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Seminar outline

In the 1920s of the last century the physicist Paul Dirac was looking for a relativistic quantum
mechanical theory of the electron. He was lead to the problem of finding a first order differential

operator D = Z;‘:l fyja%j in R™ whose square equals the Laplacian,' i.e.
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This immediately leads to the set of equations
Yivj + v = =205, 1<4,5<n. (1)

It is immediately clear that except in dimension one these equations do not have a scalar solution.
However, matrix solutions exist, e.g. in dimension 2 the famous Pauli spin matrices.

A thorough analysis of the solutions of the equations (1) leads to the representation theory of
the Clifford algebras and further to a very elegant description of the Spin groups, which are the
natural universal covering groups of the orthogonal group SO(n).

On a Riemannian manifold the concepts sketched before lead to a natural class of geometrically
defined first order elliptic differential operators which are also called Dirac operators. These
operators are of fundamental importance in geometry, topology, global analysis and mathemat-
ical physics. In particular the Atiyah—Singer Index Theorem for Dirac operators is one of the
cornerstones of modern mathematics. Many classical first order elliptic differential operators
(e.g. de Rham, Dolbeault) are examples of Dirac operators.

In this seminar we will establish the fundamentals of Dirac operators on Riemannian manifolds.

Prerequisites: Global Analysis I / Geometry L.
Basic knowledge of vector bundles will be assumed.

Talks

1. Clifford algebras. Review of quadratic spaces (we restrict attention to characteristic
different from two), Clifford algebras, Zs-grading on Clifford algebras, description of linear
structure of Clifford algebras, center of Clifford algebras, Clifford algebras of direct sums
of quadratic spaces, Clifford algebras and complexifications.

References: §§1.1-1.2 and §1.3 up to the first proposition in [Fri00] (see also [LM89, I1.1]).

'T am simplifying and cheating here for the sake of a concise motivation.
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. Classification of Clifford algebras and their representations. Clifford algebras of

standard non-degenerate (real or complex) quadratic spaces, explicit identifications in low
dimensions, periodicity results, description of these Clifford algebras via matrix algebras,
irreducible representations of these Clifford algebras, spinor representations.

References: [Fri00, §1.3|, [LM89, 1.3-1.5].

. The groups Spin(n) and the spin representations. The groups Pin(n) and Spin(n),

Spin(n) as universal covering space of SO(n) for n > 3, description of Lie algebra of
Spin(n), spin representation of Spin(n), outlook on Spin(r, s) and the more general Spin(V, q)
associated to a quadratic space (V, q), optional: discuss in outline the groups Spin(c(n).
References: [Fri00, §§1.4-1.5], [LM89, 1.2] (optional: [Fri00, §1.6]).

. First applications. Construction of linearly independent vector fields on spheres and

projective spaces, quote result of Adams on geometric dimension of tangent bundles of
spheres, construction of exceptional isomorphisms of low-dimensional Lie groups, Cayley
numbers @ and S” as a homogenous space Spin(7)/ Aut(0).

References: [LM89, 1.7-1.8] (optional: for additional inspiration take a look at [Har90]).

. Topological K-theory. Classification of vector bundles, stable isomorphism classes of

vector bundles, real and complex topological K-theory, Bott periodicity theorems, K-theory
as a generalized cohomology theory.

References: [Hat| and [Hus94| (or any of the many introductory books on bundle theory
and topological K-theory).

. The Atiyah—Bott—Shapiro construction. Alternative approach to K-theory via ‘finite

length exact sequences of vector bundles’, Euler characteristics, the Atiyah—Bott—Shapiro
isomorphisms relating Clifford modules to KO, and K, some explicit descriptions of
generators in KO, in terms of Clifford modules.

References: [LM89, 1.9], [ABS64, parts 2-3].

. Principal fibre bundles and connections. Definition of principal fibre bundles, de-

scription via non-abelian Cech cocycles, examples, construction of associated fibre bun-
dles, illustration via frame bundles and associated vector bundles, connections, reduction
of structure groups, orientability and reduction to SO(n), Whitney sums and reduction of
structure group, reduction to trivial group.

References: |Fri00, B.1, B.3|, [LM89, Appendix A; I1.3, I1.4], |[Roe98, Chap. 2|.

. Spin structures. Spin structures on vector bundles, criteria for existence in terms of

Stieffel-Whitney classes, relation to orientability, optional Spin® structures, examples of
spin manifolds, examples of (orientable!) manifolds which do not admit a spin structure,
spinor bundles, associated bundles.

References: [LM89, II1.1, I1.2], [Roe98, relevant sections in Chap. 4], [Fri00, Chap. 2].

. Dirac operators. Connections on spinor bundles, Dirac and Dirac-Laplace operators,

Lichnerowicz formula.
References: [Fri00, Chap. 3|, [LM89, I1.3, I1.4] (only material complementing talk 7),
[LM89, IL.5] (only selected material, cf. [Fri00]), [Roe98, Chap. 3.

Analytical properties of Dirac operators. Essential selfadjointness on complete mani-
folds, compact resolvent on compact manifolds, Fredholm properties on compact manifolds.
References: [Fri00, Chap. 4], [Roe98, Chap. 5|, [LM89, IL.5].

Fundamental elliptic operators. Spin Dirac operator, Gaut Bonnet and signature
operator, Dolbeault operator, optional Dirac operators of gauge theory.
References: [LM89, 11.6], [Fri00, Appendix A| (for gauge theory), [BGV92, 3.6].

Vanishing Theorems. This talk basically discusses various applications of (variants
of) Lichnerowicz’s formula. This formula leads to obstructions against the existence of
metrics fulfilling certain curvature inequalities (e.g. nonnegative scalar curvature). Refined
methods require the so called Cl-linear Dirac operator, which is constructed using the
representation theory of real Clifford algebras.

References: [LM89, I1.7, 11.8]
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Warning: Note that the main references [LM89| and [Fri00] use different sign conventions in
the definition of Clifford algebras.
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