)C algebra Ry, A oo deﬁned by (5.18.3) is perfectoid (by [BMS16, 3.20],

the notions of ‘perfectoid’ used in [Sch12| and here agree).
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5.19. The rings Ajyt(Rx A, o) and A (Rs, A, 00)- Similarly to §3.14, we set

cris

Ain(Bs,a,00) = W (R A oo)-
By Lemma 3.13, for each n,n’ > 0, the sequence (p", ,u,"/) is regular on Ain¢(Rys A, 00), the Aine/(p", ,u”/)—
algebra Ain(Rs, A, 00)/(p™, ") is flat, and Ains(Rs; A o)/t is p-adically complete. As in §3.14, we
have the surjection

0: Ainf(RE,A,oo) - RE,A,oo- (5191)
To fix the notation for the coordinates, we write the isomorphism (3.14.2) for RS and RY as follows:

A(RS) = Ane{ X7 Y oes,

A(RY) 2 Ane{ X000 Xoras Xib 1o X/ (X0 Xy = [(0MP7)2)).

(5.19.2)

Likewise, similarly to §3.27, for an m € Z>1, we set
AU (R a,00) 1= Ain (R, 5, 00) B, AU

where the completion is (p, 1)-adic (equivalently, p-adic if m > p). Since Ain¢(Rx A, 00) is (P, 1)-

adically formally flat over Aj,¢, the ring A((:le) (Rx, A, 00) inherits p-torsion freeness from AEZLS) . By

using, in addition, the short exact sequences (3.26.4) together with the vanishing (3.26.3), we also

see that A((:ZS) (Rs, A, 00) is p-torsion free and Ag?s)

(5.19.1) gives rise to the compatible map

0: AT (Rs; 5. 00) = By, A, oo- (5.19.3)

cris

(Rs, A, 00)/ 1t is p-adically complete. The map

As in §3.14, the map € intertwines the Witt vector Frobenius of Aj,¢(Rx A, o) With the absolute

Frobenius of Ry, A o0/p. Likewise, as in §3.27, each Ag?s) (R, A, 00) comes equipped with an Agr?s) -

semilinear Frobenius, and these Frobenii are compatible as m varies.

The profinite group Ay A acts continuously and Frobenius-equivariantly on the rings above. To
analyze this action, we use the compatible system e of p-power roots of unity chosen in §2.1 and
define elements 6, € Ay, by

0 :=(1,...,1,61,...,1) foroeX, where the o' entry is nonidentity,
as well as, for every A € A, the elements 6, ; € Ay by
Oy, i = (e 1,1,...,1,e1,...,1) fori=1,...,ry, where the 0" and i*" entries are nonidentity;
Oi=(1,...,1,¢61,...,1) fori=ry+1,...,d, where the ith entry is nonidentity.
Jointly, the §, and the J) ; form a system of free topological generators for Ay, 4.

Using the following consequence of Theorem 3.34, in §5.21 we will build a functorial complex that
locally computes the left side of the desired identification (5.4.1).

Proposition 5.20. In the local setup of §5.17, for every m > 1, the edge map (see §3.15 and §3.28)

~ S shy L m
M) (KAm)(RE’Am)((% —Does, (0n,i — 1)>\EA,1§i§d)> 5 RU(XB™, A&, AT (5.20.)

is a Frobenius-equivariant quasi-isomorphism. In particular, we have the following Frobenius-
equivariant identification in the derived category:

~

. o~ ~ S S L
(hgm (77(#) (KA(M(RE,A’OO)(((SJ —1oes, (0r,i — 1)>\eA,1§z‘§d)>>> — RF(%gth)AQIx)h)(X)Aiancrisv

where the direct limit and the p-adic completion of the complexes in the source are formed termuwise.
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Proof. The termwise p-adic completion of the source in the last display agrees with the derived p-
adic completion because each A((:ZS) (Rs, A, ) is p-torsion free. Moreover, the Frobenius-equivariance
aspects follow from the Frobenius-equivariance of the edge map used to construct (5.20.1) and
that of the identification (5.1.1). Thus, since the pro-(finite étale) affinoid perfectoid Ay s-cover
Spa(RgvA’oo[%],RgA,oo) of Spa(R[%],R) contains Spa(R)\yoo[%],R)woo) as a subcover, the claim
follows from Lemma 3.7 and Remark 3.35. ]
5.21. A functorial complex that computes RF(%gtSh,AQI;Sh)(%HAMAcriS. For a fixed R, the
isomorphisms of Proposition 5.20 are compatible with enlarging ¥ and A. Therefore, by taking the
filtered direct limit over all the closed immersions (5.17.1) for varying ¥ and A (but fixed R), we
may build the complex

limg, ((hﬂmw (77(#) (KAﬁz(RE’A’w)((CSo —1oes, (0r,i — 1)AeA,1§i§d))>)A) , (5.21.1)

where the direct limits and the p-adic completion are formed termwise, that comes equipped with
an Acis-semilinear Frobenius endomorphism. By Proposition 5.20, in the derived category this
complex is canonically and Frobenius-equivariantly isomorphic to
RU(XE™, AQR™ &, Acis.

Moreover, if R’ is a formally étale R-algebra equipped with a closed immersion as in (5.17.1) for
some sets ¥’ and A’, then the term indexed by ¥, A (and by a closed immersion (5.17.1)) of the
direct limit (5.21.1) maps to the term indexed by ¥ U ¥/, AU A’ (and by a closed immersion of
Spf R’) of the analogous direct limit for R’, compatibly with the transition maps in (5.32.1) and
the Frobenius. Consequently, the complex (5.21.1) equipped with its Frobenius is functorial in R
(equipped with the closed immersion (5.17.1)).

Our next aim is to similarly reexpress the (presheaf version of the) right side of (5.4.1) in §5.32.

5.22. The completed log PD envelope Dy, 5. By §5.9, the maps 6 of (3.14.3) give a Frobenius-
equivariant closed immersion

Spec(R/p) — Spf(A(RS)) x [1rea SPE(A(RY)) = SpE(A(RE ) (5.22.1)

of (p,p)-adic formal log schemes, where the products are formed over the (p,u)-adic formal log
scheme Spf(Ai,f). By [Kat89, 4.1 and 4.4], for each n,n" € Z-q, the (quasi-coherent) log structure
of Spec(A(RS ,)/(»", u™')) is integral and the map Spec(A(RY ,)/ (0", 1)) — Spec(Aing/ (0", ™))
of log schemes is also integral. 7

For each n,n/ € Zq, by [Beil3b, 1.3, Theorem|, the Aj¢/(p", " )-base change of the closed immer-
sion (5.22.1) has a log PD envelope Spec(Ds; A pn, ') over (Z/p"Z,pZ/p™7Z), which, in particular, is
a nil thickening of Spec(R/p), so is also affine as indicated. In fact, Dy, o p n/ is supplied already by
[Kat89, 5.4] because the closed immersion (5.22.1) is a base change of a similar closed immersion of
fine log schemes over Aj,¢ along a “change of log structure” self-map of Ajn¢ (compare with §5.9).9

If n’ is large enough relative to n, so that u € p™Aes, then, since Spec(Aeis/p") is identified with
the log PD envelope of the exact log closed immersion Spec(O¢/p) < Spec(Ams/(p™, 1)) over
(Z/p"Z,pZ]p™Z) (see §5.1), Spec(Dx: A, n,ns) comes equipped with a canonical log PD morphism to
Spec(Aeris/p™) that identifies it with the log PD envelope of

Spec(R/p) — Spec(A(Rg,A) ® A, Acris/D") over Spec(O¢/p) — Spec(Aeis/p").

9The two references characterize the log PD envelope differently, but this is not an issue for us essentially because
the image of any monoid morphism M — M’ with M finitely generated is finitely generated.
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In particular, letting Dy, A , denote the common Ds; A 5 . for large enough n’, so that we have
D27A7n/10”_1 = Dy, A, n—1 for n > 1, we obtain a formal log Spf(Acis)-scheme Spf(Dy, A) that fits
into a factorization

Spec(R/p) < Spf(Ds;,a) — Spf(AcriS(Rg)) X Jliea Spf(AcriS(RE)) = Spf(AcriS(Rg,A))a (5.22.2)

where the products are formed over the formal log scheme Spf(Acs). By the functoriality of its
construction, Spf(Ds; o) comes equipped with an Ais-semilinear Frobenius endomorphism. In ad-
dition, since, for each n > 0, the ideal defining the exact closed immersion Spec(R/p) < Spec(R/p™)
inherits divided powers from Z/p", the universal property of Dy, o supplies the factorization

Spec(R/p) — Spf(R) < Spf(Dx, a) over Spec(Oc/p) — Spf(Oc) — Spf(Aeis).  (5.22.3)

The profinite group Ay A acts continuously and Frobenius-equivariantly on A(R% A) over Ay
(see (5.18.2), §5.19, and §3.14), and, due to the last paragraph of §5.9, this action extends to a
Ay p-action on the formal log scheme Spf(A(RS ,)). Moreover, the closed immersion (5.22.1) is
Ay, p-equivariant, so Ay, A acts continuously and ’Acris—linearly on each Ds; 5 , and also on Dy 4.

For our purposes, the utility of Dy, A will manifest itself through the following proposition:

Proposition 5.23. In the local setting of §5.17, the complex (where the inverse limit is termwise)
L] 15 o
QDE,A/AcrisJog, PD " @n>0 <Q(Acris(Rg,A)/p”)/(Acris/p"),log ®Acris(Rg,A)/pn DZ,A,n)

may be canonically and Frobenius-equivariantly identified (in the derived category) as follows:

RFIOgcriS(OxOc/p/Acris) = Q.DE’A/AChS,log, PD- (5231>

Under this identification, the natural map
RFlOgcriS(OxOC/p/Acris) - erong(%/Oc) is Qz)gﬁA/Acris,log, PD Qépf(R)/(’)C,log (5232)

induced by the factorization (5.22.3). In particular, we have a Frobenius-equivariant identification

RT1og cris(Oxo,  /Acric) = B D, ((mog(x,,)>062 , (meﬂAeA @.Sd) (5.23.3)

where the ﬁ()@) (resp., ﬁxm)) are defined as in (5.10.1) with RY (resp., RY)) in place of R

and the Frobenius acts on the degree j term of the right side by p’ times the action induced from
the Frobenius action on Dy, p (compare with §5.10).

Proof. By §5.11, each AcriS(R%’ A)/p" is a log smooth thickening of R/p over Auis/p™. Therefore,
by [Beil3b, 1.4, Remarks (ii)], the PD thickening Ds; A , of R/p is PD smooth over Ags/p™ (see
the proof of Lemma 5.12 for the definition). Consequently, by [Beil3b, (1.8.1)], the logarithmic
PD de Rham complex sz,/\,n /(Ausie/p), log, PD COMPULES RTog cris(Ox 00w/ (Actis /pn)); the Frobenius-
equivariance aspect follows by functoriality. By [Beil3b, 1.7, Exercises, (i)],

.DE, A,n/(Acris/p’ﬂ)7 log, PD = Q(Acris(ng A)/pn)/(Acris/pn)1 log ®Acris(Rg7A)/P" _DE’ A,ns (5234)

so the identification (5.23.1) follows. Since each R/p™ is a log smooth thickening of R/p over O¢/p™,

o . . [Beil3b, (1.8.1)] . (
similar reasoning applies to RI'log cris(Ox 0w/ R) = RTgar(X/O¢) and gives (5.23.2).
The identification (5.23.3) then results from the Frobenius-equivariant identifications

% =K (w521 ) e (w55)
(Acris(RE 0)/p™)/(Acris/p™)dog — * Aeris(BE 0)/p" \ \0108(X0) ) ;o517 \0108(X03) ) zen 1<i<d
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supplied by (5.10.3). O
Remark 5.24. In fact, by [Beil3b, (1.11.1)], the first map in (5.23.2) induces the identification
erog cris(O%@C/p/Acris) ®HA OC = RFlog dR(:{/OC) (5241)

in the derived category, so the same holds for the second map:

cris

° L ~ (O
Ds:. A /Acris, log, PD @i O = Q3p¢(R) 00, l0g- (5.24.2)

To bring the identification (5.23.3) in a form that mimics the last display of the statement of
Proposition 5.20, in §5.30 we will express Dx, o as a completed direct limit of rings Dgn/)\ that,
loosely speaking, are generated by divided powers of degree at most m, see (5.30.1). For thfs, it will
be useful to exploit the ideas from the proof of [Kat89, (4.10) (1)] to identify Dy, o with the p-adic
completion of the (non log) divided power envelope of an ezact closed immersion in Lemma 5.29.10

5.25. A chart for A(R% A)- To express Ds; o as the p-adic completion of a usual (that is, non

log) divided power envelope, we will build a chart for the (fine version) of the log closed immersion
Spec(R/p) < Spec(A(R%,A)) of (5.22.1). For this, we fix the unique ¢ € Q¢ for which

Z-q=2%xeAZ - qy inside Q,

so that % € Z~p for every A (and even g = ¢ in the case when R/p is not O¢ /p-smooth, see §5.17).
We endow O¢/p (resp., Aine) with the (fine) log structure determined by

N>g = O¢/p with 1~ p? (resp., N>o — Ajpr with 1+ [(pq)l/poo]).
For each A € A, we let Q) C q% HOSiSTA N> be the submonoid generated by H()Sigm N>¢ and the

diagonal (<L, ... L) so that the chart
a a
Qx = A(RY)  givenby (L., L) = [(pY77)1 and  [[pcic,, Nxo ~% A(RE)
makes A(RE) a fine log Ajnr-algebra. We let
Q= (Thea @) /(GG 25) = (o D,
be the quotient monoid obtained by identifying the diagonal elements (q%, cen q%), so that the map

Q— A(Rg’A) that results from the charts Qx — A(RY)

is a chart for the target Spf(A(Rg’A)) of the fine version of the log closed immersion (5.22.1). In
terms of this chart, the Frobenius action multiplies each element of ) by p.

To prepare for building a convenient chart for R/p, for each A € A we define an indexing set by
Z)\ = {Z | OSZSd, t/\JgRX}.

5.26. A convenient chart in the smooth case. Assume that R/p is O¢/p-smooth. Then for
each A, there is a unique 0 < iy < ry with t) ;, € R*. For every A\g € A, we consider the monoid

Py, = (Nzo X Hogigmo,iﬁko Z) X Iz ((Hogigm Z) /Z> , (5.26.1)

101, fact, the arguments below would become more direct if we could “uncomplete” Ds, A by constructing the log
PD envelope of the (possibly nonexact) log closed immersion (5.22.1) itself. Neither [Kat89, 5.4] nor [Beil3b, 1.3,
Theorem| gives this hypothetical envelope because p is not nilpotent in A(RS, ).
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where each Z by which we quotient is embedded diagonally. For each (\,7) with 0 <1 < ), there
is a unique vy ; € R* such that t) ; = (p?)"»% - vy, in R for a (unique) ny; € Z>o: explicitly,
_a

nai =g if : € 7, and else ny ; = 0. In particular, Hogigm vy,; = 1 for each A\. The map

P, = R/p given by N>o 2 1=p? Zpy 210 uag,

where the subscript (A,7) indicates index of the factor Z in (5.26.1), is a chart for the source
Spec(R/p) of the fine version of the log closed immersion (5.22.1). In terms of this chart, the
Frobenius action multiplies each element of Py, by p.

Moreover, there is a natural Frobenius-equivariant chart

Q— Py, = (Nzo % Tocicr, iin, Z) x Tl ((Hoﬁiém Z) /Z) (5.26.2)
for this fine version of (5.22.1): for instance, it maps 1 € (NZO)(/\OJAO) to the element (%, -1,...,-1)
of NZO X HOSiSTAOJ#iAO Z, each (%, ceey %) tol e NZ()v each 1 € (NZO)(/\,i) with i £ iy tol € Z()\,i)v

etc.—the key is that the image under ) — A(R% A) — R/p of every generator of @ is evidently
expressible in terms of the images of the generators of Py, (without knowing the “values” of these
images).

The A(RS ,)-algebra A(RS ) ®7[q] Z[P,] comes equipped with an A(RY ,)-semilinear Frobenius
and is initial among the A(RS ,)-algebras B equipped with a unit Vi, € B* for each (A, i) with
0 < ¢ < ry subject to the relations

X)\,i = [((pl/pw)q)m’i] ’ VAJ» Hogz‘g” VA,z‘ =L (5~26-3)
In particular,
R is naturally an (A(R%A) ®zjq] ZP,))-algebra  (with Vi ; = vy 4), (5.26.4)
so the scheme counterpart of the fine variant of the closed immersion (5.22.1) factors Frobenius-
equivariantly as follows:

J q
Spec(R/p) Spec (A(RS, ) @zg) Z[Pr] ) — Spec(A(RS ), (5.26.5)

where Spec (A(RQ A) ®z(Q] Z[P)\OD is equipped with the log structure pulled back from Z[P),]. By

construction, jy, is an exact closed immersion and, by [Kat89, 3.5|, the projection ¢y, is log étale.

The relations (5.26.3) do not depend on the choice of \g, so neither does the factorization (5.26.5).
More precisely, for any A € A, we have the a natural isomorphism over @ of charts for R/p:

Py, — Py, (5.26.6)

and this isomorphism gives rise to the vertical Frobenius-equivariant isomorphism in the commuta-
tive diagram

. Spee (A(RS ) @20 ZIPy]) 4,
—
Spec(R/p)c__ 21 7 Spec(A(RE, ). (526.7)
Ixy Spec (A(R%,A) ®z(Q] Z[P%]) YA

5.27. A convenient chart in the nonsmooth case. Assume that R/p is not O¢/p-smooth. We
have gy = q and Q) = HOSiSm N>, so, letting Ay C @ denote the diagonal copy of N>, also

Q= (HAeA (Hogiir,\ NZO)) /(B = AAQ)M#M ‘
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By §5.17, each ty ; € R* cuts out a unique irreducible component {y, ;} of Spec(R®o k). Moreover,
the generic point y ; of this component determines the ideal (¢ ;) C R: indeed, (p?) C (t ;) in
R and the ideal (¢ ;)/(p?) C R/(p?) is the kernel of the localization map R/(p?) — (R/(p?))y, ;>
as may be seen over RE. Conversely, for each generic point y of Spec(R ®o,, k) and each A € A,
a unique t ;, ;) with 0 < i)(y) < 7y cuts out @ Consequently, for each y and every A\, A\g € A,
there is a unique uy, y,,, € R* such that we have

I, ix(y) = Un Xosy t>\0,i>\0(y) in R. (5.27.1)
Letting ) denote the set of generic points of Spec(R ®o,, k), for A\g € A we consider the monoid

Py 1= ((Hy Nz0 X Tlocicr, hiry @) Z) * Taer, (H0§i§m Z)) [(Bx=Bx)agne,  (5:27.2)

where the quotient means that for every A # Ag we are identifying every diagonal element of
H0<i<r,\ Z with the corresponding diagonal element of |] {(0<i<ry Nirs (V) Z (interpreted to be 0 if
=t — — 0 0

the latter indexing set is empty). The map
P\, = R/p
given by (similarly to before, the subscript indicates the factor in (5.27.2))
(N>g)y 21+ Ero,ing () Ziniy 2 L uy ng,i for i €ix(Y), Zpy 21ty for i gix(Y)

is a chart for the source Spec(R/p) of the fine version of the log closed immersion (5.22.1). In terms
of this chart, the Frobenius action multiplies each element of Py, by p.

Due to the relation (5.27.1), the images in R/p of the generators of ) are evidently expressible
in terms of the images of the generators of Py,, so, as in the smooth case, there is a natural
Frobenius-equivariant chart

Q — PAO
for the fine version of (5.22.1): for instance, for A # Ao and i € ix(y), it sends 1 € (N>g)( 4 to
(1,1) € (N20) (2,0, (9)) % (Z)7,0)-

The A(Rg, A )-algebra A(Rg, A) ®zj0) Z[P,] comes equipped with an A(R%’ A)-semilinear Frobenius
endomorphism and is initial among the A(R%}A)—algebras B for which X ; € B* when i ¢ i5(Y)
and that are equipped with, for each y € Y and A € A, a unit U} ), , € B* subject to the relations
Xxninw) = Unnoy Xnosingw)r Uroroy =1, and
(5.27.3)
[LeyUnroy = (H{Ogigmo}\ixo(y) XAW) / (H{Ogigm}\i)\()}) XA,i) '
In particular, up to a canonical isomorphism, A(R% A) ®z(q] Z[Py,] does not depend on Ag: for a

/ _ -1
Ao € A, we may set U xpw = Uxxoy U)\&Amy

to express the Uy xj,y in terms of the Uy, x, y-
Moreover,

R is naturally an (A(R%,A) ®z1q) Z[Pxo])-algebra  (with Uy x4 =t ik(y)/tAon(y)) (5.27.4)
and, as in the smooth case, the scheme version of the fine variant of the closed immersion (5.22.1)
factors Frobenius-equivariantly as follows:

Jxo O axg O
Spec(R/p)—— Spec (A(Rz,A) ®z(q] Z[PAO]) — Spec(A(Rg 4)); (5.27.5)

where jy, is an exact closed immersion and, by [Kat89, 3.5, the projection g, is log étale. As in
§5.20, we have natural isomorphisms Py, ~ P% over  and the compatibility diagram (5.26.7).
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5.28. The divided power envelope of j,,. For each \o € A, we let Dj/\o denote the divided
power envelope over (Zy, pZ,) of the closed immersion j, defined in (5.26.5) and (5.27.5). Similarly
to §5.22, we may also regard Dj, ~as the divided power envelope over Spec(O¢/p) — Spec(A2,,)
of the closed immersion

Jro,crist Spec(R/p) = Spec((A(RS 2) @y, Alris) ®21q) Z[Pxo))-

Since jy, underlies an ezact closed immersion of log schemes (see §5.27), we may, in addition, regard

Djxo endowed with the log structure pulled back from Z[P),] as the log PD envelope of jy, over

Zp, or of jxy eris over A% (compare with [Kat89, 5.5.1]). For any Aj € A, the isomorphism as in
(5.26.7) induces an isomorphism

Dj,, = Dj,, . (5.28.1)

By functoriality, Dj, s

isomorphisms (5.28.1) are Frobenius equivariant. Due to (5.26.4) and (5.27.4), there is a map

Dj, — R thatlifts D, — R/p (5.28.2)

comes equipped with an A¢ . -semilinear Frobenius endomorphism, and the

and whose formation is compatible with the isomorphisms (5.28.1).
Lemma 5.29. For each \g € A, the map qy, induces Frobenius-equivariant isomorphisms
Ds A n = Dj, [P" for n€Zx (resp., Ds a = Dy, ) (5.29.1)

that are compatible with divided powers, maps to R/p™ (resp., R; see (5.22.3) and (5.28.2)), and the
isomorphisms (5.28.1). In particular,

Ds A/p" — D an for  n>0.

Proof. Similarly to §5.22, we may regard Dy, a and Dj,, as being defined using fine log structures
and the trivial log structure on A;y;. In particular, Dj,, /p™ is identified with the (log) divided
power envelope of

Jo, cris ® 40 Agris/p": Spec(R/p) = Spec((Acris(R%A)/pn) Xz[Q] Z[Py)) over Acris /D"

(see [SP, 0THB]). Consider a commutative square

Ty — Spec((Acris (R%A)/p”) ®z[Q] Z[Py,))
_
/?/ -7 J{q)\()@Aiancris/pn (5292)

—
—

T—— SpeC(Acris(R%,A)/pn)

of log schemes over Aqs/p" in which Ty < T is a log PD thickening such that the log structure
Nr of T (and hence also N, of Tp) is integral and quasi-coherent. By [Beil3b, 1.1 Exercises (iii)],
for any t,¢' € T'(T,Nr) and ug € (’)%0 with t|7, = ug - t'|y, there exists a unique lift u € OF of ug
such that ¢ = ut’. Thus, by the construction of Py, and the universal property described by the
equations (5.26.3) and (5.27.3), there is a unique morphism indicated by a dashed arrow in (5.29.2)
that makes the diagram commute. Consequently, gy, induces an isomorphism between the log PD
envelopes of j)\07cris ®A8ris Agris/pn and (QAO o j)\o,cris) ®Ainf Acris/pn over Acris/pn:

Dj,, /p" = Dy, A n, and, by letting n vary, also 17]\ = Dy a.

A0

The Frobenius equivariance follows by functoriality. O
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5.30. The rings Dgn/)\ For each Ay € A, the divided powers of the images in Dj>\0 of the elements
of the ideal of A(Rg’A) ®z]q) Z[P,] that cuts out R/p generate Dj, ~as an (A(RE,A) ®71q] Z[Pxo))-
algebra. The divided powers of degree at most m € Zx>1 of these images generate a Frobenius-stable
subalgebra

D™ < D,

Ixg ]A ’

)
so that Djy, = Un>1 D](.Z .

Since DjA is naturally an algebra over Ag s (see §5.28), D§:n) is naturally and Frobenius-semilinearly
0
defined in §3.26.
(5.

an algebra over the subring A% - 40

cris cris

¢

l\?
©

1)

IIZ

By Lemma 5.29, the image D% A of Djxo in Dy A 17]?0 is Frobenius stable and does not
depend on Ag. Similarly, the image D%’ (]\n) of ng in Dy 5 is also Frobenius stable and does not
) 0

depend on Ag. For m € Z>1, we set

Dgn/)\ = (Doz’ﬂ([:n))/\, which is naturally an algebra over A

Cris
S;fs) -semilinear Frobenius. In what follows, D% A will play the role of
the ring that underlies the hypothetical log PD envelope of the log closed immersion (5.22.1) that

we started with (compare with footnote 10).

and comes equipped with an A

Both maps in the composition Dj%o —» D% A = Ds;, A become isomorphisms upon reduction modulo

. " . 0 . .
" (because so does their composition), so, since D% A= Um21 Di,&@) we obtain an Frobenius-

equivariant identification
D2 (g DY)~ over  Acs (5.30.1)

0’ (m) C Dy A (compare with

S)—algebras D( /)\ is

The Ay p-action on Dy, p discussed in §5.22 respects the subrings Dy

the last paragraph of §5.9). The induced continuous Ay s-action on the A( i
compatible as m varies, and the identification (5.30.1) is Ay p-equivariant.

5.31. The derivations ﬁm. Similarly to Proposition 5.23, the log derivations defined in
(5.10.1) with RY (resp., RY)) in place of R give rise to the log Ajn¢-derivations

0 . o)
dlog(Xo) * A(Rg ) = A(Rg ) and o8 0) - : A(Rg ,) = A(Rg ) (5.31.1)
for c € ¥ and A € A with ¢ = 1,...,d (as in §5.10, we do not explicate the accompanying
homomorphisms from the log structure). For brevity, let 7 denote either the index “o” for some
o € ¥ or the index “\,7” for some A € A and i = 1,...,d. Then, since each g, is log étale (see

§5.27), the log Ajn¢-derivation 51 8( b from (5.31.1) extends uniquely to a log Aj,¢-derivation
ooy - ARS ) ®ziq) Z[Py) = A(RS ) ®ziq) Z[Py]  forevery Ao € A.

Consequently, by (5.23.4), that is, by [Beil3b, 1.7, Exercises, (i)], we obtain divided power Agis-
derivations

ﬁ(x,)r Ds A = Dsa, (5.31.2)

where a divided power Ays-derivation 0 is, as usual, in addition to Acpis-linearity and the Leibniz
rule, required to satisfy Azl = 2[m=19(z) for divided powers z[™ with m > 1. Likewise, we

obtaln divided power ACHS derivations

DJA — D]A for M €A
49

010g( )"



)

that are compatible with those in (5.31.2). Thus, ﬁ(xf) induces divided power Agr?s -derivations
2__. plm (m)
dlog(X,) DE,A—>D27A for m € Z>q

that are compatible as m varies and recover (5.31.2) under the identification Dy, 5 = (hﬂ D(ij)\) ~.

Consequently, we may reexpress (5.23.3) as the Frobenius-equivariant identification

. ~ 3 o) o) -~
RPIOgC“S(Ox@c/P/A”iS) N <Mm>0 KD(zm/)\ <<810g(Xa))aeE ’ <810g(X/\,i)))\€A,1Si§d>> (5:51.3)

(the Frobenius action on the right side is defined via the identification with the right side of (5.23.3)).

5.32. A functorial complex that computes RI'iog cris(X0, /p/Acris). For a fixed R, the formation
of the rings Dsx, A, Dy,, D% A and D(Em[)‘, as well as the morphisms jy, and g),, is compatible with
enlarging ¥ and A. Likewise, the formation of the identifications (5.23.3) and (5.31.3), is also
compatible with such enlargement. Consequently, by taking the filtered direct limit over all the

closed immersions (5.17.1) for varying ¥ and A (but a fixed R), we may build the complex

. . ) 9 ~
h%nlE,A <<h£m>0 KD(;T/)\ <(8105(Xo))062 ’ (8103(X>\,i)))\€/\7 1<i<d>> > ’ (5321)

where the direct limits and the p-adic completion are formed termwise, that, by the identification
with the direct limit of the right sides of (5.23.3), comes equipped with an A.,is-semilinear Frobenius
endomorphism. By (5.31.3), this complex in the derived category is canonically and Frobenius-
equivariantly isomorphic to
RT1og cris(Oxo, 1/ Acsi)-

If R’ is a formally étale R-algebra equipped with a closed immersion as in (5.17.1) for some sets
¥ and A’, then we may also equip it with the induced closed immersion as in (5.17.1) for the sets
¥ =2 U and A := AUA". The rings Ds, a, Dy, (with Ag € A), D ,, and D{"} then map
to their counterparts for R’ constructed using Y and A: for this, the only slight subtlety is in the
case when R/p is not O¢ /p-smooth but R'/p is O¢/p-smooth, when one uses the relations (5.27.3)
that describe the universal property of A(R% A) ®zjq) Z[Py,]. Consequently, the term indexed by
¥, A (and by a closed immersion (5.17.1)) of the direct limit (5.32.1) maps to the term indexed by
i, A (and by a closed immersion of Spf R’) of the analogous direct limit for R’, compatibly with
the transition maps in (5.32.1). In other words, the complex (5.32.1) is functorial in the ring R
equipped with the closed immersion (5.17.1).

Since the formation of the maps (5.23.2) is compatible with enlarging > and A, and then also with
replacing R by R, the map Rl'iog ceris(Ox oo/e! Auis) — Blogar(X/O¢) is identified with a map

. . 9 o N .
hngA <<hgm>0 KDg"/)\ <<Blog(Xo)>a ’ (810g(X)\,i)>>\€A7 1§i§d>> ) - Qspf(R)/Oc,log (5.32.2)

whose formation is compatible is compatible with replacing R by R’.

Having constructed the functorial complexes (5.21.1) and (5.32.1), we seek to exhibit a natural map
between them and prove that this map is an isomorphism. These tasks, which will be completed in
§5.38 and Proposition 5.39, are the last stepping stones to the proof of Theorem 5.4 given in §5.40.
Lemma 5.33. For every m > p?, the element 6, € A, where the index T is either “c” for some
o €X or “N\i” for some A€ A andi=1,...,d (see §5.19), acts on D(Em/)\ as the endomorphism

20 (logg!d))n (810g3(XT))n7 (5.33.1)
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% lies in A" and p-adically converges to 0 (see §5.14).

where oria

Proof. By Lemma 5.15, the action of §; on Aeis(RY ) (defined in (5.22.2)) is given by the series
(5.33.1). Moreover, analogously to the proof of Lemma 5.15, the series (5.33.1) a priori defines an
Agis-algebra endomorphism of Dy, o. Therefore, by the universal property of Ds; o (see §5.22), the

action of 6r on Dy A, and hence also on D%’ (]\n) and D(Zm/)\ is given by the series (5.33.1). O

Proposition 5.34. In the local setup of §5.17, for every m > p?, the additive morphisms

(m) %(XT) (m) (ld Z (log [6]))n(510§x,.))n71> (m) (m)
pyr, T, pem) (D& =5 p) (5.34.1)

of complexes concentrated in degree O and 1, where T ranges over “c” for o € ¥ and “\,i” for A € A
andi=1,...,d, define a morphism (whose target is defined as in (1.7.3))

K pem <(alog{zxo))aezy (alogf)XM))AeA,lgigd) — () (KD%((% — Does, (0r,i — 1)AeA,1<i<d)> :

Proof. The morphism (5.34.1) is well defined by Lemma 5.33. Moreover, the image of its degree 1
component lies in p - D( ) because, by §5.14, (loi([e])) lies in A and p-adically tends to 0. The

cris

rest of the claim then follovvs from the definitions (1.7.2) and (1.7.3). O

Proposition 5.34 essentially reduces the task of exhibiting a natural map from the complex (5.32.1) to
the complex (5.21.1) to that of exhibiting a natural Ay, s-equivariant map D(Zm/)X — A(m)(Rg,Ayoo).

(m)

cris

For this, in Proposition 5.36, we will realize A/ (Rs A, o) inside the following ring Acis(Rs, A, oo)-

5.35. The I‘il’lg Acris(RE,A,oo)- Let
‘Acms(]:iZ A, OO) C Alnf(RZ A, oo)[l]

be the Aj,¢(Rx, A, o0 )-subalgebra generated by the elements for n € Z>1. Analogously to §5.8, by
[Tsu99, proof of A2. 8],

Agris(RE,A, 00) = (Ainf(RE,A,oo)[%]nzl)/(T - 5)7 S0 Agris(RzyA,OO) = Ainf(R27A7OO) @ A A(C)I‘IS
and AY . (Rs, A, o) agrees with the divided power envelope of (Ainf(Rx, A, 00), (§,P) - Ainf(Rs, A, 00))

cris
over (Zy, pZy). Thus, again as in §5.8,

Acris(RZ A, oo) = Ainf(RE A, oo)®Aichcris is identified with (Agris(RE7A700))A'
Similarly to §3.26, for an m € Zsy, we let A% (Ry z o) € A% (R A, o0) be the Ane(Ry, A, o0)-
subalgebra generated by the divided powers of order at most m, that is, by the w1th n < m. Since
(p, ) is a regular sequence in Aj,¢(Ry A, o), the quotient of Ajn¢(Rs A, 00)[2! ]nzl by the subalgebra
Ainf(RZ’A’OO)[TTT;]mZn21 is (T — &)-torsion free. Consequently,

AL (R o 00) & (Ais(Rs, A, 00)[ Ly lmsnz1)/(T — £), (5.35.1)
to the effect that
A% (R A o) & An(Rs, A, 00) @4, A2,

Cris Cris

Thus, by letting the completion be p-adic if m > p and (p, u)-adic if m < p, we get the identification
(AT (R p,00))~ = AT (Rs A, o). (5.35.2)

cris cris
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Proposition 5.36. For any m € Z>1, the following natural maps are injective:

Acrl(s )(R A, ) = Af:ms) (RZ,A,OO) — ACris(RE,A,oo) — EIR(RE’A’OO) = (Ainf(RZ,A,OO)[%])A

where the completion is £-adic and the definition of the last map will be explained in the proof.

Proof. Since (p,§) is a regular sequence in Aj¢(Rys; A, 00) and Aine(Rys A, 00) is &-adically separated
(see [SP, 090T]), the ring Ai,¢(Rx, 4, oo)[l] is also {-adically separated. Consequently, the map
,(m

cris )(RE Aoo) = IBdR(Rz A, o) 1s also injective.

Ainf(RZ,A,oo)[ | — BdR(RE A, o0) 1s injective, so AY
For varying n € Zxg, the Aiy(Rs, A, 00)-submodules

Fil° A% (Rs A 00) generated by the % for n'>n

form a decreasing filtration of A2 (Rys A ) by ideals. By [Tsu99, A2.9 (2)],'! each

A (Rs A o)/ Fil® is p-torsion free and p-adically complete, (5.36.1)
so the p-adic completions Fil,, := (Filg)A form a decreasing filtration of Acis(Ryx, A, o0) by ideals with
Alris (R, A, 00)/ Filly 2 Acris (R A, 00)/ Fil . (5.36.2)
The p-torsion freeness also supplies a decreasing filtration modulo p:
Fil}, /pFil) = Alio(Rs, a, 00) /PAGis (R, A, 00). (5:36.3)
The isomorphism A% (Rx; A, 00) 2 (Aint(Bx, A, 00) 7 ]n>1)/(T — &) gives the explicit description
Ais (R, 8,00) /DAL (R, 00) = (B 4 oo/E) V1, Y2, ]/ (V] Y5, (5.36.4)

j
where Y; corresponds to éf;)! (compare with [BC09, 9.4.1 (3)]), so the filtration {Fil® /pFil2},>0 of
(5.36.3) is separated. In particular, since
Fil) /pFil) = Fil,, /pFil,  compatibly with AL (Rs A 00)/P = Acris(Rs. A, 00)/D,
the p-adic separatedness of Agis(Ryx, A, o) ensures that the filtration {Fil,},>0 is also separated:

(5.36.2)
Acris(RZ,A,oo) — 1&1 (Acris(RE,A,oo)/Fﬂn) = m (Acrls(RZ A, oo)/FllO) — ]Bji_R(RE A, oo)

where the last map is injective because so is each
Alis(Rs, A, 00)/ Fill) = (AL (R, 4, 00)/ Filp) [1] & (Aint (R, A, 00)[3))/€" = Bl (Rs, A, 00) /€™

(Rx, A, 00 )-algebras.

w

cris

This gives the desired natural injection Acis(Ry A, 00) — B dR(RE A oo) Of Al
The filtration {Fil%},>o defines the decreasing filtration

Fily ™ = Fild N A2™ (Ry A o) € A2 (Ry 4 o)
of A%™ )(Rz A,00) by ideals. Explicitly, Filn’( ™) s generated by the products %1, £ with

cris ng!

ny+...+ns >nand 0 <n; <m. By (5.36.1), the quotients
A ™ )(Rg A, o)/ Fil% (™ are p-torsion free, (5.36.5)

cris

so we again get the induced filtration modulo p:

Fil% (") /pFil% ) 5 A% 0 (Ryy ) /pA% ™ (Rs o, oo).

cris

Hloc. cit. is written in a different setting, but its proof continues to work if A there is replaced by our Ryx A, co-
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Similarly to the case of the filtration {Fil% /p Fil%}, >0, the analogous to (5.36.4) explicit description
of A%(™ )(Rg )/pAmS )(Rg A, o) supplied by the isomorphism (5.35.1) shows that the filtration

cris

{Fﬂ% (m) /pFi ln (m )}nZO is separated.

For each n > 0, there is a j, > 0 such that p/» kills

AgriS(RziAroo)/(Acrl(sm) (RE A, 00) + Fllo)
(for instance, jy := ord,(n!) has this property). Consequently, p’» kills the kernel of the map

A2 (Ry A, o)/ Fily ™) A% (R, A o0)/ Fill

crls cris

pi-(A ’<m>(RE A oo)/ il ™y 7 pd-(AD (Rx, A, o0)/ Fily)

cris

for each j >0,

so, for j > j,, every element of this kernel is a multiple of p?~/». The short exact sequences

Fil% (™ (536.5) A% (Ry 4 ) A% (Ry p o)/ FiID (™)

crls

i FIl0 P AT Ry n o) pALT (R 4, oo)) FlS ™)

cris cris

0— —0

then show that modulo p every element of Ker(A( )(RE A,00) = Acris(Rx A, 00)), that is, of

Ker (lim _ (Agil™ (B, n,00)/p7) = lim _ (A% (Rs, p,o0) /7)) (5.36.6)

(see §5.35), lies inside Fily (™) /p C AL )(RE A,00)/p for each n > 0. However, by the previous

cris

paragraph, (1,5 (Filo’ (m) /p) = 0, so every element that lies in the kernel in (5.36.6) is divisible by
P in AE;?S)(RE/\&O) This implies that A )(RE,A,oo) — Agris(Ry, A, 00) 1s injective, as desired. [

cris

Lemma 5.37. For each Ay € A, there is a divided power morphism

Dj,, = ALi(Rs A, ) (5.37.1)

whose formation is compatible with the isomorphisms DjA >~ D, , discussed in (5.28.1).

])\/

Proof. By construction, Aj¢(Rx; A, 00) is an A(RY)-algebra and an A(RY)-algebra for every A € A
(compatibly with the maps 0 of (3.14.3) and (5.19.1)), so it is also an A(RY ,)-algebra. Moreover,
since Ainf(Rx, A, o0) is -adically complete with Aine(Rs A, 00)/& = Ry, A, oo, if ty,i is a unit in R, so
also in Ry, A, 0, then, since X ; mod £ is ty; (see (3.14.3)), X ; is a unit in Ajp¢(Ry A,00). Thus,
if R/p is O¢/p-smooth, then the equations (5.26.3) have a unique solution in A ¢(Ryx; A, o), to the
effect that, in this case, Aiyr(Rx, A, o0) is naturally an (A(RE A) @z(q] Z[Py,])-algebra, compatibly
with the “change of A" isomorphisms exhibited in (5.26.7) and the maps (5.26.4) and (5.19.1) to R
and Ry A, o0, respectively.

If R/p is not O¢/p-smooth, then, in the notation of §5.27, for each m € Z>¢ and y € ), the element
1/p™

tko,ixo(y
closed in RZ,A,OO[%], we conclude from (5.27.1) that

) is not a zero divisor in Ry A oo and is a unit in Ry, A,oo[%]y s0, since Ry A, o is integrally

£/ )/t £/ ) € RS A o for every X\ € A.

>\ ix(¥)! "Xoyixng (y

Thus, for such m, y, and A, there is a unique ug\m/\)o y € Rg A. oo Such that

ypm_m) 1 .
B in) = Wdoy Dosinge) 1 S
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(m) P = (m—1)

The uniqueness ensures that (uy o,y
element of (RbE,A,oo)X for which (see §3.11 and §3.14)

b _((m)

= Uy, 5O the system UL gy = u/\7>\07y)m20 is an

X i) = (U3 20,4 Xoying) M Anf(Ry A c0)- (5.37.2)

Since [(pl/poo)], and hence also each X} ;, is a nonzero divisor in Ai,(Rx A, o), the equalities
(5.37.2) provide a solution in Ajnf(Rx A ) to the equations (5.27.3) that lifts the solution in
R C Ry, A, o provided by (5.27.4). Thus, also in the nonsmooth case, Aiy(Rs, A, 00) is naturally
an (A(Rg,A) ®z(Q) Z[Px,])-algebra, compatibly with the “change of Ag” isomorphisms and the maps
(5.27.4) and (5.19.1) to R and Ry A, 0, respectively.

In conclusion, in all cases we get the compatible with change of A\g commutative square

A(Rg ) ®z(q) Z[Px,] I A(Rg ) ®z(q) Z[Px] — ™ LR
J J/ so also J J
Aint(Rs, A, 00) ——— Ry A oo, A% (Rs A 00) ——» Ry A oo
The universal property of Dy, now supplies the desired divided power morphism (5.37.1). ]

5.38. The comparison map. Upon p-adic completion, the map (5.37.1) induces a map
DZ,A — Acris(RE,A,oo)a (5381)

which, by Lemma 5.37, does not depend on the choice of \g. By its construction, the map (5.38.1)
is compatible with the maps

: 0
Dg AN—>» R and Acris(RZ,A,oo) — RE,A,oo- (5.38.2)

5.36
The restriction of this map to D%”(Xn) factors through the subring Ag;i(sm) (Rx A, 00) C Agris(Rs, A, 00),

so, by passing to p-adic completions and using (5.35.2), we obtain compatible maps
DI = Al (Re p00)  for  m>p. (5.38.3)

cris

By construction, the maps (5.38.3) are Ay, p-equivariant, so they give to the morphisms
K pgm (0o = Does, (0r,i = Diaennica) = Kyom (00 = Doen, (00, = Dien,1<i<a)-

After applying the functor 7, (see (1.7.3)), these morphisms compose with the ones constructed
in Proposition 5.34 and give rise to the desired comparison map of complexes:

(i o (o)) (08,0 o (5,0 0)) 350

where the direct limits and the p-adic completions formed termwise and, for brevity, we let the label
T range over “o” for o € ¥ and “(\,4)” for A € A and ¢ =1,...,d. The source (resp., target) of this
map is a term of the direct limit (5.32.1) (resp., (5.21.1)) and its formation is compatible with the
transition maps of the direct limits (5.32.1) and (5.21.1) (in other words, with enlarging 3 and A).
Moreover, if R’ is a formally étale R-algebra equipped with a closed immersion as in (5.17.1) for
some sets ¥ and A’, then the map (5.38.4) and its analogue for R’ and the sets YUY/, AUA’ (and
the induced closed immersion) are compatible with the maps between their sources (resp., targets)
discussed in §5.21 and §5.32.

In conclusion, by taking the filtered direct limit of the maps (5.38.4) over all the closed immersions
(5.17.1) for varying ¥ and A (but a fixed R), we obtain a comparison map from the complex (5.32.1)
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to the complex (5.21.1), and the formation of this map is compatible with replacing R by a formally
étale R-algebra R’. It follows from the following proposition that this map is a quasi-isomorphism.

Proposition 5.39. The comparison map (5.38.4) is a Frobenius-equivariant quasi-isomorphism.

Proof. The proof is similar to that of [BMS16, 12.8|, and the key idea is to reduce to the case of a
single coordinate morphism settled in Proposition 5.16. More precisely, for m > p, let

Spec(R/p) — Spf(D(;LI)X) (5.39.1)

be the closed immersion induced by its analogue for Dy, , that is, by the first map in (5.22.2). For
each \g € A, the ideal of A(RE A) @zj0) Z[ Py, that cuts out R/p (see (5.27.5)) is finitely generated.

Consequently, for each m > p, the ideal of D(z 1)x that cuts out R/p is finitely generated, too, and

hence, due to divided powers, it is also topologically nilpotent. Thus, if we fix a A € A and for
m > p let A(m)(R) A be the ring Alm) (R) of §3.27 constructed using the semistable coordinate map

Cris Cris

RY — R, then the formal étaleness of A (RY) — A (R)x (see §3.14) ensures the existence of

Cris Cris
the unique indicated lifts in the commutative diagram

Spec(Rs, A, 00/p) — Spec(R/p) —— Spf(A(m)(R) )

N Cris
- - ~
0 - - l
— ~

SpE(A) (R A, o))

_ -
— -

o SPEDE) —— SpE(AG (BY))

(m)

in which the bottom horizontal map results from the fact that, by construction, each Dy, ) is an

A(RD) algebra and an Agns) -algebra. The uniqueness ensures that the resulting maps

AU (R)y — DY (5.39.2)

Cris

are compatible as m varies, Frobenius-equivariant, Ay, p-equivariant, where Ay, 5 acts on A((:ns) (R)a

through the projection Ay, o — Ay, and are compatible with the maps from its source and target

to Agrl"s) (Rs, A, 00)- By construction, these maps are also compatible with the derivations WXM)

fori=1,...,d discussed in §5.10 and §5.31. Consequently, we get a commutative diagram

K om)

crl% (

9 9 (5.16.2)
R)>\ (810g(X,\71)’ et a]og(X/\d)) 77(u) (K (m)(R oo) (5)\,1 - 17 s 76/\,d - 1))

cris A,

l(a.ag.z) J (5.39.3)

KD(;L/)\ ((8105()@))7) 5.34 and (5.38.3) 0 (KA(T”>(R2 )((5T — 1)7))

cris

where we again let the label 7 range over “o” for ¢ € ¥ and “(N,:)” for N € A and i =
,d. By Proposition 5.16, the top horizontal map in (5.39.3) is a Frobenius-equivariant quasi-
1som0rphlsm and, by Lemma 3.7, Remark 3.35, and the Frobenius-equivariance of the homomor-

phism Agrls) (Rxoo) — Ag:s) (R, A, 00), SO is the right vertical map. By Proposition 5.13 and (5.31.3),
the left vertical map in (5.39.3) becomes a Frobenius- equivariant quasi-isomorphism after applying

liglm>0 and forming the termwise p-adic completion. These operations turn bottom horizontal map
in (5.39.3) into the comparison map (5.38.4), so we conclude that the latter is also a Frobenius-

equivariant quasi-isomorphism, as desired. ]
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5.40. Proof of Theorem 5.4. By §5.38 and Proposition 5.39, the functorial in R complexes (5.21.1)
and (5.32.1) define canonically and Frobenius-equivariantly quasi-isomorphic complexes of presheaves
on a basis for the topology of X¢;. Their associated complexes of sheaves on X are then also canon-
ically and Frobenius-equivariantly quasi-isomorphic. By §5.21 and §5.32, these complexes of sheaves

~L . . . o
represent AQx® 4. Acris and Ru. (Ox o /plA ), respectively, so that, in conclusion, Proposition 5.39

cris

supplies a Frobenius-equivariant isomorphism
~ ~L
Ru*(oxoc/p/ACris) — AQ%@)AiancriSa (5.40.1)
which gives the desired identification (5.4.1). O
We now have two ways to identify the de Rham specialization of AQy: we could either use (4.16.1)

or combine (5.4.1) with the fact that the logarithmic crystalline cohomology of X, /, over O¢ is
computed by 25 /0, log" We now check that the two identifications agree (this will be used in §8).

Proposition 5.41. The following diagram commutes:

Ru(Osg )y Auns) ——— o AL Acks
\ / (5.41.1)
(4.16.1)
Q%:/OC, log
where the left diagonal map is induced by the identification R“*(Ofoc/p/Acris)@)HAmS, 0 Oc = Q;e/oa log

supplied by [Beil3b, (1.8.1)]. In particular, the two ways to identify AQxy ®%inf’9 Oc¢ with Q.%/Oc,log

mentioned in the preceding paragraph agree.

Proof. We build on the corresponding proof given in the smooth case in [BMS16, proof of 14.1].

The claim is local, so we place ourselves in the setup of §5.17. Then, since the terms of Qépf( R) /O log

are p-torsion free, each t) ; is a unit in R[%], and the elements dlog(X,) and dlog(X) ;) generate the
commutative differential graded algebra Q.DE,A /Auie, Iog, PD from Proposition 5.23 over Ds; 4, there

is a unique map of commutative differential graded algebras

;:)z,A/Acris,log,PD - Qépf(R)/OC,bg (5.41.2)

that in degree 0 is given by the map Dy; » — R from (5.22.3). By Proposition 5.23, the left diagonal
map of (5.41.1) is described by this unique map (5.41.2). Thus, it remains to show that so is the
composition in (5.41.1).

We recall from the proof of Theorem 4.16 that the right diagonal map in (5.41.2) is defined by using
the Frobenius endomorphism of AQx and the canonical identification (supplied by [BMS16, 6.11]) of

(Lnp(e)) (AQ%)) /(&) with the complex'? H®*(AQx/p(€)) whose differentials are given by Bockstein
homomorphisms (defined in loc. cit. using AQx/¢(€)?; a posteriori, H*(AQx/p(€)) is canonically
identified with Qépf( R)/Oc lOg). Letting 7 range over the same indexing set as in the proof of Propo-

sition 5.39, this construction also applies to the complex 7, (K At (R a. o0) (67 — 1)7)>: Frobenius

maps it isomorphically to 7,(,)) (KAinf(Rz,A,oo)(((ST - 1)T)>, for which the reduction modulo ¢(&)

map is
M (1)) (KAmf<Rz,A,oo)((5T - 1)7)> — H*® ((n(u) (KAi,,f(RE,A,OQ)((éT — 1)7))) /cp(g)) . (5.41.3)

12F6r the sake of simplicity, we notationally suppress the twists inherent in the construction H*®(—) of loc. cit.
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Since, by Theorem 4.2 and Remarks 3.10 and 3.35,

(Wu) ( A (R, 2, 00) (07 = 1)7))) /9(€) = ¢, -1) (KR s, o (6- = 1)7)) (5.41.4)

the cited remarks imply that the composition of Frobenius and (5.41.3)—(5.41.4) gives the de Rham
specialization map AQyx — QSG/OC log 11 terms of the complex 7, (KAinf(RE,A,oo)(((sT — 1)7)).

We can now describe the right diagonal map of (5.41.1) in terms of 7, (KA<m)( )((6T - 1)7.)),

which is a variable term that comprises the target of the comparison map (5. 38 4) Namely, we
first let cp(A(m) (Rs, A,00)) be the analogue of the ring A (Rs A, o) built using the element ¢(§)

cris cris
(m)

instead of &, so that the Frobenius gives the isomorphism A\ (Rx A,00) — ‘P(Af:ns) (Rs. A, 00)). "

Then Frobenius maps the complex 7, (K A (R o )((5T - 1)7)) isomorphically to the complex

M((w)) ( S(AT) (R » ))((57 - 1)T)>, for which the reduction modulo ¢(§) map is

cris

M) (B um e (O = 1)) = H* (g (Ko e (6 = 1))} /() . (5.415)

The target of the map (5.41.5) maps to

3.10 and 4.11
H* (77(§p—1) (KRE,A,OO(((ST - 1)7))) = Qépf(R)/@c,log (5.41.6)

1

via a morphism induced by the map 6 o o *: ‘P(AEI?S)(RE,A,OO)) — Ry A, 0; indeed, since each

H' (n¢,-1) (KRy, . o ((6- — 1)7))) is p-torsion free, the agreement of the Bockstein differentials may
be checked after inverting p by using the fact that (Ain(Rs, A, c0) /cp(f)z)[%] is an algebra over

@(A(m)(Rg,A,OO)) via a map that lifts # o p~!. The resulting composition

cris
3.10 and 4.11

M (K e+ (0 = D)) = H* (¢, 1) (K. (67 = 1)2)) Lot/ 0 o8

cris

I

gives the promised description of the right diagonal map of (5.41.1) and, by construction and
[BMS16, 6.13], is a morphism of commutative differential graded algebras'* that in degree 0 is given
by the map 6 of (5.19.3). On the other hand, the comparison map

Q.Dz A/Acris, log, PD = KDEvA((W) )= (lg ( (KAgg(RE,A,w)(@T B 1)7)>>>A

from (5.38.4) would only become a morphism of commutative differential graded algebras if in the

formula log([e]) - 3,50 (lc()i(f&)n<aloga(xf))n that describes the morphism (5.34.1) in degree 1 we
could ignore the terms with n > 1. However, log([e]) and u are unit multiples of each other and
O ()
interested in the composition

Qb \/Acria, log, PD (hﬂmo (U(u) ( A0 (R y. o) (07 — 1)7)») = D06(R)/00, log

that describes the composition in (5.41.1). In conclusion, this composition is a morphism of commu-
tative differential graded algebras that, due to (5.38.2), is given in degree 0 by the map Ds; A — R
from (5.22.3), so, as desired, it is indeed the unique morphism (5.41.2). ]

= 0in O¢ for n > 1 (see §5.14), so we can indeed ignore these terms if we are only

We now use Theorem 5.4 to analyze the crystalline specialization of RT'(X, AQy) in Corollary 5.43.

13Composition with the map p(A}) (Rx, a, 00)) = AT (R, 4, o) recovers the Frobenius of AL (R, A, oo)-
lMgee [BMS16, 7.5] and its proof for the description of the commutative differential graded algebra structure on
the Koszul complex K, ((6; — 1)) that computes continuous group cohomology.
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5.42. The crystalline specialization map. The Witt vector functoriality gives the surjection
A — W(k), the so-called crystalline specialization map of Ajps.

Since £ maps to p in W (k), this surjection factors through Agis as follows: Ajns < Aeris = W (k).
We equip W (k) with the pullback of the log structure on A;s defined in §5.2. Explicitly, the
resulting log structure on W (k) is associated to the prelog structure Qg 5 W (k).

Corollary 5.43. If X is quasi-compact and quasi-separated, then we have the Frobenius-equivariant
identifications

~IL
RI (xét 3 AQ%)@)AM Acris = erog cris (:{OC /p/ACI‘iS) 3

~L (5.43.1)
RF(%ét, AQ%)@Aian(k) = erogcris(xk/w(k»'
If X is even proper over O¢, then we have the Frobenius-equivariant identifications
IL Iav)
RF(%éta AQ%) ®Ainf Acris - erogcris(%oc/p/ACI‘iS)v (5-43.2)

RF(%ét, AQ;{) ®HAinf W(k) = erogcris(%k/w(k))y

and the cohomology groups of RT'(Xe, AQx) ®HAinf Acris[%] are finite free as Acris[%]-modules.

Proof. By |[BMS16, 4.9], any finitely presented Ajn¢/p"-module is perfect as an Aj,s-module. Conse-
quently, any Ajn¢/p™-module M is a filtered direct limit of perfect A;ys-modules, so, by [SP, 0739],

RT (X4, AQx ®gmf M) = RT(X¢, AQx) ®gmf M.

In particular, this applies to M = As/p", so, since RT'(X¢, —) commutes with derived limits (see
[SP, 0A07]), the first identification in (5.43.1) follows from Theorem 5.4.

For each finite subextension of C'/ Frac(W (k)), consider its ring of integers O C O¢ equipped with
the (fine) log structure associated to the prelog structure O N ((9[]%])X — O. By using étale local
semistable coordinates (1.5.1) and Claim 1.6.1, we may employ limit arguments to find such an O
together with a quasi-compact and quasi-separated log smooth log scheme X" over O /p that descends
X0, /p and is of Cartier type (see [Kat89, 4.8]). Then the base change theorem [Beil3b, (1.11.1)]

applies'® and shows that
~L
RTog cris(Xog /p/ Acris) @ 4, W (k) = RU1og cris (X1 /W (K)), (5.43.3)
so that the second identification in (5.43.1) follows from the first.

If X is O¢-proper, then, by Corollary 4.19, the object RI'(X¢;, AQx) is quasi-isomorphic to a bounded
complex of finite free Ajp-modules, so the identifications in (5.43.2) follows from those in (5.43.1).
Moreover, then X" is O-proper and [Beil3b, 1.18, Theorem| proves that the cohomology groups of

RTog cris (X0 /p/ Acris) ®HAinf Acris[%], and hence also of  RI'(X4, AQx) ®HAinf Acris[%],
are finite free Acris[%}—modules. O
Remarks.

151n Joc. cit., the map f of fine log schemes is quasi-compact and separated. One may relax this to quasi-compact
and quasi-separated: once Y there is affine, the iterated intersections of opens in an affine cover of Z are quasi-compact
and separated over Y, so the Cech technique (compare with [SP, 08BN]) reduces to the original assumptions.
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5.44. In the notation of the preceding proof, the special fiber X} of X is a descent of X}, to a fine log

scheme over the “standard log point” k£ whose log structure is associated to N> %k (the base
change map is a “change of log structure” self-map of k determined by the map N>¢ — Q>¢
that sends 1 to the valuation of a uniformizer of ©). Given any such descent, the base change
theorem [Beil3b, (1.11.1)] also gives the further Frobenius-equivariant identification

erogcris(%k/W(k)) = RFlogcris(Xk/W(k))a (5444)

where W (k) on the right side is equipped with the log structure associated to N>q N W (k).
Likewise, if Xj is k-smooth, then loc. cit. gives the Frobenius-equivariant identification

RT'\og cris (X /W (K)) =2 RT s (X /W (E)). (5.44.5)

5.45. The identification (5.43.3) expresses RI'ogcris(Xx/W (K)) in terms of RTogcris(Xog, /p/Acris)-
Further results from [Beil3b] imply that for proper X a converse holds after base change to
B see (9.2.1) below (when X}, is smooth, Acris[%] in place of B suffices, see [BMS16, 13.9]).

The results of [Beil3b] also give a Hyodo—Kato type isomorphism in our context:

Proposition 5.46. If X is proper over O¢, then there is an isomorphism

RFIOng(%/OC) ®]l(éc C~ RPlogcris(xk/W(k)) ®E‘;V(k) C. (5461)

Proof. By [Beil3b, (1.8.1)], letting pO¢c C O¢ be endowed with its standard divided powers, we have
erong(%/OC) = erogcris(%oc/p/oc’)- (5462>

Moreover, letting X' be a descent of X/, as in the proof of Corollary 5.43, by [Beil3b, (1.16.2)
and §1.15, Remarks, (iv)],'® we have a (noncanonical) isomorphism

RFlogcriS(%Oc/p/OC) ®Héc C~ erogcris(Xk/W(k)) ®HI;V(]9) Ca (5463)

where W (k) is equipped with the log structure associated to N>q AN W (k). It remains to combine
the isomorphisms (5.44.4), (5.46.2), and (5.46.3). O

6. THE COMPARISON TO THE B;R-COHOMOLOGY

The main goal of this section is Theorem 6.6, which, for quasi-compact and quasi-separated X,
identifies the B;{R-base change of the absolute crystalline cohomology RI'jog cris(Xo,. /p /Acris) with
the “crystalline cohomology of %%51 over BJR,” denoted by Rfcris(%%d / B;fR), that was defined in
[BMS16, §13| (see §6.2 for a brief review). The definition of RI'wis(X2!/B1y) is purely in terms
of %251 and was engineered in op. cit. to be compatible with erogcris(%(oc /p/AcriS) in the case
when X is smooth. Therefore, for the desired base change, we only need to check that a slightly
more general definition of RT ois(X%!/BJR) that uses the étale topology instead of Zariski and more
general embeddings than those furnished by annuli leads to the same cohomology (see §§6.2-6.3).
For this, we adapt the arguments of op. cit.; in fact, our C' is given as (Frac(W(k)))™ (see §1.5),
so we may simplify the “descent to a discretely valued base” aspects of these arguments by taking
advantage of a result of Huber on the local structure of étale maps of adic spaces (see §6.3).

16Wwe are citing the post-publication arXiv version of the article, which slightly differs from the published version.
59



6.1. The ring Bl;. Since ¢ is not a zero divisor in Ainf[%] and generates Ker(&[%]), the Ker(G[%])—
adic completion of Ainf[%] is a complete discrete valuation ring BSFR with £ as a uniformizer and
C as the residue field. By Proposition 5.36, both Aj¢ and A are subalgebras of B:{R. By the

“glueing of flatness” [RG71, 11.1.4.2.1], the ring B:{R is flat as an Aj,¢-algebra. We set
Bgg := Frac(BJg).
Our Ajys is a W (k)-algebra (see §2.1), so, by Hensel’s lemma, BJ; is naturally a (k)[%]—algebra.

6.2. The B;R-cohomology using the étale topology. In [BMS16, §13], Bhatt—Morrow—Scholze
used the Zariski site of a smooth adic C-space X to define the “B(J{R—Cohomology” of X, denoted by

RTwis(X/Biy) € D=(BiR).
We will now review their construction to show that it may also be carried out in the étale topology.

By [Hub94, 1.6.10, 2.2.8|, the Zariski (resp., étale) topology of X has a basis of affinoid opens
Spa(A, A°) each of which admits a map

Spa(A, A°) — T = Spa(C(TF!, ... ,T;El), Oc(TH, ... ,T;t1>) for some deZsyp (6.2.1)

that is a composition of a rational embedding, a finite étale map, and a rational embedding. Since A
is topologically of finite type over C and for any a € A there exists an n > 0 with 1+ p™a € (A°)*,
there is a finite subset ¥ C (A°)* such that the following map is surjective:
Xu
C{(XF)yew) =% A. (6.2.2)

Thus, endowing each Ajn¢/£™ with the p-adic topology, each (Ainf/fn)[%] with the unique ring

topology for which Aj,/€™ is an open subring, setting
Bl (X ace) = lim _ (Bln/€" (X ucw)), (6.23)
and composing the projection onto the n = 1 term with (6.2.2), one obtains the surjection

s: Big (Xguew) » A andsets  Dy(A) :=lim _ ((Big (X" )uew))/(Kers)"). (6.2.4)

By the Leibniz rule, any derivation of Bj; ((XI')ucw) extends to Dy(A). In particular, the
derivations 81% = X, - -2 allow one to define the Koszul complex

L] . a
QD\P(A)/B(J{R T KD\I'(A) <(W(Xu))u€\11)

that is functorial in enlarging ¥. The resulting complex

0y = lim,, (QDw(A)/BCTR) (6.2.5)

is functorial in A. Consequently, by varying Spa(A, A°), we obtain a complex of presheaves on a
basis for the Zariski (resp., étale) topology of X. The cohomology of the associated complex of
sheaves is, by definition, the B('IR—cohomology of X:

RTois(X/BiR) (resp., its variant for the étale topology RTois(Xet/Bir)) (6.2.6)

By [BMS16, 13.5 (ii)], if A is fixed and ¥ is sufficiently large, then Dg(A) is &-torsion free and
&-adically complete. Consequently, the B;R—cohomology objects

RTis(X/ B:R) and RY s (Xt / B(J{R) are derived &-adically complete. (6.2.7)
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By [BMS16, 13.6], their (derived) reductions modulo £ are canonically and compatibly identified with
the de Rham cohomology objects RT'(X, Q;(;gnt) and RT'(Xgt, Q};gnt), respectively, for instance:

~ .a t .
RDeis(X/BEy) ®Hé;R C = RI'(X,Q%8") =t RUar(X/C). (6.2.8)
Thus, since, by the Hodge-to-de Rham spectral sequence and [Sch13, 9.2 (ii)], the formation of de
Rham cohomology is insensitive to passage to the étale topology, we have the pullback isomorphism:

RFcris(X/B;rR) L> chris(Xét/BIR)' (6'2'9)

In addition, if (for simplicity) X is proper over C and there is a complete discretely valued subfield
K C C with a perfect residue field and a proper, smooth adic space Xy over K equipped with an
isomorphism X = Xo®xC, then, by [BMS16, 13.7], there is a canonical identification

RTeis(X/BJjg) = RT4r(Xo/K) ®k By, where RT4r(Xo/K) := RP(XQ,Q}S??;). (6.2.10)

In this situation, by the proof of loc. cit., the reduction modulo £ of the identification (6.2.10) recovers
the identification (6.2.8) under the canonical identification RI'4r(X/C) = RTqr(Xo/K) @% C.

6.3. The B(;FR—cohomology using more general embeddings. To relate the B:{R—cohomology
and the logarithmic crystalline cohomology studied in §5, we wish to mildly generalize the con-
struction of R ais(Xer/Bjr). Namely, we consider the (larger) basis of X¢; that consists of those
affinoids Spa(A, A°) that have an étale morphism

Spa(A4, A°) — Spa(C(Th, ..., T, T5Y, ..., T:Y), Oc(Th, ..., T, T, ..., TY) (6.3.1)

for some r,d € Z>o with r < d such that 7; € A* for each ¢ (even when 1 < ¢ < r). By [Hub96,
1.7.3 iii)]'” and limit arguments, there is a complete discretely valued subfield K C C with the ring
of integers O and a perfect residue field together with a finite type O[T1,. .. ,TT,Till, . ,Tjﬁl]—
algebra Ay that is étale after inverting p, flat over O, and normal such that the morphism (6.3.1) is
the C-base change of an étale Spa(K, @)-morphism

Spa((Ag)[L], Ag) = Spa(K(Th,..., T, T, ..., T, O(Th, ... T, T, ... TFY))  (6.3.2)
such that T; € ((;ﬂ))[%])x For each element Spa(A, A°) of this basis, we consider variable finite
subsets ¥ C (A°)* and 2 C A° N A* such that the map

Xy—=u, Xor
CUXauew, (Xa)aez) ==
is surjective and W (resp., =) contains the images of the T; with r +1 <4 < d (resp., 1 <i <r) for
some coordinate map as in (6.3.1) whose choice, together with a choice of its descent (6.3.2), we fix
when discussing fixed ¥ and . Defining the ring Bl ((Xif')ucw, (Xa)acz) analogously to (6.2.3),
so that the map (6.3.3) gives rise to the surjection

s: Bix <(X1:Lt1)u€\lla (Xa)aez) = 4,

A (6.3.3)

for n € Z~o we set

Dy,=,n(A) = (Big ((Xguew, (Xa)aez))/(Kers)®  and Dy =(A) :=lim _ D,z ,(A).

1"Noncomplete A are allowed in loc. cit., so we choose A* := W(K)[T1,. .., T, TEY, ..., T;'] and A” := AT[2].
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The ring B:{R is naturally a K-algebra and, for each n > 0, we let (B;R/gn)o C BIR/fn be the
Ajnt/€-subalgebra generated by the image of O. The proof of [BMS16, 13.4] shows'® (with R
there replaced by our (Ao)[%]) that the Bj;-algebra

lerR@K(AO[%]) = lim (((B(J{R/f")o ®o AO)A[%]) (6.3.4)
is &-adically complete and &-torsion free with

(B®x(A[L]))/€ = A and, more generally, (Bin@x(Ao[1)/€" 2 ((Bix/™)o @0 Ao) [L].

Moreover, we have the following analogue of [BMS16, 13.5 (ii)] whose proof will be given in §6.4:

Lemma 6.3.5. If = contains the images of the T; with 1 < ¢ < r under some coordinate morphism
as in (6.3.1) and ¥ is large enough, then we have the isomorphism

Dy,=(A) = (B @k (A[3])[(Xa = @)acwuzpn (... 1] (6.3.6)

where a € B&LR@X\JK(AO[%]) denotes a fixed lift of a. In particular, for large ¥ and =, the BIR—algebm
Dy =(A) is &-adically complete and &-torsion free.

Similarly to §6.2, for any ¥ and = the derivations ﬁ()@) =X, - % with a € ¥ U E extend to
Dy =(A) and we may define the Koszul complex

. e 0 0 _
QD‘I’,E(A)/BCTR T KD\D,E(A) ((Blog(Xu))ue‘I” (alog(Xa))aez>

that is functorial in replacing ¥ and = by larger ¥/ and Z'.

Lemma 6.3.5 and the proof of [BMS16, 13.6] show that

e, cont

Q.DQ,E(A)/BIR/f = QA/C in the derived category, (6.3.7)

Since a € A for every a € ¥ U ZE,

compatibly with enlarging ¥ and =. In particular, due to the derived &-adic completeness supplied
by Lemma 6.3.5, if ¥ is large enough, then the map
[ ] [ ] . o . .
QDW,E(A)/BIR — QD\p/ - (4)/BL, is a quasi-isomorphism.

, =

Thus, if Spa(A, A°) even has a coordinate map as in (6.2.1), then we obtain the functorial in

Spa(A, A°) quasi-isomorphism with the complex Qs /Bt of (6.2.5):
dR

Q% g~ limy, (QDW,E(AVB;R) . (6.3.8)

Since those Spa(A, A°) for which the coordinate map as in (6.2.1) exists also form a basis for Xgt,
we conclude that the cohomology of the sheafification of the complex of presheaves furnished by the

target of (6.3.8) is identified with RD¢is(Xet/B;.). In conclusion, we may summarize informally:

also compute the Bjj;-cohomology RIeis(X/BZ,) (6.3.9)

the complexes s

Qo (a)/BE

and the maps (6.3.7) recover the following identification (6.2.8).

181 fact, in our case the argument is simpler than in loc. cit. and we sketch it here. We may assume that Spec(Ao)
has no connected components on which p is a unit (such components do not contribute to (6.3.2)), so, by [RGT71, 3.3.5]
and [SP, 0593], the ring Ao is free as an O-module. Consequently, the n™ term of the inverse limit in (6.3.4) is a
p-adically completed direct sum of copies of (Ainf/é"")[%]. This makes the multiplication by £&™ map on this n'" term
explicit and the desired claims follow by passing to the inverse limit over n.
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6.4. Proof of Lemma 6.3.5. We adapt the proof of [BMS16, 13.5 (ii)] as follows.
In addition to the fixed coordinate morphism (6.3.1) used in the statement and its descent (6.3.2),

(632) —~ -
we set 29 :={T1,....,T,} C ApnN (AO[I%])X and fix a subset ¥y C (Ag)* such that the map

S0 K<(aﬁfl)ue%7 (ﬁa)a650> TmE AO[%]

is surjective and ¥ contains the images under the map (6.3.2) of the variables T; with r+1 < i < d.
We require that U contains the image of ¥y in R° (this is the meaning of “large enough” in the
statement). We set

Do,y = K {(zEY)uewy, (Ta)acz,y ) /(Ker so)” for n >0 and Do :=lim _ Do n,

so that, by the K[T1,..., Tr,Tfﬁrl17 ... ,Tdil]—étaleness of AO[%], the map

Aoll] = Ag[l]  liftstoamap  Ag[l] - Dy with T g, (6.4.1)
By [GRO03, 7.3.15] (alternatively, by [Hub93, 3.3] and the fact that Dy ,, is a Tate ring with a
Noetherian ring of definition), for each n > 0, the subring Dg ,, C Do, of powerbounded elements
is the preimage of its counterpart (;1\0[1%])0 C 1/4?)[%] Thus, the lift (6.4.1) maps A to Dg ,, and
hence also to some subring of definition of Dy ,, to the effect that we obtain a continuous section

1/4\0[%] — Dy of the surjection Dy — ;4\0[%] (6.4.2)

The continuous map K — B:{R mentioned in §6.3 gives a compatible with sy and s continuous map

Ty Xy, Tar—Xa
—>

K () uevos (Ta)acz, ) B (X ) uewo, (Xa)acz,), soalso Dy — Dy =(A).

Thus, the section (6.4.2) gives the continuous map y in the commutative diagram
| (Bir®x (Ap))[(Xa = Dacwumpy(ri,...7a1]
Big (X uew: (Xa)aez) yg )Z /’*\
T is(a)

in which the continuous map z is defined by combining the top part of the diagram, the £-adic

A

completeness of B;{R@)K(AO[%]) (see §6.3), and the definition of Dy, =(A). By construction, y o z =
id. By the O[Th,...,T,, Trjj_ll, . ,T;tl]—étaleness of Ap, the B;'R—algebra endomorphism z o y of

(B(;FR@K(AO[%]))[[(Xa_a)ae(\IfUE)\{Tl,...,Td}]] is the identity on Ap, so also on (B(J{R@)K(Ao[%])). Since,
in addition, it fixes every X,, it must be the identity. Thus, z is the desired isomorphism (6.3.6). O

6.5. The map from the absolute crystalline cohomology. Returning to the X of §1.5, our
next goal is to use the discussion of §§6.2—6.3 to exhibit a map

RTlog cris (X0 /p/ Acris) — Rlaris(X3'/Blz). (6.5.1)

For this, we work on the basis for X consisting of affine opens Spf R as in the “all possible coordi-
nates” setup of §5.17 and use the notation introduced in §§5.17-5.40. To relate to §6.3, we set

A= R[%], U= {totoes UlUrea{tr rt1s- > taat, and ZE:= U cadtr 1,5 tam )t (6.5.2)

(so that A° = R and t) ¢ is omitted). For each A € A, the adic generic fiber of

SPE(OCtr 0, -+t sy g 10 s Exad (Ex0 7 Ea g — ™))
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is the rational subset of

Spa(C(Ty, 1, .- - ,T,\,TA,TfiAH, . ,Tib),OC(TAJ? . ’T’\U’T/\ﬂwl’ N 7T§f}1>)

cut out by the condition “[p?| < [T) 1---Th r,|,” so our Spa(A, A°) is an element of the basis
considered in §6.3. Moreover, for each A € A, we may descend the étale map (5.17.3) to a discrete
valuation subring O C O¢ as in (1.5.2) and then obtain the descended coordinate map (6.3.2) on
the generic fiber. In conclusion, the above choices of A, ¥, and = satisfy the assumptions of §6.3:
specifically, due to (5.17.2), the resulting map (6.3.3) is surjective and, by construction, = contains
{ta1,---,ta,r, }. We assume that ¥ is large enough, so that so is ¥ and the entire §6.3 applies.

By [BMS16, 13.3 (ii) (b)], each Dy =, »(A) is a complete Tate ring (in the sense of [Hub93, §1]), whose
ring of definition may be taken to be the image of (Ain/€") (X )uex, (Xa)acz) endowed with its
p-adic topology, and, by construction, Dy = ,,(A) is a nilpotent thickening of Dy = 1(A) = A. For
each A € A, the relation “|[(p'/?™ )| < | Xt, ;- Xty |7 holds in A, and hence also in every
Dy = n(A), so Dy =(A) is naturally an algebra over the ring A(R%A) defined in (5.22.1). In fact,
since each Dy = ,(A) is a Q-algebra in which ¢ is nilpotent and each X, is a unit in Dy =(A), the
universal relations (5.26.3) and (5.27.3) imply that Dy =(A) is naturally an algebra even over every

(A(RS,\) @4, Adis) @710 ZIPyo]  for Ag € A, (6.5.3)

inf

compatibly with the isomorphisms (5.26.7). Moreover, the elements %m, with m > n vanish in

Dy = n(A), so the algebra structure map factors through some (necessarily p-adically complete)
ring of definition (Dy, = n(A))o (see [Hub93, 1.3 and 1.5]):

(A(RS ») ®a
The maps (the first of which was described in (5.26.4) and (5.27.4))
(A(RS ,) ®a

are compatible, so the map (Dy = »(A))o — R is surjective. In addition, by [SP, 07GM], the kernel
of the map (Dy, = n(A))° = R/p has a unique divided power structure, so we obtain a map

Dj,, = (Dw,z,n(A))° (6.5.5)

inf

Adis) ®7(qQ) Z[Pro) = (Dw,5,n(A))o = (Dw,z,1n(A4))° = Dy, = 4(A4).

Agris) ®z[Q] Z[P)\O] —- R and (D‘y757n(A))O — A°= R (6.5.4)

inf

m

from the divided power envelope Dj,, defined in §5.28. Modulo the ideal generated by the % with
m > n for a fixed n, the kernel of the first surjection in (6.5.4) is finitely generated, so, since the
(A(R%y A) @ Aliy) @z10) Z[ Py, ])-algebra Dj,, is generated by the divided powers of the elements

in this kernel, after enlarging (Dy, = ,(A))o we may assume that the map (6.5.5) factors as follows:
Dj,, = (Dw,z,n(A))o = (Dw,z,n(A4))° = Dy,z,n(4), (6.5.6)

and hence induces a continuous map
Dj,, = Ds,a = (Dy,z,n(A4))0 = Dw,z,n(A4), (6.5.7)

which, by construction, does not depend on the choice of A\g. These maps are compatible as n varies,
so by passing to the limit in n we get compatible continuous maps (where Dj,, is discrete)

Dj,, = Dw,=(4) and Ds; A — Dy, =(A). (6.5.8)

By construction, the derivations #(XJ) for o € ¥ and m forNe Aand1<i<dof Dj)\() are

compatible with their corresponding derivations of Dy =(A) (see (6.5.2) and §6.3). Therefore, since
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all the derivations in question are continuous and DjAo is dense in Dsy; 5, the map Dy, x — Dy =(A)
is also compatible with derivations, to the effect that we obtain a map of complexes

Kps,» <(810g8(X0))aez ’ (r%g(axx,i)),\e/\,1<i<d> = Kby =(a) ((%@((}))aG\IJUE) ' (6.5.9)

These maps are compatible with enlarging > and A (and correspondingly enlarging ¥ and ), so
we obtain a map of complexes

. o o : .
h&z,/\ <KD27A <<810g(Xa))U€E7 <610g(X>\'i)))‘6A71Si§d>> — hgl‘lhE (QDW,E(R[;D/B;—R) (6510)

whose formation is compatible with varying R. Due to (5.23.3) and (6.3.8), after applying RT' (X, —),
the sheafification of the resulting map of complexes of presheaves gives the desired map (6.5.1).

In addition, since the map Ds; o — D\IJ,E(R[%D is compatible with the maps of both sides to R[%]
(see Lemma 5.29), the proof of [BMS16, 13.6] implies that the map (6.5.10) is compatible with the

maps (in the derived category) of both sides of (6.5.10) to Q;%’[Cff;% (see (5.32.2) and (6.3.7)). In
p
conclusion, the map (6.5.1) fits into the commutative diagram:

(6.5.1) N
erog cris (:{Oc/p/Acris) E— chris (:{C('i/BJ_R)

J(sz.‘m) J((()‘.Q.S) (6.5.11)
erog dR(%/OC) _— RI‘dR(}%ﬂ/C)

Having constructed the map (6.5.1), we are ready for the following generalization of [BMS16, 13.11].

Theorem 6.6. If X is quasi-compact and quasi-separated, then (6.5.1) induces an identification
~L
erog cris (%Oc/p/Acris)@)Acris

(Bir/€")-

By = Rlais(XE/BJ), (6.6.1)

where —@HAHBBCTR = Rlim, (- %

cris

Proof. Since both sides of (6.6) are derived {-adically complete (see (6.2.7)) and (6.5.1) induces a
map between them, it suffices to show that this map is an isomorphism modulo £&. However, modulo
¢ both sides of (6.6.1) are identified with R[4r(X%!/C) (see (5.24.1) and (6.2.8)), so the claim
follows from the commutativity of the diagram (6.5.11). O

Corollary 6.7. If X is Oc-proper, then we have the identification
RT (X, AQx) @5 Blg & RTeis(X3/BlR) (6.7.1)
that is compatible with the identifications given by (4.17.1) and (6.2.8) of the reductions modulo £

of both sides with RT ar(X%!/C); in particular, then the cohomology groups of RTeyis(X%/B;) are
finite free B;R—modules.

Proof. A combination of (5.43.2) and (6.6.1) gives the identification. The asserted compatibility
of the reductions modulo ¢ follows from Proposition 5.41 and the commutativity of the diagram
(6.5.11). By Corollary 5.43, each H’(RT'(X¢t, AQx) ®HAM Acris[%]) is a finite free Acris[%]—module, SO

B+

Hj(RF(%étv AQX) ®%inf B(JirR) = Hj(RF(%étv AQX) ®%inf Acris[%]) ®A dR>

cris [%}

to the effect that also each H’(RT(X¢, AQx) ®Hginf BjR) is a finite free Bj;-module. O
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6.8. The BC'fR-cohomology and the étale cohomology. For any proper and smooth adic space
X over C, in |[BMS16, 13.1] Bhatt—Morrow—Scholze proved the following identification:

RTeis(X/BR) @ B, Bar = RT¢ (X, Zp) ®z, Bar. (6.8.1)

Due to (6.2.10), when X = Xo®kC for a proper, smooth adic space X, defined over a complete
discretely valued subfield K C C that has a perfect residue field, (6.8.1) supplies the “de Rham
comparison isomorphism”

RFét(X(]@KC, Zp) ®Zp BdR = RFdR(Xo/K) [=4)7¢ BdR- (682)

If C = K, then, by transport of structure, the identification (6.8.2) is Gal(K /K )-equivariant (by
functoriality, Gal(K /K) acts nontrivially on Bgg and Rl (Xo®xC,Z,)) and, by loc. cit., it recovers
the de Rham comparison isomorphism constructed in [Sch13, 8.4]. In particular, in this case (6.8.2)
is compatible with filtrations, where Bgg is filtered by its discrete valuation and RT'4r(Xo/K)
(resp., Rl ¢ (Xo®xC, Zyp)) is equipped with the the Hodge (resp., trivial) filtration.

For proper X, we now have two ways to identify RT'(Xgt, AQQ@EM Bgr with RTg; (%%51, Zp)®ﬂz“p Byr:
we can either base change (2.3.1) to Bqg or combine (6.7.1) and (6.8.1). We now prove that the
two ways give the same identification; this will be important in the proof of Theorem 8.7 below.
Proposition 6.9. If X is O¢-proper, then the map RFCHS(%%?‘/BIR) — RF(%Z?,ZP) ®z, B(;FR of
[BMS16, proof of 13.1] that underlies the identification (6.8.1) for X = X% makes the diagram

(6.5.1)

RFlog cris (%Oc/p/Acris) chris (%acsl/Bc—li_R)

J’(E);-’l().l) J

[BMS16, 6.10] (2.3.2)
RI(Xer, AQx) @Y Acris ———— Rat(XE, Ayyg xoa) @' Big ¢ RU(XE, Zp) ®% By

inf

commute; in particular, the identification of RI'(Xe, AQx) ®HAinf Bar with RT ¢ (X3, Zp) ®Hip Bar
that results from (2.3.1) (and is encoded by the bottom part of the above diagram) agrees with the
identification that results from (6.7.1) and (6.8.1) (and is encoded by the top part of the diagram).

Proof. Since ¢~ !(p) lies in W (m”) and is a unit in BJ, the discussion after Theorem 2.3 implies that
the map labeled “(2.3.2)” in the diagram is an isomorphism. We will now review the definition given
in [BMS16, proof of 13.1] of the composition f of the right vertical map with this map “(2.3.2).”

Let Spa(A, A°) be an element of the basis for the Zariski topology of X! discussed in §6.2. For a
large enough set ¥ as in §6.2, consider the surjection C' <(X,3:1)u€\p> w4 from (6.2.2), as well
as the perfectoid ([[y Zp(1))-cover C <(X;_Ll/poo)ue\p> of C{(XF')yew). The base change of this

cover to Spa(A, A°) is a perfectoid (] [y Zy(1))-cover
Spa(A\p’oo,AJ\IC’OO) — Spa(A4, A°). (6.9.1)

By applying the definition given in Proposition 5.36 to the perfectoid ring A$ ~> We obtain the

Bjz-algebra ]B%IR(A; ) that may be viewed as a pro-(infinitesimal thickening) of Ay . By con-

+
U, oco?

element [u'/P] € BI; (A ). The assignment X, — [u!/P™] extends to a Bj-algebra morphism

struction, each v € W has a canonical system u!/?™ of p-power roots in A which gives rise to the

Dy(A) = Bip(Ay ) (6.9.2)
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that is compatible with the map A — Ay, « and, for each v € W, intertwines exp(log([e]) - #(Xu))
defined by the formula (5.15.1) and viewed as an endomorphism of Dy (A) with the action of the
generator [e] of the u'" copy of Z,(1) on Bl (A§ ). In particular, letting v, denote this generator,

one may use the same formula as in (5.16.1) to define a morphism of complexes

° a
0y = Koot (Gt )uew) = Ko g (G = Duew), (6.9.3)

whose formation is functorial in Spa(A, A°). The almost purity theorem identifies the cohomology
of the sheaf of complexes determined by the target of (6.9.3) with R (X3, Ay, %%d) ®HAm . Blz. On
the other hand, by definition, the cohomology of the sheaf of complexes determined by the source of
(6.9.3) is R yis(X%!/B1z). Thus, by sheafifying and forming cohomology, the maps (6.9.3) produce
the aforementioned composition f defined in op. cit.

We may carry out the construction of the morphisms (6.9.3) using the étale topology of .’{acd instead
of Zariski. Due to (6.2.9), this leads to the same map f. We may also generalize the construction
of (6.9.3) further by using both the étale topology of f{acfl and the more general embeddings (6.3.3)
described in §6.3: in this case, the cover (6.9.1) is replaced by the cover

Spa(Av, =, oo, AJ\IZE ) — Spa(A, A°). (6.9.4)

that is the base change of the perfectoid ([ [y Zp(1) X[ [z Zp(1))-cover C<(X3:1/p°°)ue% (X;/poo)aeg>

of C{(XF)uew, (Xa)aez), and the rest of the construction remains the same. Due to (6.3.8) and
(6.3.9), this again gives the same map f.

In conclusion, since the construction of f may be carried out using the more general embeddings
described in §6.3 and follows the same pattern as the construction of the map (5.40.1) (namely, is
based on the map as in (5.16.1)), all we need to check is that, in the notation of §6.5, the following
diagram commutes:

(6.5.8)
Ds, \ ——— Dy, =(A)

(5,38.1{ l((s.su) (6.9.5)

Acris(RE,A,oo) &) BIR(RE,A,oo%
where we have used the agreement Ry, A o0 = Ay, = o that results from the choices in (6.5.2). For
this desired commutativity, we may first replace BIR(RE, A, o0) by IB%:{R(RZ, A, 00)/E™ for a variable
n > 0, then replace Dy A by Dj, ~for some Ag € A, and, finally, since Bl (Bs, A, 00) /€™ is a Q-
algebra and Dj, ~is generated by divided powers, replace Dj, by (A(R%y A) @4, AYL) ®7(Q) Z[Pao)-
However, each X, from (5.19.2) with either 7 = o for some o € ¥ or 7 = (\,4) for some A € A and
1 <4 < d maps to the (necessarily invertible) Teichmiiller element [XTI/ P OO] in BI; (R, A, 00) under
either of the two maps from (A(R%A) @4, AL.) ®z(Q) Z[Px,) to B (Rs, A, 0) /€™ supplied by the
diagram (6.9.5), so these two maps indeed agree, as desired. ]

7. THE Aj-COHOMOLOGY MODULES HY f(3€) AND THEIR SPECIALIZATIONS

We are ready to define the Aj,¢-cohomology groups Hf;lmf (X) for a proper X and to detail some of
their properties. We prove that each H} (X) is a Breuil-Kisin-Fargues module (see Theorem 7.4)
and use this to deduce that, loosely speaking, the p-adic étale cohomology of %acd has at most
the amount of torsion that is contained in the logarithmic crystalline cohomology of Xj or the

logarithmic de Rham cohomology of X (see Theorems 7.10 and 7.13 for precise statements). Most
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of these results are variants of their analogues established in the smooth case in [BMS16]. Their
proofs, granted the inputs from §§3-6, are generally similar to those of op. cit. and in large part
rely on commutative algebra results over Ajys.

7.1. Properness of X. In §7 we assume that X is proper and X is purely d-dimensional.

7.2. The Aj ¢-cohomology RI'4, ,(X). We use the object AQx € DZ0(X¢, Aint) of §2.2 to set
RT 4, (%) := RT (X, AQx) € D™%(Aiyr) and  H)y (%) := H'(RI'(Xe, AQx)) fori € Z.

Since the functor Ln commutes with pullback along a flat morphism of topoi (see [BMS16, 6.14]),
the object RI 4,,(X) and its cohomology groups Hj  (X) are contravariantly functorial in X: more

precisely, any O¢-morphism X’ — X induces a morphism RT 4, (X) — RT 4, (X') in D20(Ayy),
and hence, for i € Z, also the morphism Hf;linf(%) — Hilinf (X') of Ajpe-modules.

By Corollary 4.19, the object RI 4, ,(X) is perfect, that is, isomorphic to a bounded complex of finite
free Ajps-modules. Moreover, by (2.3), (4.17.1), and (5.43.2), we have the following identifications:

RU4,,,(X) @7 Ane[3] = R (XE, Zp) @7 Aine[3];
RT 4, (X) @5 9 Oc = Rlogar(X/Oc); (7.2.1)
RU 4, (%) @4 W (k) 2 RTjog cris(Xi/ W (K)).
In the case when X is O¢-smooth, one may drop “log” from the subscripts (compare with (5.44.5)).
The morphism (2.2.6) gives rise to the morphism
RT A, (X) ®a,,0 Aint = RL 4

that becomes an isomorphism after inverting p(§) (see (2.2.7)), and the last identification in (7.2.1)
is in fact Frobenius-equivariant (see (5.43.2)). Consequently the cohomology modules Hj (X)
come equipped with the A;,s-module morphisms

©: Hf;‘inf (X) ®a

that become isomorphisms after inverting ©(&). We will prove in Theorem 7.4 that these morphisms
make each H} (X) a Breuil-Kisin-Fargues module in the sense of [BMS16, Def. 4.22].

inf inf, int (%) in D=%(Aing) (7.2.2)

o Aint = Hjy, (%) (7.2.3)

inf>

7.3. Breuil-Kisin—Fargues modules. A Breuil-Kisin—-Fargues module is a finitely presented
Ajpe-module M equipped with an isomorphism

oars (M @4 Aint) 5] — M) (7.3.1)

of Ainf[ﬁ]—modules such that M[%] is Ainf[%]—free. By [BMS16, 4.9 (i)], such an M is perfect as an
Ajps-module, that is, M has a finite resolution by finite free Ajys-modules. A morphism of Breuil-

Kisin—Fargues modules is an A;jps-module morphism that commutes with the isomorphisms ¢yy.

Theorem 7.4. Each (Hf;‘inf (X), @) is a Breuil-Kisin—Fargues module and vanishes unless i € [0, 2d].
In particular, each HY (X) is perfect as an Aig-module and each (Hf;‘mf(%))[%] is Ainf[%]—free.

Proof. Due to the relation with Rl (X%!,Z,), each (Hf;hnf (%))[i] is a free Ainf[p%]

over, by Corollary 5.43, the cohomology groups of RI'4, ,(X) ®HAinf Acris[%] are finite free Acris[%]_

-module. More-

modules. Therefore, [BMS16, 4.20] applies and proves that each Hzinf(.’{) is a finitely presented

Ajns-module that becomes free upon inverting p, so (Hilmf (%), ¢) is a Breuil-Kisin—Fargues module.
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Since RI'4, ,(X) is perfect, its top degree cohomology of is finitely presented and of formation
compatible with base change. Thus, by the de Rham specialization of (7.2.1) and the Nakayama
lemma, Hj (X) =0 for i > 2d. The same holds for i <0 because RI'4,,(X) € D=0(Apy). O

inf

Corollary 7.5. For each i € Z, the rank of the finitely presented Z,-module Hét(%%i,Zp) is equal
to the rank of the finitely presented W (k)-module H} (X,/W(k)), and is also equal to the rank

) log cris
of the finitely presented Oc-module Hy,, 4 (X/Oc) := = RT(X,02 ) (see also (7.11.1) below).

X/Oc¢,log

Proof. The finite presentation assertions follow, for instance, from the perfectness of RI'4,  (X), the
comparisons (7.2.1), and the coherence of the ring O¢. Due to Theorem 7.4 and the comparisons

(7.2.1), all the ranks in question are equal to the rank of the free Ainf[%]—module (Hf;‘inf (%))[%] O

7.6. Base change for individual H1i4inf (X). Since Ainf[i] is Ajpe-flat, for each i € Z, (7.2.1) gives:
(Y, ()] = HE (XY Zp) @z, Aine31]- (7.6.1)

In particular, since y is a unit in W(C’b) and W(C’b) is Ajns-flat (the localization of Aj,r at pAjys is
a discrete valuation ring whose completion is W (C”), see [BMS16, proof of Lem. 4.10]),

HYy, (%) @4y, W(C") = Hy (X8, Z,) @z, W(C). (7.6.2)

inf
Analogous comparison to the logarithmic de Rham cohomology groups is more complex: by (7.2.1)
and [SP, 0662], for each i € Z we have a short exact sequence

0~ Hiy (%) @40 Oc = Hipan(¥/0c) — (HFL(2))[e] - 0. (7.6.3)

1nf7

Similarly, by Theorem 7.4 and [BMS16, 4.9], for each ¢ € Z we have a Frobenius-equivariant short
exact sequence

0— Hjy (%) @4,

inf

W(k) - Hliogcris<xk/W(k)) - Tor}élinf(Hj:i—rllf <%)7 W(k» — 0. (764)
In particular, by Theorem 7.4, in addition to (7.6.1), we have
HE, (%) ® 0,0 Oc = Highap(X/Oc)  and  HE] (%) @

inf

W(k) = logcrls(:{k/W( )

For general i, it is most pleasant to deal with such base changes when Hznlf (X) is Ajpe-free. For
such freeness, we have the following consequence of Theorem 7.4 and [BMS16, §4].

Proposition 7.7. For each i € Z, the Oc-module Hfong(l’/(’)C) is p-torsion free (equivalently,
free) if and only if the W (k)-module Hfog ris (Xi/W(K)) is p-torsion free (equivalently, free), in which

case Hf;lmf (X) is free as an Ae-module and H. (X, Z,) is free as a Zy-module.

Proof. Due to Theorem 7.4, we may apply [BMS16, 4. 18] and combine it with (7.2.1) to conclude that
Hiyy qr (X/Oc) is p-torsion free if and only if so is Hi,, ;5 (X5/W (K)). When these conditions hold,

the freeness of HY) (¥) and Hi (x1,7Z,) follows from [BMS16, 4.17] and (7.6.1). The parenthetical
assertions follow, for instance, from the following elementary lemma.

Lemma 7.8. For a local domain (R,m), a finite R-module M ‘s free if and only if
dlmR/mR(M/mM) - dimFrac(R) (MFrac(R))' (781)

Proof. By the Nakayama lemma, a lift my,...,mq € M of an R/mR-basis of M/mM generates
M, and hence also contains a basis of Mpy,(r)- Thus, if (7.8.1) holds, then the m; can have no

R-relation, and hence must define an isomorphism R? ~ M. The converse is clear. O O
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Remark 7.9. As was observed by Jesse Silliman and Ravi Fernando during the Arizona Winter
School 2017, the first assertion of Proposition 7.7 may be strengthened as follows: for each i € Z,

dlmk (Hliong(%/OC)tOFS ®OC k) = dlmk (Hllogcrls(%k/w(k))tors ®W(k) k) ’ (791)

that is, Hfong(.’{/(’)C) and Hfogcris(%k/W(k)) have the same number of cyclic summands (in the
sense of (7.11.1) below). Indeed, by Corollary 7.5, the ranks of Hj, 4 (X/Oc) and Hj,, ;s (X5/W (K))
agree and, by [Beil3b, (1.8.1)], so do the k-fibers of RI'jogqr(X/Oc) and RT'og cris(Xi/W (K)), so the
claim follows by descending induction on ¢ from the following exact sequences supplied by [SP, 0662]:

0 — Hip qr(X/00) ®0p k —=H'(RT105ar(X/Oc) @, k) = Tor{® (HiF 40 (X/Oc), k) = 0,
0 = Hipg cyis (Xi /W () @y (ry b —=H' (R tog cris(Xa/W () @1y k) = HiL i X/ W () [p] = 0,

log cris

The following variant of [BMS16, 14.5 (ii)] strengthens the part of Proposition 7.7 that deduces the
freeness of HE (X%!,Z,) from the freeness of Hfogcris(.’{k/W(k)).

Theorem 7.10. For everyi € Z and n € Z>o, we have

lengtth((Hgt(%%d, Zp)tors)/P") < lengthW(k)((Hliogcris(%k/W(k’))torS)/pn)»

o : ) (7.10.1)
lengchp(Hét(xC(’i7Z/p Z)) < 1engthW(k) (Hlogcris(xk/wn<k)))'

Proof. The proof of the first inequality analogous to the proof of loc. cit. Namely, by Corollary 7.5,
we may drop the subscripts “tors” and, by Theorem 7.4, [BMS16, 4.15 (ii)], and (7.6.2), we have

lengthy, (Hg (X8, Z,)/p") < lengthyy gy (Hj, (X) @4, W(k)/p"). (7.10.2)

Moreover, since lengthyy, ) (Q/p") = lengthw(k)(TorII/V(k)(Q,W(k)/p”)) for every finite torsion
W (k)-module @, the short exact sequence (7.6.4) yields the inequality

() @A, W(k)/p") < lengthyy ) (Hiog cris(X/W (k) /p"),
and the first inequality in (7.10.1) follows. Due to the short exact sequences

lengthyy (1) (H,

inf

0 — Hiy (X%, Z,) /p" —Hiy (X8, Z/p"Z) — Tory” (H (X2, 2,), Z/p"Z) — 0,

0 = Hiyg eris(X/ W (k) /0" = Hiyg cris(X1e/ Wi (k) — Tory W (HIFL L (20/W (k)), W (k)/p") — 0

log cris

that result from [SP, 0662] and [Beil3b, §1.16, Theorem, (i)|, the second inequality in (7.10.1)
follows from the first. O

The de Rham analogue of Theorem 7.10 (see Theorem 7.13) uses the following formalism.

7.11. The normalized length. Let 0 be a rank 1 valuation ring of mixed characteristic (0, p) and
normalize its valuation val, by requiring that val,(p) = 1. By the structure theorem [SP, 0ASP]
(see also |[GRO3, 6.1.14]), every finitely presented o-module M is of the form

M =@ o/(a;) for some a; € o. (7.11.1)
If M is, in addition, torsion, to the effect that the a; are nonzero, then we set
val,(M) :=>"" | val(a;).

More intrinsically, valy(M) is the valuation of any generator of the O Fitting ideal Fitto(M) C o
of M, so it depends only on M. If o0 is a discrete valuation ring for which p is a uniformizer, then
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val,(M) = length,(M). In general, val, has the advantage of being invariant under extension of
scalars to a larger 0. Any short exact sequence

0— M — My — M3 —0

of finitely presented torsion o-modules gives rise to the equality Fitto(Msa) = Fitto(M;) Fitto(M3)
(see [GRO3, 6.3.1 and 6.3.5 (i)]), so the assignment val,(—) satisfies

Valo(Mg) = V&10<M1) + Valo(Mg). (7.11.2)

The following lemma is the de Rham version of [BMS16, 4.14], which gave the inequality (7.10.2).

Lemma 7.12. For ann € Z>1 and a finitely presented Wn((’)z})—module M, we have

valyy (o) (M @, W(C)) = valo, (M/EM) — valo, (M[E]). (7.12.1)

Proof. Since W,,(O%) is a coherent ring (see [BMS16, 3.24]), the W,,(O%)-module M[¢] is finitely
presented. Moreover, due to (7.11.2), the flatness of Aj,e — W(C?) (see §7.6), and the snake lemma,
both sides of (7.12.1) are additive in short exact sequences. Therefore, we may assume that n = 1
and, due to the structure theorem [SP, 0ASP], that M = O /(x) for some z € O,

If z = 0, then both sides of (7.12.1) are equal to 1. If  # 0, then the left side vanishes, and so does
the right side because M[{] = Tor}Qb (M, O¢/p) and the following sequence is exact:
c

0([=])
0— Torébc(ObC/(x), Oc/p) = Oc/p —= Oc/p — M/EM — 0. O
Theorem 7.13. For every i € Z and n € Zxo, we have (recall from §7.11 that valz, = lengtth)

valz, (Hi (X&', Zp)ors) /1") < valog (Higg ar (/O )tors) /P,

) a n 7 ° (7131)
valz, (H4 (X8, Z/p" 7)) < valo, (R'Tiogar(Xog pn Do,/ (O /) 108))-

Proof. The proof is analogous to that of Theorem 7.10. Namely, we may drop the subscripts “tors”
and, by Theorem 7.4, (7.6.2), and Lemma 7.12, have

valg, (Hi (X8, Zp) /p") < valog (H},, (X)/(€,p™))-

The presentation (7.11.1) implies that valp,(Q/p") = valo, (Tor?C(Q, Oc¢/p™)) for every finitely
presented torsion Oc-module @, so the short exact sequence (7.6.3) gives the inequality

valog (H,, (%)/(&,p")) < valog (Hjogar(X/Oc) /p").

This proves the first inequality in (7.13.1) and, analogously to the proof of Theorem 7.10, the second
inequality in (7.13.1) follows from the first. O

The results above, specifically, (7.9.1) and Theorems 7.10 and 7.13 prompt the following question.

Question 7.14. Are there examples of X as above for which

valo, (Hiyg ar (X/Oc)) # valyy (1) (Hig eris (X /W (K)))?
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8. A FUNCTORIAL LATTICE INSIDE THE DE RHAM COHOMOLOGY

For a proper smooth scheme X over a complete discretely valued extension K of @, with a perfect
residue field, we explain in Example 8.6 how to functorially associate an Og-lattice

‘(X)) C Higx(X/K) for every i € L.

In fact, Lz (X) depends (functorially) only on HY, (X7, Z,) and its construction, which in the form
given below is based on the theory of Breuil-Kisin—Fargues modules, proceeds along familiar lines
of integral p-adic Hodge theory (compare, for instance, with [Liul7, §4]). Using the work of the
preceding sections, for suitable X we interpret LSR(X ) geometrically: we prove in Theorem 8.7 that
if X has a proper, flat, semistable Ox-model X" for which Hfong(X/OK) and Hf;)zlclR(X/OK) are
p-torsion free, then

ar(X) = Hiogqr(X/Ok)  inside  Hig(X/K).

We do not know whether this equality continues to hold “modulo torsion” if Hj,, 4z (X /Ok) and
Hf:ng(X/OK) are not assumed to be torsion free.

8.1. The base field K. Throughout §8, we assume that C = K for some fixed complete discretely
valued field K that is of mixed characteristic (0,p) and has a perfect residue field kg. We set

G = Gal(K/K),

so that G acts continuously on C' and hence also on Ajys. The continuous maps ¢ and 6 are
G-equivariant, and the ideals (§), (¢(£)), and (u) of Ajy are G-stable (see §2.1).

Consequently, if X is a proper p-adic formal Og-scheme for which X = X @oK(’)C satisfies the
assumptions of §1.5, then the functoriality of RI'4, (X) (see §7.2) induces a semilinear G-action on
the finite Ajpr-modules HYy (%).

8.2. The Fargues equivalence. By [BMS16, 4.26], for any Breuil-Kisin—Fargues module (M, ¢xr)
(see §7.3), its étale realization, namely,
Mg i= (M @, W(C?))Pu®e=1, (8.2.1)
is a finitely generated Zj,-module and comes equipped with an identification
W(C") = Mg @z, W(C°)  under which M ®a,,, Ain[}] = Mg ®z,, Aine[].
In particular, Mg is Zp-free if M is Ajn¢-free, and, for any M, we also have
M ®a,,; Bar = Mg ®7, Bar, (8.2.2)

so that Mg comes equipped with a BJg-sublattice (recall that M[%] is Ainf[%]—free, see §7.3)

M ®4

inf
inf

M ®a4,,; Big C Mt ®z, Bar.
By a theorem of Fargues [BMS16, 4.28, 4.29], the functor
(M, onm) = (Meg, M ®a,,, Big) (8.2.3)
from the category of Breuil-Kisin—Fargues modules for which M is Aj¢-free to that of pairs (T, E)

consisting of a finite free Z,-module T" and a B:{R—lattice E C T ®z, Bagr is an equivalence.

8.3. Breuil-Kisin—Fargues G-modules. Granted the origin of our C, it is natural to consider

Breuil-Kisin—Fargues G-modules, that is, Breuil-Kisin—Fargues modules (M, ¢ys) equipped with an

Ajpg-semilinear G-action on M for which ¢ is G-equivariant. For example, for X as in §8.1, each
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Hj‘linf (%) is naturally a Breuil-Kisin-Fargues G-module (see Theorem 7.4). The étale realization
Mg of a Breuil-Kisin-Fargues G-module (M, ¢ys) carries an induced Zjy-linear G-action.

Proposition 8.4. The category of those Breuil-Kisin—Farques G-modules (M, ppr) for which M is
Ajne-free is equivalent via the functor

(M, par) = (Meg, M @4, Bir)

to the category of pairs (T, Z) consisting of a finite free Zy-module T' equipped with a G-action and
a G-stable BdR—lattzce C T ®z, Bar-

inf

Proof. The claim follows immediately from the Fargues equivalence reviewed in §8.2. O

8.5. An étale lattice determines a de Rham lattice. Let T" be a finite free Z,-module endowed
with a continuous action of G for which the G-representation 7° [%] is de Rham, so that there is a
G-equivariant identification

T ®z, Bar = Dar(T) ®k Bar ~ where  Dgr(T) := (T ®z, Bar)®.

For such T, the B:R—lattice Dyr(T) @K B;{R is evidently G-stable in T'®z, Bgr. Therefore, by
Proposition 8.4, the pair (T, Dgr(T') @5 B:{R), so, effectively, T, determines an Aj,¢-free Breuil—
Kisin-Fargues G-module

(M(T), on1(1))
that depends functorially on 7" and is determined up to a unique isomorphism by the G-equivariant
identification M (T")¢ = T. The de Rham realization

M(T)ar = M(T) ®a,5,0 Oc of  (M(T), a(1))
is an O¢-lattice in
(M(T) @4, Bir)/€ = (Dar(T) ®k Bgg)/€ = Dar(T) ©x C.
Therefore, we obtain the following Og-lattice that is functorial in 7"
(M(T)gr)® inside the K-vector space Dgr(T).
Example 8.6. We fix a K-scheme (or even a K-rigid spacel9) X that is proper and smooth, and set
L«iét(X) = Hgt(X?> Zp)/Hgt(XFaZ Jtors = H’t(XC, )/ H t(XC'7 p)tors for i > 0.
As is well known and follows from (6.8.2), the G-representation L% (X )[5] is de Rham and
. . (68.2) .
Dar(Li (X)) = (L (X) @z, Bair)® 2 (Hig(X/K) ©x Bar)® = Hip(X/K). (8.6.1)
Thus, ' ' ‘
ar(X) = (M(Lgy(X))ar)® C Hip(X/K)
is an Og-lattice that is functorial in X. Its definition implies that for a finite Galois extension K’/ K,
(X)) = (Lig (X)) inside Hig (X/K) = (Hig(Xgr /K')) S,

Due to GAGA techniques (see Remark 4.18 and the proof of Claim 4.14.2) and the discussion in
§§1.5-1.6, the following result implies that if X extends to a proper, flat, semistable Of-scheme X
such that Hj,, 4 (X/Ok) and HfjldR(X/(’)K) have no nonzero p-torsion (where we endow X with

the log structure Oy N (OX[];]) ), then
$n(X) = Hipu(X/Ox)  inside  Hig(X/K); (8.6.2)

OWhich we view as an adic space, see [Hub96, 1.1.11 (d)].
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in particular, if X’ is another such model of X, then
Hliong(X/OK) = Hliong(X//OK) inside Hle(X/K) (863)

Theorem 8.7. Let X be a proper, flat p-adic formal Ok -scheme endowed with the log structure
Ox N (O;([I%])X such that X has an étale cover by affines U each of which has an étale morphism

U — Spf(Or{to, ..., trytrs1, .. ta}/(to--t, — 7)) for some nonunit 7w € Ok \ {0} (8.7.1)
(where 7, v, and d may depend onU). IfoOng(X/OK) and Hf(j;dR(X/OK) are p-torsion free, then

i (XR) = Hign(X/Ox)  inside  Hip(X3/K); (8.7.2)
in fact, then, setting X := X@@OK O¢, we have the identification
M (L (X)) = Hy,, (%) (8.7.3)

of Breuil-Kisin—Fargues G-modules.

Proof. By working locally on U, we may replace each t; with r +1 < ¢ < d in the target of (8.7.1)
by tz?tl, so X meets the requirements of §1.5. Moreover, by the Grothendieck comparison theorem
and flat base change (compare with Remark 4.18), for j =4 and j =i+ 1, we have

Hi  aq(X/0c0) = H,, ;n (X /Ok) ®0, Oc,  so Hi 4n(X/Ok) = (HY, 1z (X/0c)C. (8.7.4)

Consequently, by Proposition 7.7, the Breuil-Kisin-Fargues G-modules Hﬁlinf(%) and Hznlf(%) (see
§8.3) are Ajy¢-free. By Theorem 2.3, we have the G-equivariant identification of the étale realization:
(H (3))er = H(XE, Z)

(which is then torsion free). By Proposition 6.9, the Byr-base change of this identification agrees
with the identification HY (X) ®4,,; Bar = H} (X2, Z,) ®z, Bar that results by combining

6.7.1) (6.2.10)
By = Hu(X&YBlg) = Hip(X/K) oK Bl

C

Hj‘4inf (%) ®A

inf
and
, q (8.6.1) J
Hig (XK /K) ®k Bar = Hg(XES, Zy) ®z, Bar-
In particular, we obtain the desired G-equivariant identification
M (L (X58)) = Hy,,, (%),
under which, by Corollary 6.7 and the sentence after (6.2.10), the identifications

, (86.1) , (4.17.1)
M(Lg(X)) @ a0 C =" Hig(X&1/C)  and  Hiy (%) @a0 C = Hop(A2/C)
agree. In particular, by (7.6.3), we obtain the following equality inside HQR(ng /C):

M (L (X5E))ar = M(Ley (X)) @40 Oc = Hiy, (%) @40 Oc = Higgar(X/O0),

which, together with the second identification in (8.7.4), gives the desired (8.7.2). O

inf» inf

Remark 8.8. In the proof above we have seen that both Hf;‘inf (%) and Hf:nlf (X) are Ajp¢-free, so,
by (7.6.4), we have the G-equivariant and Frobenius-equivariant identifications

A , (5.44.4)
Hyo o (2) @3 W(E) = Hiog i (Xu/W(E)) = Higgeris (X/ W (K)),

and hence also the Frobenius-equivariant identification

(Hy o (X) @100 W(K)) 22 Higg cris (Xieg /W (Ko)).- (8.8.1)
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In particular, (8.7.3) and (881) show that, under the assumptions of Theorem 8.7, the integral
p-adic étale cohomology H (X fgd, Zp) endowed with its Galois action functorially determines the
integral logarithmic crystalline cohomology Hj (Xko /W (ko)) endowed with its Frobenius.

og cris

9. THE SEMISTABLE COMPARISON ISOMORPHISM

Our final goal is to use the preceding results to deduce the semistable comparison isomorphism
for suitable “semistable” formal schemes (see Theorem 9.5). This extends [BMS16, 1.1 (i)], which
treated the good reduction case (see also [TT15, 1.2] for a result “with coefficients” over an abso-
lutely unramified base), and is similar to the semistable comparison [CN17, 5.26]. More precisely,
loc. cit. also includes cases in which the log structures are not “vertical.”

9.1. The ring Bs. We consider the log PD thickenings Acis/p™ of Oc/p of §5.2 and set
Jpn = Ker(Aeyis/p™ — Oc/p) and Ji=lim T = Ker(Aeis > Oc¢/p).

The element p € O¢ \ {0} belongs to the log structure of O¢/p (see §1.6 (1)), so its preimage in the
log structure of Aeis/p™ is a (1 + Jy, X)-torsor, which is trivial because (1 + J,,, X) is a successive
extension of Agis/p"-modules (compare with [Beil3b, §1.15, p. 23|). Consequently, as n varies,
these torsors comprise a trivial (1 + J, X)-torsor 79, whose base change along the logarithm map
(I1+J,x) = (J,+) C (Acris, +) furnished by the divided power structure on J is a trivial (Aepis, +)-
torsor 7, the so-called Fontaine—Hyodo—Kato torsor. The functor which to an Ags-algebra A assigns
the underlying set of the (A, +)-torsor 7 x(4_.. +y (A, +) is represented by the Aeis-algebra Ag, so
Agt 1s the initial A.g-algebra over which the Fontaine-Hyodo—Kato torsor is canonically trivialized.

Concretely, we may noncanonically trivialize 7o (for instance, [p!/?™] is a trivialization, see (5.2.1))

to obtain an isomorphism Ag; ™~ Aeis[T], which, upon adjusting the trivialization by an a € 1 + J,
. . T—=T+] . .

gets postcomposed with the Agpig-automorphism Acyis[T] H—Ogm)> Agris[T]. The Acyis-derivation

—diT of Aeis[T] commutes with these automorphisms, so it induces a canonical Ajs-derivation, the
monodromy operator,

N: Ay — Ay for which  (Ag)V™0 = Auis
(our N agrees with that of op. cit., see |[Beil3b, §1.15, Remarks (i)]; compare also with [Tsu99, 4.1.1]).
By [Beil3b, (1.15.2)], the Frobenius pullback of 79 is isomorphic to the p-fold self-product of 7y, and

hence likewise for the base change of 7y (that is, of 7) to any (A, +). Consequently, Frobenius base
change of torsors determines an Acps-semilinear “Frobenius” morphism

@i Ay = Asgt (9.1.1)

which in terms of an isomorphism Ag;, ~ Acyis[T] obtained by trivializing 7y is described by T — pT.
The interaction of ¢ and N is described by the formula Ny = ppN.

Since p and log([e]) are unit multiples of each other in Agyis (see §5.14) and p(log([e])) = plog([e]), the
Frobenius (9.1.1) and, evidently, also the derivation IV induce their counterparts on the localizations

Bl = Ast[%] and By = Ast[ﬁ]‘

The relation Ny = ppN continues to hold for B and Bg. As is explained in [Beil3b, §1.17], the
Acris-algebras B:{ and B reviewed above agree with the ones constructed in [Fon94, §3|.

Proposition 9.2. Assume that X is Oc-proper and let Y be a descent of Xp,,/, to a proper log
smooth fine log O/p-scheme of Cartier type, where O C O¢ is a discrete valuation subring with a
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perfect residue field ko such that C = (Frac(O))”. Then we have the following identification that is
compatible with the actions of N and ¢ (which are described in the proof):

erogcris(yko/W(kO)) ®EVi/(k20) Bs_‘; = RF]OgCTiS(%Oc/p/ACI‘iS) ®5 B:t_, (9~2~1)

cris

where W (ko) is endowed with the log structure associated to N>q N W (ko).

Proof. A descent ) always exists by the proof of Corollary 5.43 and the claim is a direct consequence
of [Beil3b, (1.18.5)]. On the left side of (9.2.1), the operator N combines the monodromy operators
of RTog cris (Xky /W (ko)) and B}, so is of the form N®1+1® N; on the right side, N is induced by
the monodromy operator of B. On either side of (9.2.1), the Frobenius ¢ acts on both factors. [

Remark 9.3. One may eliminate the dependence of (9.2.1) on the choice of ) by forming a direct
limit over all the possible Y, see loc. cit.

9.4. The base field K. For the rest of §9, we assume that C' = K for a fixed complete discretely
valued subfield K C C with a perfect residue field ky and set G := Gal(K/K) (compare with §8.1).
By functoriality, G’ acts continuously on Acis, Ast, Bet, and, since the ideal (1) does not depend on
the choice of € (see §2.1), also on Bg. These G-actions commute with the operators ¢ and N.

In the case when O from Proposition 9.2 is our O, the identification (9.2.1) is G-equivariant
granted that we let G act on both sides by functoriality.

Theorem 9.5. Let X be a proper p-adic formal Ok -scheme that in the étale topology may be covered
by affines U each of which has an étale morphism

U — Spf(Ok{to, ... ,tr,tfjl, oY (to - te — ) for some nonunit € Ok \ {0} (9.5.1)

(where 7, v, and d may depend on U) and endow X with the log structure Ox N ((’)X[%])X. There
is the following G-equivariant natural isomorphism that is compatible with the action of p and N:

RFlogcris<Xk0/W(k0)) ®Hﬁ/(k0) Bst = Rrét(-){gd, Zp) @%p Bsta (952)

where W (ko) is endowed with the log structure associated to N> A W (ko). In particular, for every
i € Z,, the G-representation Hét()(gd,@p) 1s semistable.

Proof. We set X := X@)OK(’)C, so that X meets the requirements of §1.5. By Claims 1.6.1 and 1.6.3
and [Kat89, 4.8], the base change Xy, , is fine, log smooth, and of Cartier type over Ok /p, so
Proposition 9.2 applies to it and gives the G-equivariant (see §9.4) identification

(5.4

i
w

2

1%

)
erog cris(Xko/W(kO)) ®HI/‘V(]€0) B:g = RFlog cris (:{Oc/p/Acris) ®HA BSJE RF(%éta AQ%) ®HAM Bs-"t_

cris

that is compatible with ¢ and N. In addition, by (2.3.1), we have a G-equivariant identification
RT(Xer, AQx) @7, Ba = RT(XY', Zy) ®5 By = RU(XE, Zp) @75 B

that is trivially compatible with ¢ and N. By combining these two displayed equations, we obtain
the desired identification (9.5.2). O

Remark 9.6. The isomorphism (9.5.2) is compatible with filtrations in the following sense: by
[Fon94, §4.2], there is a (noncanonical) Agyig-algebra homomorphism By, — Bgr and, by the proof
above and Proposition 6.9, the Bgr-base change of the isomorphism (9.5.2) is identified with the
de Rham comparison isomorphism (6.8.2) (with Xo = X21) that is compatible with filtrations.

76



[BBDS2]

[BCO9]
[Beil2]
[Beil3a]
[Beil3b]
[Bhal2]
[Bhal6]
[BMS16]
[BOTS
[BouAC]
[Brioe]
[BS15]
[ON17]
[Con99]
[EGA II1,]
[EGA Vs
[Fal02]
[FK17]
[Fon82]
[Fon94]
[GRO3]
[Hub93]
[Hub94]
[Hub96]
[m71]

[Kat89]

[Kat94a]

REFERENCES

A. A. Beilinson, J. Bernstein, and P. Deligne, Faisceauz pervers, Analysis and topology on singular spaces,
I (Luminy, 1981), Astérisque, vol. 100, Soc. Math. France, Paris, 1982, pp. 5-171 (French). MR751966
(86¢:32015)

Olivier Brinon and Brian Conrad, CMI summer school notes on p-adic Hodge theory. Available at http:
//math.stanford.edu/~conrad/papers/notes.pdf, version of June 24, 2009.

A. Beilinson, p-adic periods and derived de Rham cohomology, J. Amer. Math. Soc. 25 (2012), no. 3,
715-738, DOI 10.1090,/S0894-0347-2012-00729-2. MR2904571

, On the crystalline period map, Camb. J. Math. 1 (2013), no. 1, 1-51, DOI
10.4310/CJM.2013.v1.nl.al. MR3272051

, On the crystalline period map, post-publication arXiv version (2013). Available at http://arxiv.
org/abs/1111.3316v4.

Bhargav Bhatt, p-adic derived de Rham cohomology, preprint (2012). Available at http://arxiv.org/
abs/1204.6560.

, Specializing varieties and their cohomology from characteristic 0 to characteristic p, preprint
(2016). Available at http://arxiv.org/abs/1606.01463.

Bhargav Bhatt, Matthew Morrow, and Peter Scholze, Integral p-adic Hodge theory, preprint (2016). Avail-
able at http://arxiv.org/abs/1602.03148.

Pierre Berthelot and Arthur Ogus, Notes on crystalline cohomology, Princeton University Press, Prince-
ton, N.J.; University of Tokyo Press, Tokyo, 1978. MR0491705

Nicolas Bourbaki, Eléments de mathématique. Algébre commutative, chap. I-VII, Hermann (1961, 1964,
1965); chap. VIII-X, Springer (2006, 2007) (French).

Olivier Brinon, Représentations cristallines dans le cas d’un corps résiduel imparfait, Ann. Inst. Fourier
(Grenoble) 56 (2006), no. 4, 919-999 (French, with English and French summaries). MR2266883
Bhargav Bhatt and Peter Scholze, The pro-étale topology for schemes, Astérisque 369 (2015), 99-201
(English, with English and French summaries). MR3379634

Pierre Colmez and Wiestawa Niziol, Syntomic complexes and p-adic nearby cycles, Invent. Math. 208
(2017), no. 1, 1-108, DOI 10.1007/s00222-016-0683-3. MR3621832

Brian Conrad, Irreducible components of rigid spaces, Ann. Inst. Fourier (Grenoble) 49 (1999), no. 2,
473-541 (English, with English and French summaries). MR1697371

A. Grothendieck and J. Dieudonné, Eléments de géométrie algébrique. III. Etude cohomologique des fais-
ceauz cohérents. I, Inst. Hautes Etudes Sci. Publ. Math. 11 (1961), 167. MR0217085 (36 #177c)

, Eléments de géométrie algébrique. 1V. Etude locale des schémas et des morphismes de schémas.
IT, Tnst. Hautes Etudes Sci. Publ. Math. 24 (1965), 231 (French). MR0199181 (33 #7330)

Gerd Faltings, Almost étale extensions, Astérisque 279 (2002), 185-270. Cohomologies p-adiques et ap-
plications arithmétiques, II. MR1922831

Kazuhiro Fujiwara and Fumiharu Kato, Foundations of Rigid Geometry I, 2017. Available at http://
arxiv.org/abs/1308.4734.

Jean-Marc Fontaine, Formes différentielles et modules de Tate des variétés abéliennes sur les corps locauz,
Invent. Math. 65 (1982), no. 3, 379-409, DOI 10.1007/BF01396625 (French). MR643559

, Le corps des périodes p-adiques, Astérisque 223 (1994), 59-111 (French). With an appendix by
Pierre Colmez; Périodes p-adiques (Bures-sur-Yvette, 1988). MR1293971

Ofer Gabber and Lorenzo Ramero, Almost ring theory, Lecture Notes in Mathematics, vol. 1800, Springer-
Verlag, Berlin, 2003. MR2004652

R. Huber, Continuous valuations, Math. Z. 212 (1993), no. 3, 455-477, DOI 10.1007/BF02571668.
MR1207303

, A generalization of formal schemes and rigid analytic varieties, Math. Z. 217 (1994), no. 4,
513-551, DOI 10.1007/BF02571959. MR1306024

Roland Huber, Etale cohomology of rigid analytic varieties and adic spaces, Aspects of Mathematics, E30,
Friedr. Vieweg & Sohn, Braunschweig, 1996. MR1734903

Luc Illusie, Complexe cotangent et déformations. I, Lecture Notes in Mathematics, Vol. 239, Springer-
Verlag, Berlin-New York, 1971 (French). MR0491680

Kazuya Kato, Logarithmic structures of Fontaine-Illusie, Algebraic analysis, geometry, and number theory
(Baltimore, MD, 1988), Johns Hopkins Univ. Press, Baltimore, MD, 1989, pp. 191-224. MR1463703
(99b:14020)

, Semi-stable reduction and p-adic étale cohomology, Astérisque 223 (1994), 269-293. Périodes
p-adiques (Bures-sur-Yvette, 1988). MR1293975

7


http://math.stanford.edu/~conrad/papers/notes.pdf
http://math.stanford.edu/~conrad/papers/notes.pdf
http://arxiv.org/abs/1111.3316v4
http://arxiv.org/abs/1111.3316v4
http://arxiv.org/abs/1204.6560
http://arxiv.org/abs/1204.6560
http://arxiv.org/abs/1606.01463
http://arxiv.org/abs/1602.03148
http://arxiv.org/abs/1308.4734
http://arxiv.org/abs/1308.4734

[Kat94b)
[Liul7]
[Mor16]
[Niz08]
[RGT1]
[Sch12]
[Sch13]
[Sch13e]

[SGA 41|

[SGA 1]
[SP]
[SZ17]
[Tsu99|
[TT15]

[U1195]

, Toric singularities, Amer. J. Math. 116 (1994), no. 5, 1073-1099, DOI 10.2307,/2374941.
MR1296725

Tong Liu, Compatibility of Kisin modules for different uniformizers, J. reine angew. Math., to appear
(2017).

M. Morrow, Notes on the Aing-cohomology of Integral p-adic Hodge theory, preprint (2016). Available at
http://arxiv.org/abs/1608.00922.

Wiestawa Niziol, Semistable conjecture via K-theory, Duke Math. J. 141 (2008), no. 1, 151-178, DOI
10.1215/S0012-7094-08-14114-6. MR2372150

Michel Raynaud and Laurent Gruson, Critéres de platitude et de projectivité. Techniques de “platification”
d’un module, Invent. Math. 13 (1971), 1-89, DOI 10.1007/BF 01390094 (French). MR0308104

Peter Scholze, Perfectoid spaces, Publ. Math. Inst. Hautes Etudes Sci. 116 (2012), 245-313, DOI
10.1007/s10240-012-0042-x. MR3090258

, p-adic Hodge theory for rigid-analytic varieties, Forum Math. Pi 1 (2013), el, 77, DOI
10.1017/fmp.2013.1. MR3090230

, p-adic Hodge theory for rigid-analytic varieties—corrigendum [MR3090230], Forum Math. Pi 4
(2016), e6, 4, DOI 10.1017/fmp.2016.4. MR3535697

Théorie des topos et cohomologie étale des schémas. Tome 2, Lecture Notes in Mathematics, Vol. 270,
Springer-Verlag, Berlin, 1972 (French). Séminaire de Géométrie Algébrique du Bois-Marie 1963-1964
(SGA 4); Dirigé par M. Artin, A. Grothendieck et J. L. Verdier. Avec la collaboration de N. Bourbaki,
P. Deligne et B. Saint-Donat. MR0354653 (50 #7131)

Groupes de monodromie en géométrie algébrique. I, Lecture Notes in Mathematics, Vol. 288, Springer-
Verlag, Berlin, 1972 (French). Séminaire de Géométrie Algébrique du Bois-Marie 1967-1969 (SGA 7 I);
Dirigé par A. Grothendieck. Avec la collaboration de M. Raynaud et D. S. Rim. MR0354656 (50 #7134)
A. J. de Jong et al., The Stacks Project. Available at http://stacks.math.columbia.edu.

Tamas Szamuely and Gergely Zabradi, The p-adic Hodge decomposition according to Beilinson, preprint
(2017). Available at http://arxiv.org/abs/1606.01921.

Takeshi Tsuji, p-adic étale cohomology and crystalline cohomology in the semi-stable reduction case, In-
vent. Math. 137 (1999), no. 2, 233-411, DOI 10.1007/s002220050330. MR1705837

Fucheng Tan and Jilong Tong, Crystalline comparison isomorphisms in p-adic Hodge theory: the absolutely
unramified case, preprint (2015). Available at http://arxiv.org/abs/1510.05543.

Peter Ullrich, The direct image theorem in formal and rigid geometry, Math. Ann. 301 (1995), no. 1,
69-104, DOI 10.1007/BF01446620. MR1312570

78


http://arxiv.org/abs/1608.00922
http://stacks.math.columbia.edu
http://arxiv.org/abs/1606.01921
http://arxiv.org/abs/1510.05543

	1. Introduction
	Acknowledgements

	2. The object AX and the p-adic étale cohomology of X
	3. The local analysis of AX
	4. The de Rham specialization of AX
	5. The absolute crystalline comparison isomorphism 1007 
	6. The comparison to the BdR+-cohomology 1007 
	7. The Ainf-cohomology modules HiAinf(X) and their specializations 1007 
	8. A functorial lattice inside the de Rham cohomology 1007 
	9. The semistable comparison isomorphism
	References

