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The primary goal of the problems below is to build up familiarity with some useful lemmas and
examples that are related to the theme of the Winter School.

Notation. For a field k, we denote by k a choice of its algebraic closure, and by ks Ă k the
resulting separable closure. If k is a number field and v is its place, we write kv for the corresponding
completion. If k “ Q, we write p ď 8 to emphasize that p is allowed be the infinite place; for this
particular p, we write Qp to mean R. For a base scheme S and S-schemes X and Y , we write XpY q
for the set of S-morphisms Y Ñ X. When dealing with affine schemes we sometimes omit Spec for
brevity: for instance, we write BrR in place of BrpSpecRq. A ‘torsor’ always means a ‘right torsor.’
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1. Rational points

In this section, k is a field and X is a k-scheme. A rational point of X is an element x P Xpkq, i.e.,
a section x : Spec k Ñ X of the structure map X Ñ Spec k.

1.1. Suppose that X “ Spec krT1,...,Tns

pf1,...,fmq
. Find a natural bijection

Xpkq ÐÑ tpx1, . . . , xnq P k
n such that fipx1, . . . , xnq “ 0 for every i “ 1, . . . ,mu.

Hint. Inspect the images of the Tj under the k-algebra homomorphism krT1,...,Tns

pf1,...,fmq
Ñ k

corresponding to a rational point x : Spec k Ñ X.

Side remark. In conclusion, finding rational points is tantamount to finding k-rational
solutions of systems of polynomial equations with coefficients in k.

1.2. (a) Prove that the image of a rational point x : Spec k Ñ X is necessarily a closed point of
the underlying topological space of X; in fact, prove that x is a closed immersion.

Hint. Work Zariski locally on X: for instance, a subset of Z of a scheme X is closed if
and only if Z X U is closed in U for every affine open U Ă X.

Side remark. For an arbitrary scheme morphism f : X Ñ S, a section s : S Ñ X of f is
always an immersion; if f is separated, then s is even a closed immersion (see [SP, 01KT]
for the proofs of these facts).
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(b) Deduce a strengthening of the first part of (a): for any finite extension L{k, the image
of any k-morphism SpecLÑ X is a closed point of the underlying topological space of
X. In particular, a point x P X whose residue field kpxq is a finite extension of k is a
closed point.

Hint. The morphism SpecLÑ Spec k is finite, and hence universally closed (due to the
going up theorem).

Side remark. The claim remains true with ‘finite extension’ replaced by ‘algebraic
extension’—the same proof works because integral morphisms are still universally closed
(going up holds for integral morphisms; see [SP, 01WM] for a detailed argument).

(c) Prove a partial converse: if X is locally of finite type over k and x P X is a closed point,
then the residue field kpxq is a finite extension of k.

Hint. Apply Noether’s normalization lemma to Spec kpxq: an affine k-scheme of finite
type admits a finite surjection to some affine space An

k . Then use the fact that if a field L
is module-finite over its subalgebra R Ă L, then R must also be a field. See [AK12, 15.4]
or [AM69, 7.9] for a complete proof.

1.3. If k is finite and X is of finite type, prove that Xpkq is finite.

Hint. Work locally on X.

Side remark. Combine 1.2. (a) and 1.3. to see that rational points are never Zariski dense
in a positive-dimensional variety over a finite field.

1.4. Use 1.2. (a) to prove that every k-group scheme G is necessarily separated.

Hint. Show that the following diagram is Cartesian:

G
∆ //

��

Gˆk G

g1g
´1
2

��

Spec k
e // G.

Side remark. Separatedness of group schemes fails over non-field bases. To see this, choose
a discrete valuation ring R and glue the two generic points of the constant group Z{2Z

R
together to obtain a nonseparated R-group scheme. See [SP, 06E7] for further examples.

1.5. Suppose that X is of finite type over k and connected. If X has a rational point, prove that
X is geometrically connected, i.e., that the base change Xk is still connected.

Hint. Reduce to showing connectedness of Xk1 for every finite extension k1{k. Then exploit
the fact that Spec k1 Ñ Spec k is finite flat, and hence both universally closed and universally
open, to conclude that the image of the base change xk1 of a rational point x : Spec k Ñ X
must meet every connected component of Xk1 .

Side remark. See [EGA IV2, 4.5.13] for a generalization: if Y Ñ X is a morphism of
arbitrary k-schemes with X connected and Y geometrically connected (and hence nonempty!),
then X must also be geometrically connected. Note that this implies in particular that every
connected group scheme over a field is geometrically connected.

1.6. Suppose that X is smooth over k and nonempty. Prove that there is a closed point x P X
with kpxq{k finite separable; in fact, prove that such x are Zariski dense.
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Hint. Exploit the local structure of a smooth morphism: if f : X Ñ S is smooth of relative
dimension n, then there exists an open U Ă X for which f |U factors as U g

ÝÑ An
S Ñ S with g

being étale (see [SP, 054L] for this structure theorem).

Side remark. See [EGA IV4, 17.16.3] for generalizations to arbitrary bases.

1.7. Let o be the ring of integers of a finite extension of Qp, and let F be the residue field of
o. Prove Hensel’s lemma: for a smooth o-scheme X , the pullback map X poq Ñ X pFq is
surjective, i.e., every F-point of X may be lifted to an o-point.

Hint. As in 1.6., exploit the local structure of a smooth morphism to reduce to the case
when X is étale over o. In the étale case argue that every local ring of X with residue field F
must be o.

Side remark. See [EGA IV4, 18.5.17] for a generalization: o could be any Henselian local
ring.

1.8. Suppose that k is a finite extension of Qp and that X is of finite type, irreducible, and extends
to a smooth o-scheme X of finite type whose special fiber is nonempty. Prove that the points
of X valued in unramified extensions of k are Zariski dense.

Hint. If Z Ă X is a closed subscheme with dimZ ă dimX, then its schematic closure in X
cannot cover the special fiber of X because “the relative dimension of a flat family is locally
constant on the source” (see [BLR90, 2.4/4] for a precise statement). With this at hand,
recall from [EGA IV2, 2.8.5] that o-flat closed subschemes of X correspond to the schematic
images of closed subschemes of X and use 1.6. and 1.7.

Side remark. This problem is a special case of [EGA IV3, 14.3.11].

1.9. Suppose that X is of finite type over k and regular. Prove that every rational point
x : Spec k Ñ X factors through a k-smooth open subscheme U Ă X.

Hint. Choose a regular system of parameters at the image of x to obtain a morphism
g : U Ñ An

k for some affine open U Ă X containing x. To check that g is étale at x, note
that g is unramified at x by construction and flat at x because it induces an isomorphism
pOAn

k ,gpxq
– pOU,x (and because RÑ pR is faithfully flat for every Noetherian local ring R).

Side remark. The claim still holds if k is an arbitrary regular local ring (e.g., a discrete
valuation ring); for the proof, combine [BLR90, 3.1/2] and [EGA IV4, 17.5.3].

2. Rational points on torsors

In this section, k is a field and G is a k-group scheme of finite type.

‚ A right action of G on a k-scheme X is a morphism X ˆk G Ñ X that induces a right
GpSq-action on XpSq for every k-scheme S.

‚ A trivial torsor under G is a k-scheme X equipped with the right action of G such that X is
isomorphic to G equipped with its right translation action (the isomorphism is required to
respect the actions of G). A choice of such an isomorphism is a trivialization of X.

‚ A torsor under G (or a G-torsor) is a k-scheme X equipped with a right action of G such
that for some finite extension k1{k the base change Xk1 is a trivial torsor under Gk1 .
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If G is commutative and smooth (smoothness is automatic if char k “ 0), then there is a bijection

tisomorphism classes of G-torsors Xu ÐÑ H1pk,Gpksqq. (‹)

2.1. For a G-torsor X, find a natural bijection

ttrivializations of Xu ÐÑ trational points x P Xpkqu.

Hint. Inspect the image of the identity section e P Gpkq under a trivialization.

Side remark. This is the basic link between the study of torsors and that of rational points.

2.2. If G fits into a short exact sequence 1 Ñ GÑ H Ñ QÑ 1 of k-group schemes of finite type
and x P Qpkq, prove that the fiber Hx :“ H ˆQ,x Spec k is a G-torsor. When is it trivial?

Hint. The sequence induced on S-points is left exact (but typically not right exact). To find
a criterion for triviality, inspect the map Hpkq Ñ Qpkq.

Side remark. The assignment x ÞÑ rHxs defines the connecting map of nonabelian coho-
mology: Qpkq Ñ H1pk,Gq, where H1pk,Gq is defined to be the pointed set of isomorphism
classes of G-torsors.

2.3. For a, b P kˆ, prove that G :“ Spec
´

krx,ys
px2´ay2´1q

¯

has a structure of a k-group scheme and

X :“ Spec
´

krx,ys
px2´ay2´bq

¯

has a structure of its torsor.

Hint. Imitate multiplication in krts
pt2´aq

to define a group structure on

GpSq “ tpu, vq P ΓpS,OSq such that u2 ´ av2 “ 1u

and its action on

XpSq “ tpu, vq P ΓpS,OSq such that u2 ´ av2 “ bu.

Side remark. The name of G is the “norm-1 torus” of the quadratic k-algebra krts
pt2´aq

; to

convince yourself that the name is apt, compute the norm of an element x` yt P krts
pt2´aq

. This
computation, interpreted in suitable generality, leads to a solution of the problem.

2.4. Prove that every Gm-torsor over k is trivial. Prove the same for Ga-torsors. Deduce that
every G-torsor is trivial if G admits a filtration whose subquotients are either Gm or Ga.

Hint. Use (‹) and recall Hilbert’s Theorem 90. For the last sentence, use the long exact
nonabelian cohomology sequence.

Side remark. Some important cases when the required filtration exists are when G is a
Borel subgroup of a split reductive group or when k is perfect and G is a smooth connected
unipotent group (see [SGA 3II, Exp. XVII, Cor. 4.1.3] for the latter case).

2.5. If G is smooth, prove that every G-torsor trivializes over a finite separable extension k1{k.

Hint. Torsors under smooth G inherit smoothness, so 1.6. applies.

Side remark. More generally, if S is a base scheme and G is a smooth S-group scheme,
then every G-torsor X trivializes over an étale cover S1 Ñ S. The proof is the same modulo
the technicality that in this generality a G-torsor fppf sheaf X may not be a scheme but is
always an algebraic space (cf. [SP, 04SK]); namely, [SP, 0429] guarantees smoothness of X,
so [EGA IV4, 17.16.3 (ii)] applied to an étale cover of X by a scheme provides a desired S1.
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2.6. Suppose that the field k is finite.

(a) If G is an abelian variety, prove that every G-torsor is trivial.

Hint. Use the sequences 0 Ñ Grns Ñ G
n
ÝÑ GÑ 0, which, due to perfectness of k, stay

exact on ks-points even when char k | n. Also use the vanishing of the Herbrand quotient
of a finite module.

Side remark. If k is finite, then any torsor under a connected k-group scheme of finite
type is trivial: this is a theorem of Lang, who in [Lan56, Thm. 2] treated the key case
when G is in addition smooth.

(b) If X is a proper smooth geometrically connected k-curve of genus 1, prove that Xpkq ‰ H.

Hint. Recall that the Jacobian Pic0
X{k of X is an elliptic curve over k. Pass to k to

prove that the canonical k-morphism X Ñ Pic1
X{k is an isomorphism. Conclude that X

is a Pic0
X{k-torsor and apply (a).

2.7. Suppose that k is a finite extension of Qp and that A is a nonzero abelian variety over k.

(a) Prove that up to isomorphism there are only finitely many A-torsors X for which the
associated class in H1pk,Aq is killed by an integer that is prime to p.

Hint. Prove that even #H1pk,Arnsq is uniformly bounded as long as n is prime to
p. For this, use the local Euler characteristic formula, local duality, and the fact that
torsion subgroups of abelian varieties over k are finite.

Side remark. One could also apply Tate local duality for abelian varieties: if A_
denotes the dual abelian variety, then H1pk,Aq and A_pkq are Pontryagin dual, see
[Mil06, I.3.4]. The claim then follows from A_pkq being pro-p up to finite index.

(b) Prove that up to isomorphism there are infinitely many A-torsors.

Hint. Use the same technique to obtain the growth rate of #H1pk,Arpnsq as n Ñ 8

and prove that Apkq{pnApkq grows slower. For the latter, use the fact that Apkq has a
finite index subgroup isomorphic to Zrk:Qps¨dimA

p (this fact is proved in [Mat55]).

2.8. Suppose that k is a finite extension of Qp. Let E be an elliptic curve over k, and let X be a
torsor under E. The period of X is the order n of the corresponding class in H1pk,Eq. The
index of X is the greatest common divisor of the degrees of closed points on X. Lichtenbaum
has proved in [Lic68, Thm. 3] that period equals index under our assumptions. Assuming
Lichtenbaum’s result, prove that X even has a closed point of degree n.

Hint. Use Lichtenbaum’s result to get a zero-cycle z of degree n on X. Apply Riemann–Roch
to the line bundle Opzq to replace z by an effective zero cycle of degree n on X.

Side remark. The analogue of Lichtenbaum’s “period = index” conclusion fails for torsors
under higher dimensional abelian varieties over k.

3. Brauer groups

In this section, X is a scheme.

‚ An Azumaya algebra over X is a coherent OX -algebra A such that for some étale cover
tfi : Xi Ñ Xu there are OXi-algebra isomorphisms f˚i A – MatniˆnipOXiq for some ni P Zą0.
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‚ Azumaya algebras A and A 1 over X are similar if there is an OX -algebra isomorphism

A bOX
EndOX

pE q – A 1 bOX
EndOX

pE 1q

for some locally free coherent OX -modules E and E 1 that are stalkwise nonzero.

‚ The set of similarity classes of Azumaya algebras over X forms an abelian group with ´bOX
´

as the group operation. This Azumaya Brauer group of X is denoted by BrAzX.

‚ The Brauer group of X is BrX :“ H2
étpX,Gmq.

‚ If X is regular, Noetherian, and has an ample invertible sheaf (in the sense of [EGA II, 4.5.3]),
then BrAzX “ BrX and both of these groups are torsion, see [Gro68a, Prop. 1.4] and
[dJ, Thm. 1.1]. For example, this holds if X is a smooth quasi-projective scheme over a field.

Caution. Some authors use different definitions! For example, instead of meaning BrX the term
the Brauer group of X may mean either BrAzX or pBrXqtors.

3.1. Prove that similarity of Azumaya algebras over X is an equivalence relation.

Hint. Construct an OX -algebra isomorphism EndOX
pE qbOX

EndOX
pE 1q – EndOX

pEbOX
E 1q.

3.2. Prove that an Azumaya algebra A over X is in particular a locally free OX -module whose
rank at every point x P X is a square. Deduce that for every fixed n P Zą0, the locus where
the rank of A is n2 is an open and closed subscheme of X.

Hint. Use étale descent: a quasi-coherent OX -module is locally free of finite rank if and only
if it is so after pullback to an étale cover, see [SGA 1new, Exp. VIII, Prop. 1.10].

3.3. Suppose that X “ Spec k with k a field.

(a) Find a natural bijection

tPGLn-torsors over Xu{ » ÐÑ tAzumaya algebras over X of rank n2u{ » .

(On both sides, “{ »” means “up to isomorphism.”)

Hint. For any field K, by the Skolem–Noether theorem, PGLnpKq is the group of
automorphisms of the matrix algebra MatnˆnpKq. To conclude, exploit 2.5., effectivity
of Galois descent for K-algebras, and the formalism of nonabelian Galois cohomology.

Side remark. The bijection continues to hold for any scheme X.

(b) Find the following maps:

H1pk,PGLnq ãÑ H2pk, µnq
„
ÝÑ pBr kqrns.

Combine them with (a) to prove that every Azumaya k-algebra gives an element of Br k.

Hint. For the first map, use the long exact nonabelian cohomology sequence of the
central extension 1 Ñ µn Ñ SLn Ñ PGLn Ñ 1 and prove that H1pk,SLnq “ 1. For the
second map, use 2.4.

3.4. Prove that if a field k is a filtered union of its subfields ki, then

Br k “ lim
ÝÑ

Br ki.

Hint. An Azumaya k-algebra has a description involving only finitely many elements of k.

Side remark. More generally, if pXiqiPI is a filtered inverse system of quasi-compact and
quasi-separated schemes with affine transition morphisms, then Brplim

ÐÝ
Xiq “ lim

ÝÑ
BrXi (and
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lim
ÐÝ

Xi is representable by a scheme), see [SGA 4II, Exp. VII, Cor. 5.9]. For example, the
assumptions are met if each Xi is affine: Xi “ SpecRi; in this case, the conclusion is the
equality Brplim

ÝÑ
Riq “ lim

ÝÑ
BrRi.

3.5. Prove that the Brauer group of a finite field is trivial.

Hint. A finite field has cohomological dimension 1 (but does not have strict cohomological
dimension 1, so a small argument is still needed!).

3.6. If k is a finite extension of Qp and o is its ring of integers, prove that Br o “ 0.

Hint. To prove that every Azumaya o-algebra is a matrix algebra, use the side remark of
3.3. (a) to reduce to proving triviality of PGLn-torsors over o. Deduce this triviality from
Hensel’s lemma (see 1.7.) and Lang’s theorem (see the side remark of 2.6. (a)).

Side remark. More generally, Br o “ 0 whenever o is a Henselian local ring whose residue
field has a trivial Brauer group, see [Gro68b, 11.7 2˝)].

3.7. If K is a number field and Kab is its maximal abelian extension, prove that BrKab “ 0.

Hint. Combine 3.4. with the reciprocity sequence

0 Ñ BrK 1 Ñ
À

v BrK 1
v

ř

v invv
ÝÝÝÝÝÑ Q{ZÑ 0

to reduce to proving that for every completion K 1
v of a finite abelian extension K 1{K and

every integer n ě 1 there are a finite abelian extension L{K containing K 1{K and a place w
of L lying above v such that rLw : K 1

vs is divisible by n. To find a required L, adjoin roots of
unity to K 1 or, alternatively, reduce further to the case when n is a power of a prime p, recall
that no finite place of K 1 splits completely in the cyclotomic Zp-extension of K 1, and treat
real v separately.

Side remark. The claim also holds for global fields of positive characteristic.

3.8. Let R be a discrete valuation ring and K its field of fractions.

(a) Prove that H1pR,PGLnq Ñ H1pK,PGLnq has trivial kernel, i.e., that there is no
nontrivial pPGLnqR-torsor T whose base change to K is trivial.

Hint. Suppose that the class of T belongs to the kernel, let B Ă pPGLnqR be a Borel
subgroup scheme, and consider the fppf quotient Q :“ T {B (which is a scheme1). Use
the valuative criterion and the properness of Q inherited from the projective R-scheme
pPGLnqR{B to show that QpRq ‰ H. Then choose a q P QpRq, note that the q-fiber of
T Ñ Q is a B-torsor, and apply the analogue of 2.4. over R to conclude that T pRq ‰ H.

Side remark. The same proof shows that H1pR,Gq Ñ H1pK,Gq has trivial kernel
for any split reductive R-group scheme G. It is an (open in general!) conjecture of
Grothendieck and Serre that H1pR,Gq Ñ H1pK,Gq is injective whenever R is a regular
local ring with fraction field K and G is a reductive R-group scheme.

(b) Prove that BrRÑ BrK is injective.

1Representability of Q by a scheme follows, for instance, from the combination of [Ana73, 4.D] and [SGA 3III new,
Exp. XXII, Cor. 5.8.5]. However, for the argument at hand the representability of Q by an algebraic space would
suffice; such representability follows already from [SP, 06PH].
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Hint. Combine (a) with the side remark of 3.3. (a) and use the nonabelian cohomology
sequence of the central extensions

1 Ñ Gm Ñ GLn Ñ PGLn Ñ 1.

Side remark. In fact, BrX Ñ Br kpXq is injective wheneverX is an integral Noetherian
regular scheme with function field kpXq, see [Gro68a, 1.8].

3.9. (a) Prove that BrZ “ 0.

Hint. Combine the injectivity of BrZÑ BrQ mentioned in the side remark of 3.8. (b)
with the exact sequence

0 Ñ BrQÑ
À

pď8BrQp

ř

p invp

ÝÝÝÝÝÑ Q{ZÑ 0

and with the vanishing of BrZp for p ă 8 supplied by 3.6.

Side remark. IfOK is the ring of integers of a number fieldK, then BrOK – pZ{2Zqr´1,
where r “ maxp1,#treal places of Kuq, see [Gro68b, Prop. 2.4].

(b) For a proper smooth curve X over a finite field, prove that BrX “ 0.

Hint. Reduce to the case when X is connected and argue as in (a).

3.10. Recall Tsen’s theorem: if kpXq is the function field of an integral curve X over an algebraically
closed field k, then Br kpXq “ 0.

Prove that if k is a perfect field, then Br k Ñ BrP1
k is an isomorphism.

Hint. Use the spectral sequence H ipGalpks{kq, HjpP1
ks ,Gmqq ñ H i`jpP1

k,Gmq and write out
its exact sequence of low degree terms:

0 Ñ PicP1
k Ñ pPicP1

ksq
Galpks{kq Ñ Br k Ñ Ker

`

BrP1
k Ñ BrP1

ks
˘

Ñ H1pGalpks{kq,PicP1
ksq.

Then combine Tsen’s theorem with the side remark of 3.8. (b) to get BrP1
ks “ 0. Conclude

by noting that Galois acts trivially on PicP1
ks – Z because the degree of a divisor is preserved

under any automorphism of P1
ks .

Side remark. By [Gro68b, 5.8], BrX “ 0 for every proper curve X over a separably closed
field, so the same proof gives the bijectivity Br k Ñ BrP1

k even when k is imperfect.

3.11. Suppose that X is equipped with a structure map f : X Ñ Spec k for some field k.

(a) If Xpkq ‰ H, prove that Br k
Brpfq
ÝÝÝÑ BrX is injective.

Hint. Inspect the Brauer group morphisms induced by f and by its section Spec k Ñ X.

Side remark. The question has little to do with Brauer groups and is a special case of
the following generality: if f : X Ñ Y is a morphism of schemes, s is its section, and
F : Schemesop Ñ Sets is a functor, then F pfq is injective because F psq ˝ F pfq “ idF pY q.

(b) If k is a number field and
ś

vXpkvq ‰ H, prove that Br k
Brpfq
ÝÝÝÑ BrX is injective even

when Xpkq “ H.

Hint. If ppvqv P
ś

vXpkvq, then the map pBrppvq ˝ Brpfqqv : Br k Ñ
ś

v Br kv is nothing
else than the usual injection Br k Ñ

À

v Br kv.
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4. The Hasse principle

In this section, K is a number field and X is a K-scheme of finite type. A rational point x P XpKq
gives rise to local points xv P XpKvq, one for each place v of K. In particular,

XpKq ‰ H ùñ
ś

vXpKvq ‰ H.

One may wonder whether the existence of local points forces the existence of a global point:
ś

vXpKvq ‰ H
?
ùñ XpKq ‰ H.

If it does, then X satisfies the Hasse principle. If it does not, then X violates the Hasse principle.

4.1. (a) Prove that Proj
´

Qrx,ys
px2´ay2q

¯

satisfies the Hasse principle for every a P Qˆ.

Hint. If a is positive and has an even p-adic valuation for every finite prime p, then a is
a square in Qˆ.

Side remark. The question is a simple special case of the theorem of Hasse–Minkowski:
if f P Qrx1, . . . , xns is a homogeneous quadratic polynomial, then Proj

´

Qrx1,...,xns

pfq

¯

satisfies the Hasse principle, see [Ser73, Ch. IV, §3.2, Thm. 8] for a proof.

(b) Prove that Proj
´

Krx,ys
px2´ay2q

¯

satisfies the Hasse principle for every a P Kˆ.

Hint. Reduce to proving the injectivity of H1pK,µ2q Ñ
ś

vH
1pKv, µ2q, and then

to that of H1pK,Z{2Zq Ñ
ś

vH
1pKv,Z{2Zq. To conclude, note that no quadratic

extension of K is split everywhere. If passage to Z{2Z is undesirable, then use “Kummer
theory” to carry out the same argument.

Side remark. In fact, the full Hasse–Minkowski theorem also holds over an arbitrary
number field.

(c) Prove that Proj
´

Qp
?

7qrx,ys
px8´16y8q

¯

violates the Hasse principle (over Qp
?

7q).

Hint. Use the factorization T 8 ´ 24 “ pT 2 ´ 2qpT 2 ` 2qppT ` 1q2 ` 1qppT ´ 1q2 ` 1q
to prove the absence of rational points over Qp

?
7q. Combine the factorization with

Hensel’s lemma to prove that 16 is an 8
th power already in Qp if p is odd. To also treat

the place above 2, note that 2 ramifies in Qp
?

7q and that the logarithm isomorphism
p1 ` 2nZ2,ˆq – p2

nZ2,`q for n ě 2 shows that Q2p
?

7q “ Q2p
?
´1q. To handle the

infinite places, note that 16 is an 8
th power in R.

Side remark. For the necessary and sufficient conditions on K and n P Zą0 so that
Proj

´

Krx,ys
pxn´aynq

¯

satisfies the Hasse principle for every a P Kˆ, see [NSW08, 9.1.11 (i)].

4.2. Prove that Z{nZ-torsors over K satisfy the Hasse principle.

Hint. Use the correspondence between Z{nZ-torsors over K and elements of H1pK,Z{nZq
to reduce to proving the injectivity of H1pK,Z{nZq Ñ

ś

vH
1pKv,Z{nZq. Then exploit the

identification H1pK,Z{nZq “ HompGalpKs{Kq,Z{nZq and note that no nontrivial extension
of number fields is completely decomposed at every place.

4.3. A Severi–Brauer variety over K is a K-scheme S for which there is a Ks-isomorphism
SKs – Pn

Ks for some n ě 0.
9



(a) Find a natural bijection

tpPGLn`1qK-torsorsu{ » ÐÑ tn-dimensional Severi–Brauer varieties over Ku{ » .

(On both sides, “{ »” means “up to isomorphism.”)

Hint. Recall from [MFK94, Ch. 0, §5, b) on p. 20] that the automorphism functor of
Pn is representable by PGLn`1. Then combine the general principle of “twists” together
with the effectivity of Galois descent for quasi-projective varieties to deduce the bijection

H1pKs{K,PGLn`1pK
sqq ÐÑ tn-dimensional Severi–Brauer varieties over Ku{ » .

Apply 2.5. to conclude.

Side remark. The assumption that the field K be a number field is irrelevant for (a).

(b) Prove that an n-dimensional Severi–Brauer variety S is isomorphic to Pn
K if and only if

SpKq ‰ H.

Hint. The ‘only if’ direction is trivial. For the ‘if’ direction, fix an s P SpKq and note
that pS, sq is a twist of pPn

K , p1 : 0 : . . . : 0qq. To conclude, either find a short exact
sequence

1 Ñ Gn
a Ñ AutpPn, p1 : 0 : . . . : 0qq Ñ GLn Ñ 1

and use the resulting nonabelian cohomology sequence over K, or note that the passage
to the dual projective space identifies twists of pPn

K , p1 : 0 : . . . : 0qq with those of
pPn

K , hyperplane tx0 “ 0uq and that the latter are all trivial because the morphism
determined by the very ample line bundle corresponding to the twist of the divisor
tx0 “ 0u is an isomorphism, as may be checked after passage to the separable closure.

Side remark. The assumption that the field K be a number field is irrelevant for (b).

(c) Prove that Severi–Brauer varieties satisfy the Hasse principle.

Hint. Combine (a) and (b) to reduce to proving the injectivity of

H1pK,PGLn`1q Ñ
ś

vH
1pKv,PGLn`1q

for every n ě 0. Then use 3.3. (b) and the injectivity of

BrK Ñ
ś

v BrKv.

4.4. The goal of this question is to work out an example of Lind [Lin40] and Reichardt [Rei42]:

X :“ Proj
´

Qrx,y,zs
px4´17y4´2z2q

¯

, where the grading has x and y in degree 1 and z in degree 2,

violates the Hasse principle; in other words, x4 ´ 17y4 “ 2z2 has a nonzero solution in Qp for
every p ď 8, but does not have any nonzero solution in Q.

(a) Prove that X is a smooth geometrically connected curve of genus 1.

Hint. Compute on affine coordinate patches. The genus of a proper smooth plane curve
of degree d is pd´1qpd´2q

2 .

(b) Prove that x4 ´ 17y4 “ 2z2 has a nonzero solution in Fp for every prime p R t2, 17u.

Hint. Apply 2.6. (b).

(c) Prove that XpQpq ‰ H for every prime p R t2, 17u.

Hint. Apply 1.7. and (b) to a suitable a smooth model of X over SpecZr 1
2¨17 s.

10



(d) Use the 2-adic logarithm to prove that XpQ2q ‰ H. Prove that XpQ17q ‰ H by
exploiting the fact that 17 splits in Qp

?
2q. Observe that XpRq ‰ H.

Hint. The logarithm induces an isomorphism p1` 2nZ2,ˆq – p2
nZ2,`q for every n ě 2.

(e) Prove that XpQq “ H.

Hint. Start with integers pa, b, cq satisfying a4 ´ 17b4 “ 2c2 and prove that every prime
dividing c must be a square in F17. Conclude that c must be a square in F17. Check that
2 is not a fourth power in F17.

5. The Brauer–Manin obstruction

In this section, K is a number field, AK is its ring of adeles, and X is a separated K-scheme of finite
type, so that XpAKq Ă

ś

vXpKvq (see 5.1. (d)).

‚ The Brauer–Manin set of X is

XpAKq
Br :“ tpxvqv P XpAKq for which

ř

v invvpx
˚
vpBqq “ 0 for every B P BrXu.

The Brauer–Manin set fits into inclusions

XpKq Ă XpAKq
Br Ă XpAKq Ă

ś

vXpKvq.

‚ If
ś

vXpKvq ‰ H but XpAKq
Br “ H, so that necessarily XpKq “ H, then X has a Brauer–

Manin obstruction to the local-global principle. In this case, the absence of rational points of
X is explained by the emptiness of the Brauer–Manin set.

The aim of the first few questions is to solidify the understanding of these ideas.

5.1. (a) Prove that there is a nonempty open U Ă SpecOK and a separated U -scheme X of
finite type for which one may fix an isomorphism XK – X. Prove uniqueness of X up to
shrinking U : if X Ñ U and X 1 Ñ U 1 both extend X, then the composite isomorphism
XK – X – X 1K extends to an isomorphism XU2 – X 1U2 for some nonempty open
U2 Ă U X U 1.

Hint. Describe X as a separated K-scheme of finite type by finitely many equations
and use these equations over a small enough U to “reglue” to a desired X . To extend
an (iso)morphism, work locally on the source and use the functor of points definition of
being locally of finite presentation.

Side remark. The question is an instance of general “limit formalism.” See [EGA IV3, §8,
esp. 8.10.5] for many useful results of this sort.

(b) With X as in (a), prove that the restricted product
ś1

vpXpKvq,X pOvqq is an independent
of X subset of

ś

vXpKvq.

Hint. Use the valuative criterion of separatedness for the subset claim. Use the
uniqueness of X up to shrinking U for the independence claim.

(c) For an X as in (a) and each finite set of places Σ containing the places that do not
correspond to a closed point of U , prove that pullback maps induce an isomorphism

X p
ś

vPΣKv ˆ
ś

vRΣ Ovq
„
ÝÑ

ś

vPΣ X pKvq ˆ
ś

vRΣ X pOvq.

Hint. To treat the case of an affine X , translate into a statement about rings. To then
prove the surjectivity, choose an element ppvqv of the target, cover X by finitely many
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affines Xi, and subdivide the v’s into finitely many parts Pj in such a way that all the
pv’s with v P Pj factor through the same Xi. To prove the injectivity, use that the
diagonal of X is a closed immersion and that the only ideal of

ś

vPΣKv ˆ
ś

vRΣ Ov with
vanishing projections is the zero ideal.

Side remark. More generally, as proved in [Bha14, Thm. 1.3], Xp
ś

iRiq
„
ÝÑ

ś

iXpRiq

for every set of rings tRiui and every quasi-compact and quasi-separated scheme X.

(d) Using (b) to interpret the restricted product, prove that XpAKq “
ś1

vXpKvq.

Hint. Combine the functor of points definition of being locally of finite presentation
with (c).

(e) If X is proper, prove that XpAKq “
ś

vXpKvq.

Hint. To ensure that X Ñ U in (a) is proper, apply Chow’s lemma [SP, 0200] to
X Ñ SpecK and shrink U (alternatively, apply [EGA IV4, 8.10.5 (xii)]). Then conclude
by combining the valuative criterion of properness with (d).

5.2. For an pxvq P XpAKq Ă
ś

vXpKvq and a B P BrX, prove that invvpx
˚
vpBqq “ 0 for all but

finitely many v.

Hint. Use the side remark of 3.4. to find an X as in 5.1. (a) for which B extends to a
B P BrX . Then apply 3.6.

Side remark. In particular, the infinite sum in the definition of XpAKq
Br makes sense.

5.3. Prove that XpKq Ă XpAKq
Br.

Hint. Use the reciprocity sequence

0 Ñ BrK Ñ
À

v BrKv

ř

v invv
ÝÝÝÝÝÑ Q{ZÑ 0

to show that for every B P BrX and every x P XpKq with pullbacks xv P XpKvq one has
ř

v invvpx
˚
vpBqq “ 0.

5.4. Suppose that f : X Ñ X 1 is a morphism of separated K-schemes of finite type.

(a) Prove that fpAKq : XpAKq Ñ X 1pAKq maps XpAKq
Br into X 1pAKq

Br.

Hint. If pxvqv P XpAKq
Br and B1 P BrX 1, then f˚B1 P BrX so

ř

v invvppf ˝ xvq
˚B1q “

ř

v invvpx
˚
vpf

˚B1qq “ 0.

(b) Assume that
ś

vXpKvq ‰ H, so that necessarily
ś

vX
1pKvq ‰ H. If X 1 has a Brauer–

Manin obstruction to the local–global principle, prove that so does X.

Hint. If X 1pAKq
Br “ H, then the conclusion of (a) forces XpAKq

Br “ H.

5.5. Recall that eachXpKvq has a “v-adic topology” inherited fromKv: ifX has a closed immersion
into some An, then the v-adic topology on XpKvq is just the subspace topology of the v-adic
topology on AnpKvq “ Kn

v ; in general, the v-adic topology on XpKvq is described by also
requiring that UpKvq Ă XpKvq be open for each affine open U Ă X. The identification
XpAKq “

ś1XpKvq of 5.1. (d) then endows XpAKq with the restricted product topology.

For (a), (b), and (c) below, suppose that the separated finite type K-scheme X is regular.
12
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(a) For a Brauer class B P BrX and a place v, prove that the map

XpKvq Ñ Q{Z, xv ÞÑ invvpx
˚
vBq

is locally constant for the v-adic topology on XpKvq.

Hint. Reduce to the case of an affine connectedX. Then use the equality BrX “ BrAzX
and the side remark of 3.3. (a) to represent B by a pPGLnqX -torsor T Ñ X, and hence
reduce to proving local constancy on XpKvq of the fibral isomorphism class of T . For
this local constancy, fix a pPGLnqKv -torsor T0 Ñ SpecKv and consider the isomorphism
functor IsomPGLnpT, pT0qXq defined by

X-schemes Q S ÞÑ tpPGLnqS-torsor isomorphisms TS
„
ÝÑ pT0qSu P Sets

and prove that it is an fppf (or even étale) torsor under the inner form AutPGLnpT q of
pPGLnqX (to make this step easier, first solve the question 6.1.). Then deduce that
IsomPGLnpT, pT0qXq is representable by a smooth X-scheme, that the locus where the
fiber of T is isomorphic to T0 is the image of IsomPGLnpT, pT0qXqpKvq Ñ XpKvq, and
that this image is open due to the smoothness of IsomPGLnpT, pT0qXq Ñ X.

Side remark. Neither regularity nor separatedness of the finite type K-scheme X is
needed for the claim to hold: without these assumptions, the local constancy on XpKvq

of the fibral isomorphism class of B may be viewed as a special case of [Čes14, 3.4 (b)].

(b) Prove that the evaluation of a Brauer class B P BrX defines a continuous map

XpAKq Ñ Q{Z, pxvq ÞÑ
ř

v invvpx
˚
vBq,

where Q{Z is endowed with the discrete topology.

Hint. Combine (a) with the techniques used in the hint of 5.2.

(c) Prove that XpAKq
Br is closed in XpAKq.

Hint. Use (b) and the fact that an arbitrary intersection of closed sets is closed.

Side remark. Due to the side remark of (a), the regularity of the separated finite type
K-scheme X is not needed for the claims of (b) and (c) to hold.

5.6. The goal of this question is to work out an example of Birch and Swinnerton-Dyer [BSD75]:

X :“ Proj

ˆ

Qru, v, x, y, zs
puv ´ x2 ` 5y2, pu` vqpu` 2vq ´ x2 ` 5z2q

˙

has a Brauer–Manin obstruction to the local-global principle. In other words, XpQpq ‰ H

for every p ď 8 but XpAQq
Br “ H, so that XpQq “ H, too.

(a) Prove that X is a smooth, projective, geometrically connected surface over Q.

Hint. To prove that X is smooth and of dimension 2 at every point, use the Jacobi
criterion from [BLR90, 2.2/7] to reduce to checking that the differentials of the two defin-
ing equations are pointwise linearly independent in Ω1

P4
Q{Q

. The geometric connectedness

then follows because any two proper surfaces in P4
Q intersect, cf. [Har77, Thm. I.7.2].

Side remark. Another way to argue geometric connectedness is to appeal to the general
fact that positive dimensional complete intersections in projective space are always
geometrically connected, see [Liu02, Exercise 5.3.3 (c)].
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(b) A smooth, projective, geometrically connected surface Y over a field k is a del Pezzo
surface if the line bundle ω´1

Y {k is ample, where ωY {k “
Ź2 Ω1

Y {k. Prove that X is a del
Pezzo surface over Q.

Hint. Prove that ωX{Q – OXp´1q by using the formula for the canonical sheaf of a
complete intersection, cf. [Liu02, Exercise 6.4.11 (b)]. Conclude that ω´1

X{Q is ample.

(c) The degree of a del Pezzo surface Y Ñ Spec k is the self-intersection number of the
canonical line bundle ωY {k. Prove that the degree of X is 4.

Hint. Using that the self-intersection number of ωX{Q equals that of ω´1
X{Q – OXp1q,

prove that it also equals the degree of X as a surface in P4
Q, cf. [Har77, Exercise V.1.2]. To

compute this degree, recall some intersection theory in the form of [Har77, Thm. I.7.7] and
note that X is a smooth geometrically connected intersection in P4

Q of two hypersurfaces
of degree 2.

(d) Verify that the points

p0 : 0 :
?

5 : 1 : 1q, p1 : 1 : 1 : 0 :
?
´1q,

p1 : 0 : 0 : 0 : 1?
´5
q, p´5 : 1 : 0 : 1 :

b

´12
5 q

lie on X. Use these points to prove that XpQpq ‰ H for every p ď 8.

Hint. Prove that every p ‰ 2 splits in at least one of the quadratic number fields
Qp
?
´1q, Qp

?
5q, Qp

?
´5q. Use the hint of 4.4. (d) to prove that 2 splits Qp

?
´15q.

(e) Let F be the function field of X. Use the cup product

p , q : H1pF,Z{2Zq ˆH1pF, µ2q Ñ H2pF, µ2q “ pBrF qr2s

to make sense of the following 2-torsion classes in BrF :

p5, u`vu q, p5, u`vv q, p5, u`2v
u q, p5, u`2v

v q.

Hint. Interpret the first entry 5 as the element of H1pF,Z{2Zq corresponding to the
quadratic extension F p

?
5q{F . Interpret the second entry as the image in Fˆ{Fˆ2 “

H1pF, µ2q of the indicated nonzero rational function on X.

(f) For a suitable finite extension F 1{F , use the projection formula

p ¨ ,NormF 1{F p´qq “ NormF 1{F ppResF 1{F p¨q,´qq

to prove that p5, u`vu q “ p5,
u`v
v q “ p5,

u`2v
u q “ p5, u`2v

v q in BrF .

Hint. Use the bilinearity of p , q, take F 1 “ F p
?

5q, and note that
pu`vq2

uv “ NormF p
?

5q{F

´

u`v
x`
?

5y

¯

, pu`vqpu`2vq
u2 “ NormF p

?
5q{F

´

x`
?

5z
u

¯

,

pu`vqpu`2vq
uv “ NormF p

?
5q{F

´

x`
?

5z
x`
?

5y

¯

, pu`vqpu`2vq
v2

“ NormF p
?

5q{F

´

x`
?

5z
v

¯

,

pu`2vq2

uv “ NormF p
?

5q{F

´

u`2v
x`
?

5y

¯

.

(g) Admit the existence and exactness of the residue sequences

0 Ñ BrU Ñ BrF Ñ
À

uPUp1q H
1pkpuq,Q{Zq,

in which U Ă X is a nonempty open, the direct sum is indexed by height 1 points u P U ,
the residue field of u is denoted by kpuq, and the maps BrF Ñ H1pkpuq,Q{Zq do not
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depend on the choice of an open U containing u. Use these sequences to prove that the
element b P BrF exhibited in (f) extends to a B P BrX.

Hint. Combine the residue sequences with the different presentations of b given in (f)
to prove that b extends to a rb P BrpXzZq, where Z Ă X is the locus where upu ` vq,
vpu` vq, upu` 2vq, and vpu` 2vq all vanish. Conclude by proving that XzZ covers the
height 1 points of X, i.e., that Z is a finite set of points.

(h) If p ď 8 is a prime different from 5 and xp P XpQpq, prove that invppx
˚
pBq “ 0.

Hint. Start by proving that XpQpq endowed with its p-adic topology has no isolated
points: combine the local structure of smooth morphisms with the fact that étale
morphisms of finite type Qp-schemes induce open maps on Qp-points. Then use 5.5. (a)
to reduce to considering those xp which, in the notation of the hint of (g), factor through
XzZ. To then settle the cases when 5 P Qˆ2

p , locally on XzZ represent B by one of the
cup products of (e). To treat the remaining p, write xp “ pru : rv : rx : ry : rzq with all entries
in Zp but not all in pZp. Then exploit the unramifiedness of Qpp

?
5q{Qp to reduce to

proving that the valuation of ru`rv
ru is even if rupru` rvq ‰ 0, or that the valuation of ru`2rv

ru is
even if rupru` 2rvq ‰ 0, etc. Proceed to prove that rx2 ” 5ry2 mod p would force rx, ry P pZp,
and conclude that either p - ru or p - rv, and that also either p - ru` rv or p - ru` 2rv.

(i) If x5 P XpQ5q, prove that inv5px
˚
5Bq “

1
2 .

Hint. As in the hint of (h), reduce to considering those x5 that factor through XzZ and
write x5 “ pru : rv : rx : ry : rzq with the same normalization of the entries. Observe that if
5 | ru, or 5 | rv, or 5 | ru` rv, or 5 | ru` 2rv, then 5 | rx, so that 5 | rurv and 5 | pru` rvqpru` 2rvq,
to the effect that 5 | ru and 5 | rv, which contradicts the normalization. Deduce that
ru
rv ” 1 or 2 mod 5, and hence that 1` ru

rv ‰ a2 ´ 5b2 with a, b P Z5. Conclude that ru`rv
rv

is not a norm of an element of Q5p
?

5q, and hence that inv5px
˚
5Bq “

1
2 .

(j) Prove that XpAQq
Br “ H.

Hint. Combine (h) and (i) to prove that the element B P BrX constructed in (g)
satisfies

ř

pď8 invppx
˚
pBq “

1
2 for every pxpqp P XpAQq and hence forces XpAQq

Br “ H.

6. The étale Brauer–Manin obstruction

As in §5, we assume that K is a number field and X is a separated K-scheme of finite type.

‚ For an X-group scheme G and G-torsors Y Ñ X and Y 1 Ñ X, the isomorphism functor
IsomGpY, Y

1q is the fppf sheaf

S ÞÑ tGS-torsor isomorphisms YS
„
ÝÑ Y 1Su, where S is a variable X-scheme.

If G Ñ X is affine, then IsomGpY, Y
1q is representable2 by an X-scheme that is X-affine.

‚ The étale Brauer–Manin set of X is

XpAKq
ét,Br :“

č

G and YÑX

ď

rT sPH1pK,Gq

Im
´

pIsomGX
pY, TXqpAKqq

Br
Ñ XpAKq

¯

,

2If G Ñ X is not assumed to be affine, then IsomGpY, Y 1q is only representable by an algebraic space. This is “good
enough” for most practical purposes.
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where the intersection is taken over the isomorphism classes of finite étale K-group schemes
G and over the isomorphism classes of GX -torsors Y Ñ X, and the union is taken over the
isomorphism classes of G-torsors T . The étale Brauer–Manin set fits into inclusions

XpKq Ă XpAKq
ét,Br Ă XpAKq

Br Ă XpAKq Ă
ś

vXpKvq.

‚ If
ś

vXpKvq ‰ H but XpAKq
ét,Br “ H, so that necessarily XpKq “ H, then X has an étale

Brauer–Manin obstruction to the local-global principle.

The questions below are intended to help internalize the above notions.

6.1. Let G be an X-group scheme, and let Y Ñ X and Y 1 Ñ X be G-torsors.

(a) Consider the automorphism functor AutGpY q:

S ÞÑ tGS-torsor isomorphisms YS
„
ÝÑ YSu, where S is a variable X-scheme.

Prove that AutGpY q is a sheaf on the fppf site of X.

Hint. Recall (say, from [SP, 02W0]) that for an fppf S1 Ñ S the base change functor

tS-schemesu Ñ tS1-schemes equipped with a descent datum with respect to S1{Su

is fully faithful. Use this to descend a GS1-torsor isomorphism YS1
„
ÝÑ YS1 with equal

pS1 ˆS S
1q-pullbacks to a unique S-isomorphism YS

„
ÝÑ YS . Conclude by noting that

the latter is automatically GS-equivariant.

(b) If G Ñ X is affine, prove that AutGpY q is representable by an X-scheme that is X-affine.

Hint. If X 1 Ñ X is an fppf cover trivializing Y , prove that pAutGpY qqX 1 – GX 1 .
To then prove the representability of AutGpY q, use the effectivity of fppf descent for
relatively affine schemes (which essentially is just fppf descent for quasi-coherent sheaves,
cf. [BLR90, p. 135, paragraph after the proof of 6.1/4]). This descent result simultaneously
proves the X-affineness of AutGpY q, which also follows from [SP, 02L5] or from checking
the isomorphism property of AutGpY q Ñ Specpf˚OAutGpY qq fppf locally on X (where f
denotes the structure map AutGpY q Ñ X).

(c) Prove that IsomGpY, Y
1q is an AutGpY q-torsor fppf sheaf.

Hint. Use the methods of the hint of (a) to prove that IsomGpY, Y
1q is an fppf sheaf.

Define the AutGpY q-action by precomposition. Then prove the torsor property

AutGpY q ˆX IsomGpY, Y
1q

„
ÝÑ IsomGpY, Y

1q ˆX IsomGpY, Y
1q, pa, iq ÞÑ pia, iq

by working fppf locally on X.

(d) If G Ñ X is affine, prove that IsomGpY, Y
1q is representable by an X-scheme that is

X-affine.

Hint. The argument is very similar to the one sketched in the hint of (b).

6.2. (a) If G is a finite étale K-group scheme, T Ñ SpecK is a G-torsor, and Y Ñ X is a
GX -torsor, prove that IsomGX

pY, TXq Ñ X is finite étale. Conclude that IsomGX
pY, TXq

is a separated K-scheme of finite type, so that pIsomGX
pY, TXqpAKqq

Br makes sense.

Hint. In checking that IsomGX
pY, TXq Ñ X is finite étale, work étale locally on X to

reduce to the case when the GX -torsors Y and TX are trivial. In this case, prove that
IsomGX

pY, TXq – GX .
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(b) Prove that XpAKq
ét,Br Ă XpAKq

Br.

Hint. Combine (a) with 5.4. (a).

6.3. Prove that XpKq Ă XpAKq
ét,Br.

Hint. For a finite étale K-group scheme G, a GX -torsor Y Ñ X, and a p P XpKq, let
Yp :“ Y ˆX p be the p-fiber of Y Ñ X. Prove that p P Im pIsompY, pYpqXqpKq Ñ XpKqq and
use 5.3. to conclude that p P Im

`

pIsompY, pYpqXqpAKqq
Br Ñ XpAKq

˘

.

6.4. Suppose that f : X Ñ X 1 is a morphism of separated K-schemes of finite type.

(a) Prove that fpAKq : XpAKq Ñ X 1pAKq maps XpAKq
ét,Br into X 1pAKq

ét,Br.

Hint. If pxvqv P XpAKq
ét,Br and Y 1 Ñ X 1 is a GX 1-torsor for some finite étale K-group

scheme G, then Y Ñ X with Y :“ Y 1 ˆX 1 X is a GX -torsor and

IsomGX
pY, TXq “

`

IsomGX1
pY 1, TX 1q

˘

ˆX 1 X for every G-torsor T .

Thus, if T is such that pxvqv P Im
´

pIsomGX
pY, TXqpAKqq

Br
Ñ XpAKq

¯

, then the com-
mutativity of

IsomGX
pY, TXq

��

// IsomGX1
pY 1, TX 1q

��

X
f

// X 1

and 5.4. (a) force pf ˝ xvqv P Im
´

`

IsomGX1
pY 1, TX 1qpAKq

˘Br
Ñ X 1pAKq

¯

.

(b) Assume that
ś

vXpKvq ‰ H, so that necessarily
ś

vX
1pKvq ‰ H. If X 1 has an étale

Brauer–Manin obstruction to the local–global principle, prove that so does X.

Hint. If X 1pAKq
ét,Br “ H, then the conclusion of (a) forces XpAKq

ét,Br “ H.
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