Construction of Minimal Surfaces

H. Karcher ( Bonn )

In my contribution to this series of lectures, I will
explain how the remarkable minimal surfaces which have been
discovered in this decade can be constructed. Also included
are faméus examples from the last century.

The organization of my lectures will be as follows:

Welerstrass Representation and Symmetries
Spherical Examples
Toroidal Examples

Conjugate Plateau Construction
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1. Weierstrass Representation and-Symmetries

1.1 Notations, definitions, basic formulas.
We describe pleces of surfaces as immersions F of parameter

domains D into R3

Immersion F
. —_— Ra
Gauss map N

The basic invariants of the surface, namely Riemannian metric
g ‘and shape operator S , are defined in terms of the
de}ivatives OF , 8N of F and N . Ve denote directional
derivatives in direction X by @&F:X or B84F
< . .‘
.:Riemannian metric: .é(X,Y) 1= < a%ox, 8F-Y > (cf. 1.4.2)
Shape operator: 9F-S-X t= aN-X
The eigenvalues of‘ S are called principal curvatures.

Second fundamental form: b(X,Y) := g(SX,Y)

The shape operator also allows to split the second derivative

. 82F of F 1in its tangential and normal part:

< N, 8F:Y > = 0 => < 9N-X, 9F-Y > + < N, SX(QYF) > =0




REMARK. The sign convention is the one preferred in analysis.
For surfaces which are levels of functions f : RS — R one
has a preferred normal N := grad f -|grad fl-l . If |grad f|
= 1 then S equals the Hessian 8 grad f , and this
convention makes the principai curvatures of the sphere ( f(p)

:= |p| ) positive.

The tangential part of SX(SYF) is used to define the

covariant derivative v of the Riemannian metric.

Covariant derivative: OX(QYF) = SF-va - g(SX,Y)*N

The differentiation of tensor fields, e.g. endomorphism flelds

like S , satisfies the product rule

VX(S-Y) = VXS-Y + S-VXY .

We are heading for a close connection between minimal surfaces

and complex analysis. Geometrically, multiplication by <

is 90 -rotation D90 : C— C . The Riemannian metric ¢

makes every tangent space of (Dz,g) into a euclidean plane.

.

Therefore we have 90°'-rotation as an endomorphism field-. D90

maps parallel vector fields X along curves vy (i.e., Vv X
Y

90

= 0 ) to parallel vector fields Y =D X along ¥ . The

definition of the covariant derivative of a tensor field

»




therefore gives

v D90 =0 , 90 -rotation is (covariantly) parallel.

One further differentiation of the definitions of § and v

gives two famous equations:

Codazzil equation: VXS-Y = VYS'X

Gauss equation: curv(Ra) = curv(g) - det S

(We omit the definition of the curvature tensor of the Riemannian
metric g , it will not occur explicitly since we use det S .)
Finally, we consider the Riemannian metric g and the‘shape )
operator S as given geometréc data.on the parameter domain

2

D Then one c¢an interﬁret the definitions of § and VvV as

a differential system for N , 8F , the

SURFACE EQUATIONS:

2

TPy yF 1= 9x(8yF) - BF-V,Y = - g(SX,Y)-N

ON-X = @F-S-X ,

The Codazzl and Gauss equations are the integrability conditions
for this system. To understand how the surface 1s determined by
this differential system from its geometric data g , S observe

the following:



If y 1is a geodesic in (Dz,g) then the space curve Fey has

.

the principal normal Ney and the binormal 8F-D90 -? . There-

fore g and S determine the Frenet data (i.e., curvature « ,
torsion <t ) of the space curve Fey :

FRENET DATA of Fey :

K := < 8 (8,F), Ney > = - g(S7,7)

Y ov
(1.1.1)
t = < 3 N, oF -p° Y > = g(Si.Dgo ¥)
Y
(1.1.2) NOTE:

A geodesic curvature line has Sy ~y , i.e., has
t=0, it 1s therefore a planar curve. A geodesic

asymptote line has S% L % , L.e. x 0, it is

therefore a straight line on the surface.

1.2 Minimal Surfaces.
By definition the shape operator controls the derivative of the
normal along a surface. However, 1t also controls the change of

the metric when going to parallel surfaces F + gN :

gS(X.Y) 1= < SXF + s-SXN, SYF + s~8YN >

d_ "
de €e(X:¥) |gao = < O%N: ®

N >

= 2 g(SX,Y)




In particular, trace S = 0 1is the condition for the first
variation of area to vanlsh. Because of the surface equations
this is the same as trace VzF = AgF = 0 , 1.e., the immersion

is Laplace-Beltrami harmonic. So we have the equivalent
DEFINITION of MINIMAL SURFACES
Tr S = 0 or AgF = 0

1.3 Connection with Complex Analysis.
Since holomorphic functions are conformal maps it is natural that
we start by introducing conformal (or isothermal) coordinates on
the surface. In general this is a nontrivial P.D.E. problem;
minimal surfaces however are born together with very natural
conformal coordinates:
AgF = 0 means that the restriction of any linear function on
R8 to the surface gives us a harmonic function f , Agf = 0
Recall that in the complex plane € a harmonic function ¥
can be considered as the real part of a holomorphic function;
the imaginary part £f* can be reconstructed (on simply connected.

regions) by integrating
grad * = t-grad
To imitate this construction of conformal maps in the case of

minimal surfaces we also first construct a vector field V by

90 '-rotation of grad f




90 egrad f

We proved that D90 is v-parallel, therefore

90 -7 grad T

This and Agf = 0 give rot V = 0 . Therefore we have in the
same way as in the complex plane: The vector field V 1is, on
simply connected regions, the gradient of another ("conjugate")

function £*

V = grad f' on simply connected regions,

g0’

grad f* = p -grad f ‘or ar® = - 6f-D9° .

Of course, any pair of functions f , £* with orthogonal

gradients of equal lengths defines a conformal map

(£.£*) : (0%,g) — R% or £ + if* : (D%,g) — C

Since ¢ :=f + if" satisfiles aw.ng°'x = {+3¢+X We now see,
that the Riemannian 90 -rotation indeed plays the role of
multiplication by i . At this point we have constructed a
natural atlas of conformal coordinates for a given minimal
surface; in other words, we have made the minimal surface into

a Riemann surface M2



We can apply the construction of a conjugate F* to the given

minimal immersion F . Since oF" = - aF-D90 we see that

(1.3.1) F, F define the same Riemannian metric g , hence
AgF' = 0 : the "conjugate" immersion F* is
also minimal !

(1.3.2) F, F have at corresponding points parallel tangent

planes; that means: F, F' have the same Gauss

map N !
8N = oF-s = - 9F-p°% .p%0 .g
= oF* - (0%% .s) = aN* , hence

(1.3.3) s* = D90 +S , 1.e., F , F' have closely related shape

operators.

At thisvpoint we have constructed from a given minimal immersicn
F a holomorphic curve (recall that F' 1s only defined on some
covering of Mz ): ¢ :=F + iFT ﬂz — C3 . We observe an
additional property of the curve ¥ in terms of the C-bilinear

extension << , >> of the Euclidean metric < , > on R3

(1.3.4) << Q¢ -X, B¢ X >>
= << 9F+X + {+8F"+X, 8F+X + i-8F +X >>
= < OF-X, BF-X > - < HF X, 8F"-X >

+ 2i-< OF-X, OF X >




Such holomorphic curves are called null-curves.

Conversely, a holomorphic curve ¢ has with respect to some
complex local coordinate a harmonic real part F . Using
oF" = - 8F-D90 we see that the real part F of a holomorphic
null curve is conformally parametrized. But conformal metrics
have the same holomorphic functions and therefore the same

‘harmonic functions; this proves AgF = 0

So we have seen: MHinimal surfaces in R3 are precisely

the real parts of holomorphic null curves in C3 .

The (locally) isometric family of minimal surfaces

4

(1.3.5) F, i= Rel e P F 4+ iFY ) )

is called the associated family of F .

1.4 Welerstrass Representation.
The holomorphic curve ¥ of the previous section can be

written as

¥ = f ¥'dz = f ( oF - i-8F-D°0 ), << y', ¥ >> =0,

2

where ¥'dz 1s defined on the given minimal surface M (one

does not have to go to a covering).
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Weierstrass has written the integrand ¥'dz 1in a geometrically

particularly useful way:
Weierstrass Representation
(1.4.1) ¥'dz = ( %( 1_g ). %( 1,¢ ). 1 )-dh

First, << ¥', ¢' >> = 0 1is true for this Weierstrass formula.

Conversely, every dy¥ can be written this way:

- dy, - idy, dy. + 1dy, )-1
g := ¥, = g

because of << (d$1.d¢2.d¢3), (d¢1.d¢2.d¢3) >> = 0
Next, dh 1is defined in terms of the (harmonic) vertical height

function F3 on M2 (while h 1is only defined on Mz ):

: 90"
dh = dF3 - 1 dF3 D
And, most important, stereographic projection of g (using
the same "vertical” direction as for dh ) 1s the Gauss map
N of the surface:

Stereographic Projection of g 1s N :

N ol 2Reg 2Img, lgl?-1)

lgl2 + 1

- 11 -




Proof: Clearly real and imaginary part of

i( 1 _ if 1
( 2( g g ). 2( p + g ), 1 ) represent two (orthogonal)
tangent vectors to the surface in R3 . Therefore

if 1 _ if 1 2 _
<<(2(g g).z(g'fg).l),(ZReg.ZImg.Igl 1) >

= g - geg + Igl2 - 1 =0 proves that N 1is indeed normal to the

surface.

The Weierstrass representation, therefore, writes a minimal
surfaces doun in termg of its Gauss map and the differential of

i1ts height function.

The Riemannian metric, the Gauss curvature and the shape operator’
are also quickly obtafned from these "Weierstrass data”.
From (1.3.4) we have

< 9F-X, OF-X > = L |ay-x12

Bl N

(g1 + 137 )2 1anex 2

To avoid confusion with the Gauss map I'l1l1 from now on write

the Riemannian metric as
- l -———-1 .
(1.4.2) ds = 2( lgl + T2l ) {dhl

(Locally of course |dh} = |h'{ldzl| ; then |dz| denotes the

euclidean coordinate metric.)
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The Gauss curvature is by definition the volume distortion of the
Gauss map. The Gauss map 1is conformal, the metric 1s conformal
to a holomorphic coordinate metric, therefore volume ratios are

squares of length ratios:

K - . lan-xi®
lds-X12

First with respect to a local coordinate (and recalling that

stereographic projection has the conformal factor 4(1 + Iglz)-z

)

and then coordinate free this is

(1.4.3) K= - Ig'I2° 4 2 .2 41 2 2 :
(1+ 1g12) ( gl + ) TN
gl /- .
e o | —2 L1g 1
1" 2
gl + o7 ldh|

Finally, to describe the second fundamental form, let 2z denote

2

a local holomorphic coordinate for M and W € TZM2 = C a

tangent vector. Then

2

b(W,W) - < @ W WF' N > {Definition of b )

- < Re(y"-W?), N » (F = Re ¥ )

"Now insert Welerstrass formula for "
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b(W,W) = - Re[ 98 () - an (W) - << [ %(él - g), %(él . g),O }. N >> ]

and use that N 1s stereographic projection of g :
(1.4.4) b(W,W) = Re( §E(W)odh(W) )

Note also that the frequently used quadratic differential on
‘the minimal surface is easily expressed by the Welerstrass
data. |

Since geodesic curvature lines and geodesic asymptote lines

wiil be recognized as symmetry lines we also note (cf. 1.1.2)

W 1is an asymptote direction <=> %E(W)-dh(W) € {R .
The principal curvature diréctions on a minimal
(1.4.5) surface are angle bisectors of asymptote direction

i.e.,

W 1s a principal curvature d '
<=> Z&(w).dh(W) € R .
direction g

1.5 Symmetries of Minimal Surfaces.
1.5.1 Reflection Theorem. If a planar geodesic resp. a straight,

line lies an a complete minimal surface, then
reflection in the plane of the planar geodesic resp.
180 °-rotation around the straight line is a congruence

of the minimal surface.
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Proof: From S = D90°.s (1.3.3) and the Frenet data for
geodesics (1.1.1) we see that a planar geodesic on a minimal
surface F 1is a straight geodesic on the conjugate surface o
and vice versa. We assume that the planar geodesic is in the
x-y-plane and that the conjugate straight line is the z-axis.

We use the vertical linear function to get a harmonic function

on the minimal surface which we use as in 1.3 to get natural
holomorphic coordinates. These coordinates map the symmetry line
into a curve with constant real part, l.e., the imaginary axis
(after translation). The Welerstrass holomorphic curve satisfies

in" these coordinates
W(iR) cR x R x iR ¢ €3 1

The usual reflection principle now gives

'#(" 2 ) = ( “'1(2)' ‘FZ(Z). - ‘#3(2) ) .

For F = Re ¥ this is a reflection in the x-y-plane, for

F*' = Im ¥ this is a 180°-rotation around the vertical axis.
We shall use this as follows:

1.5.2 Application.
If in some holomorphic coordinates of a minimal immersion F

there is a line ¢ such that the Gauss image ge+o 1is contained

- 15 =~




in a meridian or the equator of 52 and i1f also h'eso 1is
contained in a meridian of 52 , then:
Analytic(= euclidean) reflection in o does not change

the values of ( Igl + Iél ) and of |h'|l nor does it change

the euclidean metric |dz| , therefore this reflection is a

Riemannian isometry for the metric (1.4.2)

1
gl

l * '
ds = 2( gl + 1 ) Ih'dz|

The fixed point set, the curve o , is therefore a geodesic
for this metric.
These geodesics ¢ are even more special; by assumption we

have first

v

g0 1s elther a meridian of s2 , i.e., %5(&) € R

or ge+o 1is the equator of S2 , 1.e., %g(é) € {R .,
and secondly
¢ and h'e.c have a constant phase along o .

Therefore (use 1.4.5) there is a member F¢ in the associate

family (1.3.5) such that

e 19, %ﬂ(&)-dh(&) eR
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then F¢oo is a geodesic curvature line, i.e. a line of
reflectional symmetry (1.1.2, 1.5.1) for FQ ; of course

F _— is then a straight line. 1In particularly interesting
¢+ 5 .

cases the associate parameter ¢ 1s the same for all the symmetry

lines o .

Remarks. (1) It may seem as if the assumptions of this last
application are a little special. We will see that they are
satisfied for most embedded and many lmmersed examples. 1In these
cases the recognition of symmetries from the Welerstrass data on
thé one hand is a great help in finding such a Welerstrass
representation and on the other hand it saves a large amount of
residue computa?ions when veriffing its properties. )

(1ii) Minimal surfaces i£ﬂ'R3 are, of course never compact. In
'the‘first iectupe by M. Koiso Ossefman;s theo;em.will be presented.
His theéry of finite total curvature minimal surfaces is of basic
importance for all the examples which I will describe. 1Its effect
is that their meromorphic Welerstrass data are defined on compact
Riemann surfaces. The points which are infinitely far away for
the metric (1.4.2) give ends of the minimal surface (this has to

be made precise with 2.1.7).
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2. Minimal Surfaces which are parametrized

by Punctured Spheres
First I quote a recent result:

2.1.1 Theorem (Lopez-Ros[LoR]). An embedded minimal punctured

sphere is a plane or a catenoid. (The proof depends on [LaR].)

We therefore cannot expect too spectacular surfaces. But the
spherical examples will teach us some properties of the
Weierstrass representation which we need to know before dealing
with more complicated examples.

To start the examples we combine the simplest Gauss map g(z) = z
with the simplest differential such that the Weierstrass curve

¥ 1s a polynomial. We obtain the data of
2.1.2 Enneper’'s surface [En].

g(z) =z , dh = z dz

¥(z) = 3

N
Vo
N
t
(A
N

, t( z + % 23 ), z2 )

We discuss its properties in terms of g and dh along the
lines of (1.5.2):
Reflections in straight lines through 0 are Riemannian

isometries for the metric (1.4.2)
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ds

"
TN
[y

TzT * 1z | )-lzlldzl

All these radial lines are therefore geodesics and rotation

around the origin is an intrinsic isometry group.

To decide which of these meridians m(r) = r+z , m = z , are

curvature or asymptote lines, we use (1.4.5):

e R <=> z€eR, <R

98y -an (i) = 22

+i.
€ iR <=> 2z € e ‘R

A

Now (1.5.2) says that R , iR are planar symmetry lines
(reflection) and the 45 -meridians are straight lines on
Enneper's surface (180 -rotation).

The Rlemannian metric is compléte on SZ\{a} , and it is
nondegenerate, i.e., the surfacé is without branch points.

All the surfaces of the associate family (1.3.5) are congruent,
since the above intrinsic isometry group rotates the shape
operator of F to the shape operator of F¢

For the behaviour near the puncture we use the integrated
expression: circles c(¢) = R-ei¢ . R3 > 3 , are mapped to curves

¢® — Re( ¥(c(@)) ) which wind around the vertical axis three

times, i.e., a neighbourhood of the puncture is not embedded.

Clearly, the same arguments allow to discuss the
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Enneper's surface (2.1.21 g(z) = z
g(z) = 2 and higher order Enneper surfaces (2.1.3).
In all cases dh = g.dz.
Parametrization by geodesic polar

coordinates.

View from increasing distance
2
(g(z) = 2z7)




2.1.3 Higher order Enneper surfaces.
g(z) = z£ , dn = zXdz

The only difference is that there are more symmetry lines:

€ R : planar symmetry line

gg(ﬁ)-dh(ﬁ) = k-zK*!

€ {R : straight symmetry line ,

and the end winds (2k + 1) times around the vertical axis.

Note that the Enneper surfaces are very deformable: let P(z)

be a polynomial of degree (k - 1) and consider the data

(2.1.4) g(z) = zF + g-P(2) , dh = g(z)-dz

The behaviour near « stays (asymptotically) the same, and

all these surfaces are without branch points.

Remark. The simplest higher genus minimal immersions are
obtained from highly symmetric Riemann surfaces Mz\{l point}
with Weierstrass data such that the behaviour near the puncture

is the same as for some Enneper surface (3.2.2, 5.5.1/2).
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2.1.5 The catenoid.

"

g(z) =z , dh =

Re( w(r‘ei¢) ) = ( (- r - %)cos ¢, (- r - %)sin ¢, logr )
With (1.5.2) we see the symmetries of the explicit formula also
from the Welerstrass data:

All meridians and the equator (= S1 ) allow Riemannian

reflections for the metric

ds’('z'*lil)‘lg'z‘l

But now we have for all these symmetry lines o .
98(5)-an(é) € R

i.e., they are all lines of reflectional symmetry; the surface,
therefore, is a surface of revolution with a symmetry plane
perpendicular to the rotation axis.

This is an example where Welerstrass data are given on Sz\{o.w} :
but dh 1is not the differential of a function on this Riemann
surface: integration once around 0 adds 2n{ to ¢3 . The
conjugate minimal surface is therefore not an immersion of
52\{0.w) but of its universal cover. It is called the helicoid.
The planar symmetry lines on the catenoid are straight symmetry

lines on the helicoid immersion, and the symmetry group is a
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skrew motion.

Next I have to explain that the application of (1.5.2) does not
always succeed as automatically as the first two examples suggest.
In the derivation of the Welerstrass representation a vertical
axis was distinguished. As a result, we can detect with (1.5.2)
horizontal and vertical symmetry lines without computation —

but this is not true for other symmetry lines. As an example

consider the
2.1.6 Horizontal catenoid.

1)-2, dz
g(z) =z , dh = ( z -3 ) z
First, the Riemannian metric is complete on Sz\(tl) . curves
which run into the punctures have infinite length and curves
which run "radially” into 0 , » have finite length.

Second, reflection in R , ¢R , S1 preserves the metric

& |

' 1 1
ds = ( lz| + )~ -
izl 22 4+ 272 _ 2

and these metric symmetry lines are also curvature lines (since
%E(é)'dh(&) € R ), hence planar symmetry lines on the surface.
The other symmetries — namely reflection in circles through

+1, -1 — cannot be seen without computation.
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Finally, do the Welerstrass data lead to an immersion of Sz\{tl}
or do the punctures cause the same problems as for the helicoid ?
We could compute residues to check this, but there is a more
effective way.

We introduce the following

2.1,7 Notation. A translational symmetry of a minimal surface,
which is obtained by integrating Welerstrass data around a non-

trivial closed curve on the Riemann surface, 1s called a
period of the Welerstrass data.

Integration of Welerstrass data leads to a minimal {immersion

of the Rlemann surface iff all periods vanish.

Next we have the following useful

2.1.8 Observation. If a symmetry line runs through a puncture,
then a closed curve around the puncture can be assumed symmetric
with respect to the symmetry line. The integrated curve on the
minimal surface then consists of two congruent pieces which are

symmetric

either with respect to the plane of a reflection or with

respect to the axis of a 180 -rotation.

The period is the difference vector between the endpoints of

the two pieces of the curve, 1t iIs therefore
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either perpendicular to the plane of the reflection or

perpendicular to the axis of the 180 -rotation.

From this we see without compﬁtation: the punctures =+ 1 above
cause no periods, since two nonparallel symmetry planes run

through each puncture.

There is another family of explicit examples which are
interesting because they are embedded near one puncture, but

very differently from the catenoid. They can be found by using

only powers of z for the Gauss map and the differential:

2.1.9 Explicit examples with one planar end.

k+1

g(z) = 2z , dh = zk_1

dz

Clearly, the metric
ds = ( 1z12K 4 12172 )-ldzn

is complete on 52\{0,0} . Reflections in all meridians are
Riemannian isometries (giving again aﬂ intrinsic isometry group).
The end at « winds (2k + 1) times around the vertical axis,

as in the Enneper case. The other end however (around the
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Parametrization by
polar coordinates

punctures.

one planar end (2.1.9).

i/

\|
\I
Ny

N

S

< >

A\
SO

S

<>

SO

S

<>
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puncture 0 ) is
asymptotic to the x-y-plane !

Fewer of the meridians m(r) = r-z are also extrinsic symmetry

lines then in the Enneper case (2.1.3):
$E(@) -an(m) = (k + 1) -2¥

For k = 1 we have just one vertical planar symmetry line

( R ) and one horizontal straight line ( iR ) run through the
punctures. We know from the explicit integration that there
are no periods, but thg symmetry lines and (2.1.8) give this

directly from the Welerstrass data.

2.2. The behaviour of a minimal surface near a puncture depends
only on the expansion of g and dh near the puncture. In
particular, we can study possible embedded ends (punctured discs)
already in spherical examples. We may assume that the puncture
is at 0 (local coordinate), and by rotating the minimal surface
we may also assume g(0) = 0 . An embedded end is a graph near
the puncture and the only possibility to avoid the multiple

winding of an Enneper end is:

(2.2.1) %-dh has a double pole at the embedded end.

One then checks quickly, that the catenoid and planar ends,
which we already know, exhaust all possibilities. 1In particular
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”

we note (independent of the rotation to achleve g(0) = 0 ):

(2.2.2) At a catenoild end the Gauss map 1s simple.
(2.2.3) At a planar end the Gauss map is branched.
(2.2.4) At an embedded end where g # = : %-dh has a double

pole.

To i1llustrate that this knowledge jis already an important part
of the general picture I quote two results (which are proved

with the maximum principle):

2.2.5 Theorem (Hoffman-Meeks[HM4]). A complete properly

immersed minimal surface contained in a halfspace is the plane.
Here "properly immersed” is important because of the

2.2.6 Example (Rosenberg-Toubiana{RT]). There exist complete
minimal annull which are vertically bounded from above and below

and which are transversal to the horizontal planes which they meet.

2.2.7 Theorem (R. Schoen([rSn]). A complete minimal surface of
finite total curvature with only two ends and such that the two

ends are parallel and embedded is the catenoid.

This implies: A minimal embedding of a punctured Riemann surface
of genus > 0 must have one downward catenoid end, one upward
catenoid end (to prevent it from being in a halfspace) and at
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least one further end. The simplest examples (any genus =2 1 )

have one planar end between two catenoid ends (3.5, 5.5.5).

2.3 Examples with more than two punctures.
More punctures will make the period problem more difficult. On
the other hand, periods can also help: We found no interesting
embedded punctured spheres, but we will find a rich class of
spherical embedded minimal surfaces with one period. The most

famous one is

2.3.1 Scherk's saddle tower [Sk].

- e —2r . dz

The Riemannian metric

-1

L I |

ds = ( {zl| + Izl

is complete on Sz\(il.ti} , in particular 0 , = are at finite

1

distance. S , R, {R and the 45'-meridians allow Riemannian

reflections and (1.5.2 again !)

€ R for o = Sl, R, <R, planar symmetry

g—g(é)'dh(é)

€ iR for o = eXi'NW/4 180 -symmetry
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Scherk's doubly periodic sur- Jenkins-Serrin
face (2.3.2), Scherk's singly graph (2.4)
periodic saddle tower (2.3.1) and conjugate
a conjugate pair. o

Parametrization by level lines.
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Higher order saddle towers (2.3.3)
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In particular we have a horizontal symmetry line ( Sl

) through
each puncture, therefore all periods are vertical — and equal

up to sign, since other symmetries permute the punctures.

The Weierstrass image of the unit disc is therefore a minimal
surface bounded by four horizontal symmetry lines which moreover
lie in only two parallel planes. Extension by reflection in these
planes gives a complete minimal surface with one vertical period
(2.1.8). This surface is embedded if the fundamental plece 1is
embedded. We will see later (in 2.4) in a more general situation

that it is in fact a graph. Then we will also meet the conjugate

surface, in this simplest case also embedded:

2.3.2 Scherk’s doubly periodic minimal surface.

g(z) =z , dh = {-( z2 « 272 )y T

As with Enneper's surface one can easily obtain more complicated
ones by increasing the degree of the Gauss map.

The previous discussion applies also to the

2.3.3 Higher order symmetric saddle towers.

glz) = £l | 4n - ( 2K + 27K ]°1~ %g ,

2k punctures at roots of 1
(Of course the number of symmetry meridians Ilncreases

with k .)
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In addition one can also move the 2k punctures. For the
following data all the planar symmetry lines ( S1 and zk € R )

remain but no more straight lines exist on the surface:

2.3.4 Less symmetric saddle towers [Kal].

g(z) = K1 , dh = ( 2% + 27K - 2 cos ko )—1- %Z ,
l
. 2rd -
0 < ¢ £ %ﬁ s punctures at eit¢-e k

(L = 0 2 T % k—l )
(Only the planar symmetry lines were needed to conclude
that there are only vertical periods for all the

punctures and these agree (up to sign)).

What happens with these examples as ¢ - 0 ? Punctures move
together in pairs to become double poles of dh , they moreover
lie also on vertical symmetry planes. These Kk punctures

therefore (2.1.8) have no periods and the ends are catenoid ends
(2.2.2/4).

(2.3.5) The surfaces (2.3.4) with ¢ = 0 are the Kk-noids of

Jorge-Meeks.

The k-noids are not embedded. Indeed, as ¢ moves away from
19

2k ° pairs of neighbouring halfplane wings cross each other and

then the saddle towers are no longer embedded.
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Less symmetric Scherk surfaces (2.3.4), g(z2) = z ,

a conjugate pair.

Parametrization by level lines.

® This parametrization is also used for the 4-noid (2.3.8).
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Peformed Scherk surfaces [Ka 1].

Helicoidal (k = 3)~Saddle Towers
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Experience with the Enneper surfaces suggests that these examples
with a high order branch point of the Gauss map should-have
deformations. We postpone this to (2.4), because another method
is used. Instead we consider'some 4jnoids which illustrate more
complicated Gauss maps.

First we deform the symmetric 4-noid so thﬁt the =1 -éatenoid
endS»pecome smaller than the £ { -catenold ends. Since the
position of the punctures remains fixed, the deformation has to
be achieved by splitting the multiple point of the Gauss map
(similar to x3 — x-(x2 - a2 ) ), but keeping the R , iR ,
sl-symmetries. Since we want g(Sl) c s' we write a candidate

in terms of Blaschke factors:

(2.3.6) g(z) = 2z - — . % =L .

Now we determine (!) the differential dh .

First, dh needs simple zeros at =r , % % to prevent that
these zeros and poles of g create unwanted ends for the metric
ds = ( Igl + Igl™t )-1dhl . Second, dh needs double poles at

£ 1, £ { to make catenoid ends at these punctures possible
(2.2.2/4). Finally, powers of 2z have to be adjusted so that 0 ,

o are at finite disfance. The result is the differential for the

(2.3.7) 4-noid with two different pairs of orthogonal ends

dh = ( 1 - ~§i———:§ (z2 + z272) ]'( 22 - 272 )'2~
r“ +r

N'g-
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Clearly, the metric is indeed complete on SZ\(tl.ti} and has
the expected symmetry lines. Therefore the punctures are = e*i¢ ,
so that they are permuted by the vertical symmetries. The

differential for the

(2.3.8) 4-noid with non-orthogonal ends

is forced as before. All the expected symmetry lines are there.
They allow a vertical period, which is usually = O unless we

2
choose 2 cos 2¢ = —ii—ﬁz to make res. dh € iR , which

1 +r e£¢

. €

kills the period.
Without diééussion I 1ist somie more examples for illustration

purposes, see. figures.

2.3.9 4-noids with two large vertical and two small

nonhorizontal ends:

g(z) = z -3
dh = (zz-R2)~(;—2-r2)~(

* The punctures at 0 , » are without periods; p = p(r,R) has

©IN
l

N o

| S
]
N

Nlo.
N

to be chosen to kill the horizontal periods of the punctures
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at = p .

2.3.10 Two Enneper surfaces, joined by a catenoidal

annulus (or neck):

2.3.11 The same as before, but with the two Enneper ends

rotated so that no symmetry lines remain:

(
g(z) =z « &
R-et®.z - ( R-et®.z )"1

To kill the vertical pgriod choose:

tg ¢ = - tg 2 «[R2-1-§J~[R2+-L§J'1
R

=

Nlﬂ-
N




of the two

The "neck" does not join the
"midpoints"

Doubled Enneper

surfaces:

(2.3.11)

4]
Q
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«
i
o
~
]
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2.4, The conjugate construction of embedded saddle towers.
First, I derive a useful fact which I owe to R. Krust (Paris VII),
including the proof. Note that it implies the embeddedness

statements in {Sm] immediately.

2.4.1 Theorem (R. Krust[Kr]). If a piece of a minimal surface
F 1s a graph over a convex domain D then the conjugate plece

F* is also a graph.

Proof: From the Welerstrass data we define two holomorphic

functions:
. . 1
o 1= - I gdh , T := f < dn

The projection into the x-y-plane, or conveniently the

(x + iy)-plane, can be written in terms of ¢ and < :

N = Fl + {Fz = T + C ( Fl = Re( + + 0 ) etc.)

n o= Fl’ + in’ = {T - {0

The graph assumption says lgi > 1 and therefore |g-dh| > !%-dh‘
(on nonzero vectors). Since F is a graph over a convex domain

we find for any two points P * P, € D a curve Yy on the Riemann
surface such that ney is the line segment from p, to py 3 we

also assume that ney 1s linearly parametrized. This glves
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————

dr-y'(t) = ( %-dh - g-dh }~y'(t)

=Py - Py *O0

We rotate the conjugate projection by 90° and scalar multiply

by Py - Pt

A

. |1
Py = Py Lok ‘Vlo >

. i,
<p1"pov“[?(gdh+gdh]>

= - Re[ ( Py - Py )'I? ( g-dh + %‘dh ) ]

( <z, w>=Re(zw))

1 — 1 ' T
= Re ( g+dh + =-dh )(Y')‘( g-dh - =-<dh )(y') dt
Jo g g |
(insert P, - Py )
1 2 1 2
= ( lg«dh(y') | - 'E~dh(?')| ]dt >0
Jo

( 1gl > 1)

This prove n'o?(O) = n'-y(l) , 1.e., F' is a graph.

The main analytic ingredient in our conjugate construction is
" a result by Jenkins - Serrin [JS]. They proved that certain
Dirichlet problems with infinite boundary values can be solved
for minimal surface graphs. We quote a special case in which
their sufficient condition becomes much more explicit than in

their more general case.
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2.4.2 Theorem {(Jenkins-Serrin)., Let D be a convex 2k-gon
with all edges of the same length. Mark the edges alternatingly
+ ® , - ®» ., Then there is a unique minimal graph over D which
converges to =+ «» as one approaches the edges of D . As a
minimal surface this graph is bounded by the vertical lines over

the vertices of D . It has finite total curvature.

Analytic continuation of the Jenkins-Serrin graph by 180°-
rotation around all vertical lines gives a complete minimal
surface. Any two such rotations define a translational symmetry.
The translations identify two adjacent Jenkins-Serrin-pieces to
a sphere with 2k punctures. The Gauss map 1s well defined on
this sphere, i.e., it is a rational function. The degree is

(k - 1) since along each vertical line the normal rotates by
(rn-(exterior angle of D )). The translation group generated by
the vertical rotations is in some more cases discret, but only
if k=2, 1i.e., D an equilateral 4-gon, is the complete
surface embedded. These embedded surfaces are the one-parameter

family (angle of the 4-gon) of

Scherk's doubly periodic surfaces (2.3.2).

2.4.3. Finally, we consider the conjugate piece F  of a
Jenkins-Serrin-graph F [Kal]. By R. Krust's result the
conjugate is again a graph, hence embedded. The boundary
consists of horizontal lines of reflectional symmetry which are

conjugate to the vertical lines of F . The intrinsic Riemannian
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distance between adjacent vertical lines 1s of course the same as
between the corresponding planar symmetry lines. Since the Gauss
map has a limiting normal at the puncture, the intrinsic distance
equals in both cases the euclidean distance in R3 .

In other words: The vertical beriods of the conjugate pilece F'
are equal to the edgelengths of D —— which were all the same

by construction. The horizontal symmetry lines of the embedded
conjugate plece therefore lie in only two horlzonfal Planes.
Extension by reflection builds an embedded saddle tower. The
number of deformation parameters of an equilateral 2k-gon is

(2k - 3), more than we found for Enneper surfaces with the same

degree of the Gauss map.

2.5 Examples with planar ends only. In this case the differ-
.entlals of the Welerstrass integrand are without residues and
therefore integrate to rational functions. These surfaces have

been studied in detail by R. Bryant ([Br].
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3. Minimal Surfaces which are parametrized by Punctured Tori

3.1 Elliptic Functions.
We will have to work with holomorphic maps f : T2 — S2
("elliptic functions™) in the same way as we used rational
functions on 52 in the previous lecture. In particular we
will need to know some simple elliptic functions together with
their symmetries. I will use the Riemann mapping theorem to
describe such functions because in this way we get the desired
symmetries by definition.
The Riemann mapping theorem gives us for every pair of simply
connected domains B , D S C a biholomorphic map
f : B — D . Such an f 1is unique if we prescribe at some
b € B the value f(b) and the phase of f'(b) . — If moreover
B and D are bounded by piecewise analytic arcs then f
extends continously to the boundary. This allows us to use a
more convenient normalizing condition: we can prescribe for three
boundary points of B their values in 8D . Furthermore, f
can be analytically continued by reflection in corresponding
analytic subarcs of 8B and 3D .
Finally, f' does not vanish at interior points of these analytic
subarcs (and of course not in B ). With this knownledge it 1s

easy to define elliptic functions on rectangular tori
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Consider a rectangle B

b C
6k A ,'vh L.
€ i
vx.«,,_() W nes ‘6/
and the quarter circle D : : o
eiu ad s X )o
1

The Riemann mapping thecrem and the normalizing condition
y(a) = i, y(b) = 0, y¥(c) = 1 define a unique map v : B -~ D .
The'value v(d) = eia depends on the ratio of the réctangle H

we call « the conformal parameter of the rectangle in the range

of vy .

Analytic continuation by reflection in the straight lines through
b and 0 = y(b) defines vy from the union of four such
rectangles to the unit disc. This shows also that y' does not
vanish ezcept in d and the reflected points of d . — Two more
such reflections define ¥ on a still larger rectangle and onto
the twice covered Riemann sphere; finally, this map can be

extended as a doubly periodic map.
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Since the vertices a, b, ¢, d will play no further role, 1
find it useful to write the values of 7y at these points into

the domain. This also emphasizes the symmetries.

0 -1 © 4 0
] T
. N ‘ ' y
-t . 14
4_._......_1._....:‘. e_...._.l. ‘
| /////’ Y
] )
©0 -1, 0 /’f [
1 : } .
I o
! . 1 g%
,.4_..__.:¢-.. _:“:...-——.F.e._.__--l
1 1
| . |

Domain with distinguished values of vy .

The first rectangle (before the analytic continuation) is shaded.
The branch points of ¥ are marked. The doubly periodic

extension is clear.

To show the effectiveness of this definition, we read the

A

differential equation of ¥y from this picture. The function %

has zeros at the (simple) branch points of ¥ , and % has

poles at the zeros and poles of ¥y . Therefore

-2

v 22
(3.1.1) ( %— ) = (pos. const.) - ( ?2 + ¥ - 2 cos 20 )

(Proof: The functions on both sides have the same zeros and poles

- 39 -




and therefore are proportional; both functions are positive on the
segment between 0 and 1 . — The positive constant depends on
the scale of the domain rectangle, 1t is irrelevant for our

purposes.)

Since vy 1s a degree 2 elliptic function, there should be a

simple relation with the Welerstrass p-function. Indeed

i0
q:=i-X=—€_  (branch value: gq(7y)

et® - vy y=e

—iq = CtE « )

haé 0, » as double values, and the rectangle with vertices at

the branch points is mapped to the upper halfplane. This shifted

”

Welerstrass function will not be useful, we need thé Welerstrass

4

function with 1ts'zeros and poles at the zeros of Y . We'obtain

it ‘from the following mapping problem:

[ 4
"tﬁ'( o
\ ]
| _ _-dl_ 4% ] -4
]
!
1 o o % >
; #4(3-5) “
| IR PRNDN DEDEUNEL Y S
] 1
! 1
1 1

Domain with distinguished values of p-function.
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(Note that we use a geometric normalization, not the Mittag
Leffler expansion p(z) = 1272 + ... .) The disc represents
the upper halfplane, bounded by R , and with the symmetry lines
between 0 , ctg ¢ , ® , - tg & . Note that I use the same
parameter o to describe the branch values of y and p ;

this is implied by the branch values of q above.

Again, the differential equation for p 1is immediate from this
definition: p' has simple zeros at the three finite branch
points of p , and p' has a triple pole at the pole of p ,
therefore:

(3.1.2) p’2 = (pos. const.)p-( tg ¢ - p )( p + ctg & )

In the same way we find an equation between y and p :

(3.1.3) y2 = —= Eg ¢ - ctg «
p-5+tga-ctga

Proof: The functions on both sides have the same (double) zeros
and poles; their proportionality factor is determined since
vy = { at a point where p = - tg % and - tg % + ctg % = 2 ctg o .

In the same way we find

(3.1.4) p'*y = (pos. const.) - p
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The symmetries of the p-function include reflection (of the
values) in circles which are not meridians or the equator S1
Since this is less convenient we introduce one more elliptic

function by the following mapping problem:

84 +1 (V] - 0 .i,
b T >
| [}
| PR - ot Lol
T_.._.é',....._}:; “'r_..-.. ‘)[ ‘@Z
1 .
/ —————p
o -1 0 ,’/44 o0
| ]
1 l o 1
. 1
Rk Bt T
! . 1 ' . .
% 11 0 -4 o0 '(lbmafn with speccal

values of f )

K2

We could define f 1in terms of ¥ .'p :

) . = p
(3.1.5) Y= Gsa-psineg '

but this formula does not show all the symmetries of f as

obviously as the mapping definition.

3.2 First Toroidal Minimal Surfaces.
We start with a surface which is particularly simple to imagine,
the following "fence of catenoids” (from discussions with

D. Hoffman):
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oayfﬁ

-1+

(3.2.1)

. A0

end

If we divide out the translational symmetry, we see a torus with
two embedded catenoid ends. Recall that, by Schoen's Theorem
(2.2.7), such Welerstrass data necessarily must have at least one
period. The horizontal and vertical symmetry planes cut the
minimal surface (or the torus with its Riemannian metric) into
eight congruent pieces. The Gauss map is an elliptic function
which maps the symmetry lines to Slf; R , tR ; we recognize this
function immediately if we write the known special values into

2

the domain (= T° ), at the vertices of the tessalation:

We recognize the elliptic

function y. Therefore we

found the Gauss map of this

example:

— - -~ =~ — - —

Torus with values of 3

(]
W
-
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The differential dh needs simple zeros at those two points with
vertical normal which are not ends (to keep these points at finite
distance for 1.4.2) — and no other zeros. On a torus we need the
same number of zeros and poles, but poles of dh always create

ends for the Riemannian metric (1.4.2), therefore we have to put
the poles of dh at the punctures — in agreement with (2.2.4).

We have determined the following O-w=-pattern for dh

it implies the differential

] o9 for the fence of catenoids:

dh := f dz

The symmetries of f and vy immediately imply that reflections

in the expected symmetry lines ¢ are Riemannian isometries for
1

the metric ds ( Iyl + 5T ) Iflldzl|

It 1s also immediately that all these are curvature lines, since

%1(6)'f°dz(6) € R (see 1.5.2).
Finally, two orthogonal symmetry lines run through each puncture
— therefore these have no periods and are catenoid ends (2.1.8,
2.2.4). One of the generators of the fundamental group crosses a
vertical and a horizontal symmetry plane — and is therefore
closed on the minimal surfaces. The other generator crosses two
parallel symmetry planes — reflections in these generate the
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period translations. Therefore all properties visible in the

picture have been deduced from the Welerstrass data.

3.2.2 The Chen-Gackstatter Surface [CG].
This surface is the first immersed minimal torus (i.e., no periods)
with one puncture which was discovered. It can be described as

an Enneper surface with a handle:

(2.1.2) Chen-Gackstatter surface

The planar symmetry lines of this surface cut it into four
congruent pieces. In addition, the asymptote lines through the
middle saddle are straight lines on the surface. For the torus
this 1s a diagonal symmetry, so the torus is the square torus.
Agaln we write distinguished values of the Gauss map at the

vertices of the tessalation of the torus:
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We see: The zeros and

poles are those of the
elliptic function vy,

but we know no finite

value of the Gauss map.

domain torus with

distinguished values Therefore we can only
of g . The middle
saddle is drawn at

center. conclude:

g =r-y , r € R

+

The differential dh needs simple zeros at the three points with
vertical normal which are not ends;: a pole can only be at the end,

therefore a triple pole in this case:

o o

N 7 - Agaln the O-=-pattern determines

Z
NLE& 0 the differential
\
AN

/7 AN

A Y

dh = p'dz

All expected symmetry lines are mapped to meridians by g and

v

p' , reflections are therefore Riemannian isometries for (1.4.2).

dg . . . iR  for the diagonals
CE(g)-p'dz(d) €
g R for the other expected symmetry lines.
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This shows that our l-parameter family of Welerstrass data define
complete metrics on -Tz\{l point} ; the data imply the expected
symmetries for the minimal surface by (1.5.2), and the behaviour
near the puncture is as for Enneper's surface. The puncture has
no period because of the symmetries. The two generators have
equal periods (in size) because of the diagonal symmetries. The
period is horizontal because the generator starts and ends on a
vertical symmetry plane. To kill the period we look at the first

component of the Welerstrass integral:

= ——]-'— - . . "
Re ?1 Re I ( Fy rey ) p'-dz
generator

We choose the generator as the real symmetry line which does not

run into the puncture. Then both integrals

I 1 p'-dz and I vep'-dz

3
exist because the zeros of p' cancel the poles of 7*1 Also,
both integrals are positive ! Therefore r2 can be chosen so

that f %~p’-dz - r2 I v*p'+dz = 0 . For this choice the
Welerstrass data have no ﬁeriod and we obtain the Chen-Gackstatter

surface.

3.2.3 Comment for computation. So far the given formulas seem
to require that we have to evaluate elliptic functions for drawing

pictures of these surfaces. However, the differential
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dh = p'dz = dp strongly suggests that we should take p as a

coordinate function on the torus (away from its branch points).

2

Then g and ¢y are multivalued on S = range of the coordinate

p ), defined by

-t - ¢t
y2:= 1gu S v B =Ty
P-3~ tg o« - ctg o

The sign is defined via analytic continuation. Now we can
evaluate g(p) as an elementary function and the Weilerstrass

integral reduces to

oo ] (o - 0 ) #5002 o

3.3 . Doubly periodic embedded examples.

Maybe the pictures of these surfaces can be better looked at if

I give.the following description: Consider a family of parallel
vertical planes and one more vertical plane (orthogonal) tq the
others; now imagine that one could replace a neighbourhood of
each of the vertical intersectlon lines of these planes by a
Scherk saddle tower. This situation will be particularly simpie
if the horizontal ("saddle”) points on neighbouring towers are on
the same levels; in this case the symmetries of the expected
surfaces are such that all the straight lines which lie on the

Scherk saddle towers could also lie on the new surfaces. If we
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make this (optimistic) hypothesis then these lines cut the
surfaces into pieces which can be defined as Jenkins-Serrin
graphs (see 2.4), thus proving existence of these most symmetric
cases [Kal]. The assumption that the saddles of neighbouring

towers are on the same level can be realized in two different

ways:
3.3.1.
e @ N Boundary values for a Jenkins-
Y o
T- '1} T Serrin graph such that extension
" by 180 -rotations gives a doubly
N === {oo
l' i periodic surface, which has
1
A v vertical_symmetry_planes between
N 0 ’ adjacent saddle towers. The
symmetry planes of the graph are indicated as --- === , and

branch points are marked A .

3.3.2.
< ) S Boundary values for a Jenkins-
N : N Serrin graph such that extension
S _" I by 180°-rotation gives a doubly
| periodic surface which has
\) L v vertical_lines (180 -rotation

- o o am e e s s e e

o) —>

V'S

symmetry) between adjacent
saddle towers. The symmetry plane of the graph is indicated as

--- , another straight line as === and the branch point as &
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Conjugate pair of embedded

(2.3.2)

~

—
.

V)
.

)

n (3.3.8)

parameter

MM;%%AE%%MMWW
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surfaces

doubly periodic min.

(%.4) can be viewed
as a singly periodic

mation of (2.3.3)

Riemann's minimal surface (3.4)

suggests two doubly periodic toroidal surfaces

Fence of Scherk towers




3.3.3. The conjugate surface of (3.3.2) is also doubly periodic
and embedded (2.4.1). It can be described as a family of parallel
planes which are connected by a checkerboard array of horizontal
tunnels.

The Weierstrass representation is easily derived (3.3.5). It
gives these surfaces parametrized by rectangular tori. 1In each
case one can — oOn a fixed rectangular torus — continuously
change the Welerstrass data from case (3.3.1) to case (3.3.2);
'this corresponds to minimal surfaces where the saddles of adjacent
towers are not on the same level. These intermediate surfaces
have not enough symmetries to construct them as Jenkins-Serrin
graphs, but enough to describe them qualitatively. In each of

the cases (3.3.1, 3.3.2) there is another l-parameter deformation
of the Welerstrass data (still on a fixed rectangular torus):
these surfaces look as if they were made of saddle towers (2.3.4,
k = 2 ) whose 1limit planes are not orthogonal. All together this
gives a 3-parameter family of examples. Meeks-Rosenberg [MR] have
already generalized (3.3.1 - 3.3.3) to a 3- parameter family of
examples; I have not yet checked whether it is the same family,

but I expect this.

These toroidal examples and'Scherk's doubly periodic surfaces
(2.2.2/4) are the only known doubly periodic embedded minimal
surfaces. The collection of examples of triply periodic, or of
simply periodic or of examples without periods (= finlte total
curvature) is much richer. The behaviour near the punctures is
typical:
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3.3.4 Theorem (Meeks-Rosenberg(MR]). If one divides a doubly
periodic embedded minimal surface by its orientation preserving
translational symmetries and if this quotient has finite total
curvature then the ends are flat annull — as in the known

examples.

3.3.5. We derive the Welerstrass representation for the doubly
periodic examples. Four Jenkins-Serrin pieces fit together to
give a fundamental domain for the translational symmetries.
The Gauss map g 1is therefore of degree 2 , in particular

g :.1s simple at the punctures. Each Jenkins-Serrin piece is
therefore a conformal rectangle — 1.e., the Welerstrass data
live on a torus. For simplicity we rotate the surface so that
the normals at the ends are vertical (= 0, = ) ; since there
are no other vertical normals the differential dh can have
no zeros (and hence no poles), necessarily we must have

dh = const.+'dz . We copy the special values of the Gauss map

into a more usual picture of a torus:

-1 0 A 0 ~1
) 1]
1 _ )
L L
—-—- ek
V% [ b
1
o - ///4 0 -4
1 ]

o1 o
,u--—'i'f-- FEN Q.S —— Y
' A I
-4 L 4 0 -1

These data are recognized easily:
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3.3.6. Weierstrass data for (3.3.1)
g =17 (3.1), dh = {dz = i‘%x (3.1.1).

with (1.5.2) we conclude immediately that these data define a
surface with the expected symmetry lines (the lines through

"+ 1" are straight, the others planar).

0 -1 o? 4 0
1 T
] !
1 LI
o = ol c b me - 4
4 0 -{ -0
0 ) i
o { 'i -
afe al-—--'r:--—-nl——-;‘-—-;ik
1 D :
0 =4 'ad 14
3.3.7. Welerstrass data for (3.3.2)
= Yy 1 = 4 = 'od?
€= 3y—T " dh = idz = { s

resp. for (3.3.3) dh = dz .

Again the expected symmetries follow immediately from (1.5.2).
The comment (3.2.3) for computational simplification also applies;

for our pictures only elementary functions (though multi-valued)

were integrated.
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3.3.8. First deformation of the Welerstrass data

T ’ T ¢
[ o0 ) 0
] » ',
) et sy QEpIpRPNL S §
g_:y«rg ] r .
Y - 1 ‘ t
&Y (.0 : o '
. N ' " ;
L;%J '
e 4 (I
dh = idz T = S A
l-.‘ ]
l 1
L. % L g

The straight lines into the punctures survive the deformation.
180°-rotation around the normals in direction 2 { are symetries
and also - id with respect to each branch point. The period
from one generator is obtained by the two rotations around the

+ i-norﬁals, the period from the other generator by rotations
around + ¢ and - { normals. The periods can also be obtained
by two suitably chosen - 1d symmetries at branch points. This
shows that the period obtalined from a puncture is contained in the
lattice spanned by the periods from the generators ! Therefore
the surface 1s doubly periodic. The period from a puncture is of
course perpendicular to the lines through that puncture. This
says that these surfaces look like a fence of orthogonal saddle
towers; one period translates each tower vertically up, the other

period moves the towers but not horizontally.
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3.3.9. Second deformation of the Weierstrass data

& i
g = Y + e"'(p | }w !
..'.-._-{»-— ;;;;; - o as el ww e w
C v+ et® #— ! 1, ?. A
11 =1
. [} ]
dh = idz la ) : o4
il TR CUR I |
& | ; : ot
-1 14

Th; planar symmetry lines from the punctures to the branch points
and the straight lines connecting the branch point (0f..3.3.7)
surv;ve tﬁe deformation. Rotation around the = 1V‘ﬂorm;ls and

- id Qith respect to each4branch point are further symmetries.
Again} the pé;iods from the punctures are.éonfained in the lattice
spannedlby the periods of the generators. — The normals at the
ends are no longer pérallel to the period lattice. |

If one combines the deformations (3.3.8/9) then only the - id

symmetries remain, as in Meeks-Rosenberg's family.
3.4 Riemann’s Minimal Surface [Ri].

We describe a simply perlodic embedded example which 1s a torus
with two planar ends and one period.
Modulo orientation preserving translations there are only two

planar symmetry lines and two (parallel) straight lines. They

- 54 -



cut the surfaces into four simply connected pieces; these are

relatively "large” and therefore not so easy to visualize.

Each piece has one more symmetry, a 180 -rotation around the
normal which is also the midd;e line between two straight
symmetry lines. This implies: If we can find such data then

we have no further period problem, namely, the two planar
symmetry arcs on the boundary of one of the simply connected
pieces are automatically in the same plare because of the 180°-

rotation symmetry around a normal.

We write special values of

T NS

R~

e,

AR
= e

TR R

a5 =
'-E‘-i—."‘-;“,'m\\\\\\

the Gauss map into a picture

N

of the rectangular domain

torus:

Double vertical normals (0,=) at the two planar ends (2.2.3)
and two further branch points where the straight and the planar
symmetry lines meet.

This picture also shows that dh cannot have zeros or poles.

This gives us the Weierstrass data of Riemann’s ezample:
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3.4.1. g=p, dh=dz=%.-dp.

This 1s another case where (1.5.2) succeeds immedlately:
Reflections in the expected symmetry lines indeed are Riemannian
isometries for ds = ( lgl + TéT )!dzl (1.4.2) and

%5(6)-dh(6) € R resp. € {R on the expected planar resp.
straight symmetry lines. The punctures have no periods because
of these symmetries (2.1.8) and g 1s branched, i.e., we have
'planar ends (2.2.3). The period of the generator which is
transversal to the planar symmetry arcs is zero because of the
180°-symmetry. In other words: The data {3.4.1) indeed define

a minimal surface with all the qualitative properties which we

read off the picture.
3.5 Costa’s Surface [Co].

Finally I describe an embedded minimal torus with one planar and

two catenoid ends.

torus with one planar end Costa's surface
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Maybe, before Osserman’'s results it was difficult to look
systematically for minimal surfaces with specific properties.
Then it took almost another 20 years before the Chen-Gackstatter
immersion and Costa's embedding were found. The former surface
remained fairly unknown in spite of the fact that it was the
first torus with only one puncture; certainly the surface was
difficult to imagine from the formulas. Whether Costa's surface
was embedded or not remained a mystery for another two years.

The symmetries were not known at first. And the surface was so
difficult to imagine, that the first computer pictures by Hoffman
and Meeks did not help them too much in convicing people that the
surface was embedded. I had to recall this since now, with good
pictures available, it 1s not too difficult to recaonstruct the
Weierstrass data and prove the desired properties.

The picture shows two vertical symmetry planes which cut the
minimal surface — and the parametrizing Riemann surface -— into
four simply connected piece, moreover these are conformal
rectangles (= four 90'—angles of each plece). The asymptote
lines through the saddle are straight lines on the surface, and
these symmetries make the underlying torus (as in the Chen-
Gackstatter case) the squar; torus (tg « = 1 1in 3.1.3). Of
course it is now easy to write special values of the Gauss map
onto the square torus which is tessalated by the expected symmetry
lines (no such expectations when the surface was first found !).

That picture then implies the O-«-pattern for the differential:
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At the planar end the Gauss
map has a triple pole,
because the saddle and the
catenoid ends are simple
points for g .

Without difficulty we recognize the

Welerstrass data for Costa’'s surface

g =r+p' = r'% , (3.1.4)
= Lreay (3.2.3)
dh = y-dz
2

= —=—s-dp (3.1.3/4)

Clearly the metric (1.4.2) 1is complete on Tz\{poles of v, p} .

Since p and y map the expected symmetry lines into meridians,
reflections in these lines are Riemannian isometries — so the

lines are geodesics (once more 1.5.2).

. ] iR on the diagonal
d8(5).an(e) e [
g R on the other expected symmetry lines.
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Costa's embedded minimal torus (3.5).

Parametrization by level lines.
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This shows that the above Weierstrass data lead to a minimal
surface with the expected symmetry lines and three punctures
without periods ! The generators of the fundamental group start
and end on vertical symmetry planes — so they have horizontal
periods, which are moreover equal in size because of the 45° -
symmetries. As in the Chen-Gackstatter case we have to use the

parameter r to kill the horizontal periods.

A horizontal period is Re I %( % - g )dh .
generator

It can be made 0 by choice of r if the following two

inﬁegrals have the same sign:

2
Re j p dz and Re f Y_dz = 2 Re I ——25—5 (3.1.3).
p 1-p
We cannot use the symmetries of p for both integrals on the

same path, but on homotopic ones; the first integral exists and

is positive on this path:

- 59 -




the second exists and is positive on this one:

From now on r 1is choosen so that our Welerstrass data have
'no period and therefore define an immersed torus with embedded
ends. It remains to show that the surface is embedded.

The Gauss map maps one quarter of the torus to the following

spherical domain which is bounded by pieces of R and (R :

Half of this, the shaded part,
1s the Gauss image of one of the
eight congruent pleces of the
minimal surface (or triangles of
the torus). One can see that
orthogonal projection in the

directional + 1 is an immersion.

The boundary of this minimal surface piece consists of three
symmetry lines resp. arcs:

(1) A horizontal half line from the saddle to the planar end.
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(ii) A vertical symmetry arc with inflection point, going
from the saddle to a catenoid end; the tangent of this
curve 1s horizontal only at the saddle.

(1i1) A convex vertical symmgtry arc which joins the catenoid
end to the planar end; convexity follows since K =# 0
along this curve; this curve 1s strictly falling from the

catenoid end to the planar end.

This leaves only two possibilities for the orthogonal projection

of these boundary curves:

LLLLLLLLLLLL L5 prp ey p eyt

A

.@hﬂ%}ék.ﬁdm saddle
% ffhamx-&nd

Near the strictly convex curvature line the orthogonal projectisn
must map the minimal surface to the nonconvex side. The second
picture is not compatible with the orthogonal projection being
an immersion. The projection is therefofe an immersion onto a
simply connected domain; the surface piece is therefore a graph
over this domain, in particular embedded.

The embedded piece lies in one octon of R3 and the symmetry
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group is simply transitive on these octons. The eight embedded

pleces therefore fit together to an embedded minimal surface.
3.6 Further remarks about tori.

3.6.1. The Costa-surface can be deformed to give embeddings

of rectangular tori (Hoffman-Meeks [HM2]). The middle end is no
longer planar, i.e., the triple pole of the Gauss map is split
into three simple poles, fwo of them finite points with vertical

normal. This leads to

wpel. D = P .
B =3+ M’ dh = y-( p + M )-dz
The 45'—symmgﬁr1es are no longer there so that two horizontal
periods have to be killed. For each conformal parameter o
(in the equation 3.1.3 between ¥ and p ) one has the two
adJustablé parameters r, M . Hoffman and Meeks have shown

that these suffice to kill the periods.

3.6.2. Other embedded tori are not known. Costa has proved
that the 3-ended examples cannot be made with non-rectangular
tori, and embedded tori with more than 3-ends so far could not

be constructed, compare (2.1.1).

3.6.3. We know other shapes then (3.4.1) of simply periodic
embedded toroidal minimal surfaces. (i) One can put vertical
tunnels be«tween adjacent saddles of the symmetric saddle towers
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(2.3.3) for k > 2 , k = 2 (Scherk) is impossible [Ka 1].
(ii) The following picture "shows” two of many complicated
toroidal examples (not rectangular). Theilr discovery involves the

cristallographers Fischer and Koch (Marburg) [FK], David Hoffman

and our group in Bonn.
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4. The Conjugate Plateau Construction of

Triply Periodic Minimal Surfaces

Five triply perlodic embedded minimal surfaces have been known
by H.A. Schwarz [Sz] and his students. Alan H. Schoen [aSn]
described in a 1970 NASA report 12 more such examples. For the
descripfion he used terms not familiar in mathematics and he did
not give too many mathematical details either. So his work was
unfortunately either ignored or disbelieved.

I1'1ll describe in these notes the conjugate construction and then
apply it to only a few examples since I wrote on this material

before [Ka 2].

4.1.1 Basic observation. Let F describe a simply connected
minimal surface piece which is bounded by pLdnar symmelry lines.
The conjugate surface F (1.3) is then a minimal surface pilece
bounded by straight lLine segments (1.1.2, 1.4.5). Since the
pieces have the same Riemannian metric, angles at corresponding

vertices also are the same. Thils suggests the following

4.1.2 Strategy: If one wants to construct some specific tfiply
periodic minimal surface, then one may first assume planes of
reflectional symmetry which cut the surface into simply connected
pleces. Of course one knows the angles between the symmetry
lines at the vertices of such a piece. One can therefore take
any polygon in R3 with the correct angles at the vertices,

solve the Plateau problem (!), conjugate the Plateau solution,
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obtain a minimal surface piece bounded by planar lines of
reflectional symmetry with the correct angles at the vertices

— and hope that this plece 1is part of the desired minimal
surface (e.g. 2.4).

This hope in general fails, because the angle between symmetry
planes which do not meet at a vertex is of course also important.
These angles are controlled by the rotation of the surface normal
(= principal normal of the planar curve) along the bounding
symmetry arcs. The following formula shows that these are almost
(namely: mod 2n ) determined by the above polygon contour without

fuyther reference to the Plateau solution:

"
( rotation of ) - « ds

the normal

]

(4.1.3) o = | - ds (1.3.3, 1.1.1)

= plane of the Plateau soluticon
\ along the edge of the polygon

( total rotation of the tangent ]

'The boundary regularity of the Plateau solution implies that

the tangent plane at a polygon vertex exists and is spanned by
the edges which meet at that vertex. 1In general, by looking at
one edge of such a polygon one cannot say (even knowing the
position of the tangent planes at the endpoints) which way

around and how often the tangent plane of a Plateau solution
rotates. In our applications the polygons will always be

on the boundary of a conver polyhedron / Then a Plateau solution

stays inside the polyhedron — therefore:
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4.1.4. A polygon on the boundary of its convex hull determines

the total turn of any Plateau solution along each edge.

If we now apply the outlined étrategy to a polygon with the
correct angles at the vertices and the correct rotation of
tangent planes of Plateau solutions, then the boundary arcs of
the conjugate plece give symmetry planes such that all palrwise
~angles are correct. The same method was used in [Sm].

Finally we want some qualitative information like: The whole
mipimal surface plece stays on one side of each of its bounding
symmetry planes. For this we have two pleces of information;

first, by Krust's theorem (2.4.1):

4.1.5. For all directions, for which the Plateau-polygon has
a convex projection, we know from the maximum principle that
its (unique) Plateau solution is a graph -~ and therefore

the conjugate plece is also a graph (2.4.1).

Secondly:

4.1.6. If the Gauss curvature is = 0 along an arc of
reflectional symmetry, then its curvature «x does not change
sign; therefore its tangent rotates monotonly from a known
initial direction to a known final direction — 1.e., we have

a well controlled convex arc.

4.1.7. The points where the Gauss curvature K vanishes are
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the branch points of g and the index of a curvature line field

equals
- % - (branching order of g ).

This allows us to control the zeros of x by the Plateau-
polygon without further reference to the Plateau solution. The
triply periodic minimal surface is identified to a compact
Riemann surface by dividing out translational symmetries.

This Riemann surface is tessalated by the above simply connected
piéces (the ones into which the symmetry planes cut the minimal

surface). Now

f K dA = 2r « 3 (indices of a curvature line field)
2
M

and each piece has the same contribution to both sides, namely:

I K dA = 2n - J (exterior angles of the piece).
piece

The exterior angles are given with the Plateau contour, therefore
the contribution to the index sum is known —- and this sharply

limits the zeros of K .
4.1.8 Example. For a 90°- hexagon we get

J"KdA-Zn-s~§=-n.
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Such a hexagon therefore has

(i) One interior simple branch point, or

(11) At interior edge points two simple or one double branch
point, or '

(111) More such possibilities with branch points at vertices.

Note: In many examples we know some branch points from symmetries
and then 4.1.7 concludes that there arevno others.

' On thé following pictures of triply periodic minimal surfaces
(with A. Schoen's names) the simply connected pieces and their
copjugate Plateau contours have been indicated. The visible
convexity properties of the symmetry lines follow from (4.1.6/7),

the embeddedness of fundamental pleces from (4;1.5).
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The two funda-
mental penta-
gons are con-
gruent, one sees
the two sides of
the same surface.

Conjugate contour.
Weierstrafl represen-
tation (5.3)

A. Schoen's H'-T surface

in a trigonal or the dual
hexagonal cell.
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Another view of Schoen's I-Wp surface.

Note that it solves the same free boundary value
problem on the faces of the cube - but with more
complicated topology (previous picture).



4.2, The previous examples are particularly simple in the
following sense: The fundamental piece does not have two
different symmetry arcs which are supposed to lie in the same
plane. If two symmetry lines occur which have to be in the

same plane then our arguments.will oﬁly give: The conjugate

plece has the two relevant symmetry lines in parallel planes
which are not necessarily the same. Such situations arise
easily, e.g., most of our surfaces for which the cristallographic
cell is a quadratic prisma cannot be made in a rectangular prisma
without dealing with that difficulty. Already on Schoen's list
were two similar cases: Imagine that in the example "I—Wp" the
plece in one cube is Jjoined to all the pleces in neighbouring
cubes by tunnels perpendicular to the faces of the cube; the
conjugate construction allows to produce such tunnels "easily”,
more precisely: it gives two halftunnels, because in general two
such halfs will not be long enough to meet on the face of the cube.
To deal with this we want to apply an intermediate value argument
-— but Plateau solutions in general do not depend continuously on

parameters. However, in a large number of cases the following

result of Nitsche applies (quoted for a special case):

4.2.1 Theorem (Nitsche[Ni2]). Given a compact convex domain D
and continuous Dirichlet boundary data for a minimal graph over

D ezcept at finitely many points; at these points left and right
limits of the boundary data exist. Then this Dirichlet problem
has a unique minimal graph solution. As a minimal surface its

boundary contains vertical segments over the jump points which
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Join the given continuous boundary arcs. For these "Nitsche
graphs” a maximum principle holds and this implies that the
solutions change continuously as we vary the continuous parts of

the boundary data.

4.2.2., In particular, for pieces which are conjugates of
(polygonal) Nitsche graphs we can vary the lengths of intended
tunnels or the height difference of two parallel symmetry planes
~continuously.

For the construction of a specific example all what remains

to check (because of the intermediate value theorem) then is
that the above height difference can be made positive and

negative or the above tunnel can be made too long and too short.

4.2.3. As an example we show how the pairs of points with
horizontal tangent plane on the Schwarz-P-surface can be joined
by vertical tunnels. For simplicity we keep the vertical 45°-

symmetry planes. The conjugate contour for thé Schwarz piece is:

The 45°-degree line lies on

J the Plateau solution, it gives

a 45 -vertical symmetry arc

AV//// on the conjugate piece.
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We plan to "puncture” the Schwarz-P-surface at the horizontal
points and pull such vertical tunnels out. The two vertical
symmetry lines to a "puncture” remain symmetry lines but thelir
final tangents change by 90° ; they do not meet anymore, but

a new horizontal symmetry line joins them. ("Puncture” is in
quotes because, conformally, a disc is removed.) This leads to

the following conjugate contour:

This contour is a Nitsche

graph for the vertical

direction. The solution

depends continuously on € ,

including the limits g - 0 ,

g — Cc .

In the limit €& — 0 the "moving edge" has a vertical normal

at the left endpoint, a horizontal one on the right; the
corresponding convex symmetry arc (4.1.6/8) 1is falling from left
to right. 1In the 1imit g — ¢ the situation is reversed, the
moving edge gives a rising convex arc on the conjugate plece !
In other words:

If we call the horizontal symmetry lines corresponding to two
neighbours of the moving edge the "g-line"” and the "(c - g)-
line” then: for small g 1is the "g-line"” above the "(c - g)-

line”, for small (c - g) it is below. If we choose g such
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that these two symmetry lines lie in the same horizontal plane
then the tunnel has the correct length (see figure). Also, this
conjugate plece 1s embedded because of 4.1.5 and the reflections

extend the piece to an embedded triply periodic minimal surface.
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5. Higher Genus Weierstrass Representations

We aim for a description as in section 3:
(1) The compact Riemann surface is given by an equation

between two functions.

Ezamples: p'2 2 ) or 72 = 2

=p(1l-p

(11) Each function is a local coordinate away from it branch
points; together they provide local coordinates everywhere.
Ezample: p and ¥ have no common branch points; at the
common multiple point (pole) of p and p' the quotient

) plp’' 1s a coordinate. _ o
~;(11L) Gauss-mép and~(héight-)diffé;entialvare_éiven‘in terms

of these defining functions.

Ezamplte: g = p , dh =‘%f’dp .
As guiding background I first explain that such a description
is always possible in the case of embedded triply periodic

minimal surfaces. (We will see then that more cases are covered.)

5.1.1 Definition. To get the underlying compact Riemann
surface M2 we first identify points on the minimal surface
which differ by an orientation preserving translational symmetry;

then we use the natural complex structure from section 1.3.
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5.1.2 Definition. The Gauss map g and the holomorphic

differential from the height function

are well defined on M2 (the height function is not). This

gives us two geometrically defined functions

dh
dg

g, KW=

0|

5.1.3 Claim. At multiple points of g the multiplicities of
g and u differ by 1 . Therefore: together they provide

local coordinates everywhere on M2

Proof: (1) If g has at p a k~fold zero or pole, then
dg/g has a simple pole and dh has a k-fold zero - since
otherwise the metric (1.4.2) would either be degenerate at p
or p would be a puncture. Therefore u has a (k + [)~fold
zero at p

(i1) If g has at p an Ll-fold value # 0, » then dg/g
has a zero of order ({ - 7) and dh has neither a zero nor

a pole. Therefore u has an (Ll - f)-fold pole at p

I find it natural to divide out all the (orientation preserving)

translational symmetries of the minimal surfaces. Therefore
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I include the

5.1.4 Claim. The pair (g,u) seperates points on M2

Proof: Since g and pro?ide local coordinates everywhere,
they locally seperate points. Define a compact Riemann surface
N2 by identifying those sets of points which are not seperated
by (g.,u) . Then the function field of N2 is generated by

g and pa and an algebraic equation A(g,mn) = 0 can be found.

Of course A(g,u) = 0 also holds on M2 . Consider two points
P, 4@ on the minimal surface with (g,p)(p) = (g.,p)(q) ; it Is
enough to stay away from the branch points, zero and poles of g .
We use A(p,g) = 0 to have near p and q

;

p = o(g) {same ¢.-ﬂear p and q )

Now metric and second fundamental form of the minimal surface
near p and near q are the same and also the Gauss map.

This gives a translational symmetry, hence p = q on M2

Remark. The above arguments are also applicable to finite
total curvature examples with embedded ends. It 1s always true
that at finite points the multiplicities of g and u are

relatively prime, but one can have immersed ends where this is

not the case.

Now that we know that the desired description of a minimal
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surface exists in general we want to find it in special cases.
One point, however, is different: we do not have the minimal
surface at the beginning, but we want to find a minimal surface
with certain properties — genus, symmetries, behaviour near
punctures. It is only from these properties that we want to
derive the Weierstrass data; then we need to prove that these

data define a minimal surface with the desired properties.
5.2 Weierstrass representation of Schwarz P-surface [Sz].

If: we look at the picture and divide out the translations, then
we clearly get a sphere with 3 handies. More specifically
this Riemann surface is tessalated by eight 90" ~-hexagons

This is still a 3-parameter famil; of Riemann surfaces. (In
the hyperbolic picture a 90°-hexagon has three edgelength
parameters.) Since we expect ~— up to scaling -— only a 2-
parameter famlly we look for more symmetries. If we put the
midpoint of the conjugate Plateau contour at the origin, then
(- 1d) 1is a symmetry of its (unique) Plateau solution. Such

- 1d symmetries are symmetries for all members of the associate
family (1.3.5), in particular for Schwarz P-surface.

Now indeed: hyperbolic 90'-hexagons with midpoint-symmetry

have two edgelength parameters, i.e., we know the family of
possible Riemann surfaces in the hyperbolic picture.

As In the torus case we hope to be able to find an equation
between g and pu 1if we write all the special values of these
geometric functions into a picture of the Riemann surface.
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In view of the symmetries 1t is encugh to write these special
values into one of the eight hexagons. We sketch the hexagon

so that it resembles the piece on the P-surface.

4
ab
0 1
Distinguished values of the Gauss map O-=-pattern
in hexagon domain and image on S2 . of %5 )

There is only one branch point in each

hexagon by (4.1.8).

Zeros of dh (since there are no punctures dh has no pcles)
and special values of pu . Note that ua 1is real on all the

symmetry lines since

2
] Q-E ~ = -d-g- o 3 o
M ( z (o) ) . (¢)+dh(c) € R .
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Let b be one branch value of g ; the symmetries imply that
{+b, b }:!:l are all the branch values. The following two

functions therefore have the same zeros and poles:

o R R S B (PSR O L O

Observe that these two functions are positive near O on the

-2

symmetry lines and then conclude (abbreviation B := b2 + b ):

5.2.1 Weierstrass data for Schwarz P-surface:
‘l-A2= (pOSo Const.)'(gz-l-g-z-B).(g-z+g-’2_'B")
g : Gauss map

dh := u- (height-) differential.

e

5.2.2., Finally, if only these equations are given, how can

one see that they describe Schwarz P-surface ?

Except for u = 0, = we have for g € 52 precisely two values
+ p . The Riemann surface (given by the equation) is therefore
described as a branched double covering of the sphere, 1i.e.,

g 1s of degree 2 , u 1is of degree 8 on this Riemann surface.
We fix the (irrelevant) pos. constant in the equation to be
IBI"2 ; then we can start the analytic continuation (for u as
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a multivalued function of g ) at a point where gz = { with

p =1 . As long as we stay with g on R, iR, S1

the right
hand side of the equation remains positive and we obtain values
n €R.

Reflection in these lines is therefore (!) an isometry for the

metric (1.4.2)

s + (161 + 7ir ) f

and since indeed

~

485y .dn(g) = u-[ 98(5))2
z-(9) -dh(9) u(g(o)) € R

these reflections are symmetries_%or the minimal surface defined
by the above data (5.2.1). Moreover, as g approches 0 or = ,
p(g) has a double zero (and %E a simple pole), therefore thess
points are at finife distance for the metric. Each of the eight
simple factors ( g - b1 ) 1in the equation gives (at b1 )

p ==, and these are simple poles of u because degree(pu) = 8
On the Riemann surface, therefore, ( g - b1 ) has a double

zero, so that also these points are regular points at finite
distance for the metric. We now also know that a changes

sign if we go (with g ) once around one of the branch points

b, . The eight triangles on s? (between R, iR, st ), doubly
covered around their branch points b1 , therefore represent the
eight 90 “hexagons on the Riemann surface. Each edge of a

hexagon is — on the minimal surfaces — a planar convex arc
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whose tangent rotates through 90° . It lies in a plane parallel
to a coordinate plane and it starts and ends on (orthogonal)
symmetry planes. (In particular, four such congruent arcs close
up.) The conjugate plece of one hexagon therefore solves the
Plateau problem for the contour used in section 4 to define the

P-surface. Finally, this Plateau solution is unique.

This example 1s typical for all those cases where at all branch
points of g holds: multiplicity of g at branch point =
degree(g) . This is very special. We therefore treat two more

cases.

5.3 Weierstrass representation of A. Schoen’s H’~T surface which

meets all the faces of a hexagonal prisma in convex curves [Ka2],

We first count the handles which come from identifying opposite

faces of the prisma by translation:

genus = 4 , degree(g) = 3

The simply connected pieces on the surface which are cut out by
symmetry lines are 90 -pentagons (i.e., one hyperbolic para-
meter, in agreement with the expectation of a l-parameter

family of examples). We reflect such a pentagon in that vertical
symmetry line which has no inflection point and get again a
90°-hexagon (twelve .of which cover the Riemann surface). We
sketch one such hexagon to resemble the shape on the minimal
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surface and note the special values of g and u :

»

3ek FTTvaeR

0
K %
Special values of g , Special values of pu ,
no other branch points ¢ 1s real on all symmetry
than (4.1.8). lines and has degree 12

We:look for an equation in the form
rational, (g) = rational,(u)

and we list, what we already know,
degree(rationall) = 12 = degree(n)

degree(rational,) = 3 = degree(g)
If g =0, = (always simple), then pu = 02
At the branch points of g we have ua = « , branch values
b, € { b-§, %'5 ] 26 = 1} . On all symmetry lines both sides
of the wanted equation must be real.
All the branch values b1 of g occur again as simple values

of g . We call the value of p at these twelve points r
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From this we guess (with B := b6 + b )

5.3.1. g8 _p=IL B

This equation contains two instead of one parameter. Indeed,
if we differentiate, we see that not all the known properties
of the branch points of g and u are satisfied for arbitrary
B, r:

6 -8 d 2 3r d
5.3.2, s (&°-¢ )._E=(_..-,._.)._&,
_ g H2 n3 u

We know that p = o causes all the desired simple branch polnts

of g . But at p = % r we would also have dg = 0 from this

equation, unLess_ngz = 1 there. We know that all vertices of

the pentagons must be branch poihts of u , this includes all

points where gs = + 1 . But on the horizontal symmetry line

in the middle of the cristallographic cell there are points

with ge

= - 1 which are not vertices. We have to assume
no= % r at these points to avoid unwanted branch points of ¢

from the equation. Therefore

e o _-peLf -1 = - 4 -2
2-B 3 77 T
u =3 r

w
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5.3.3. g + g + 2 -

g : Gauss map, dh = u-%g : differential.

The proof that these data indeed define the desired surface 1is
very similar to the case of the P-surface. In cheking p € R
on the symmetry lines we have to use the additional information:
6

= - 1 at a nonvertex then u = 3 r .

If g 5

5.4 The use of other functions on the Riemann surface.

The previous example illustrates that the degree of u easily
gets rather large. It is useful to look for other simple
functions on the Riemann surface. An optimal example for such
a situation is the pair v , p on the torus: We ha?e twe dual
tessalations of the torus, each by four rectangles, namely:

the branch points of p are the vertices, the branch points

of v the midpoints for one tessalation, and the roles of p
and ¥y switched for the other tessalation.

In the case of Schwarz P-surface such a simple function can be
defined by mapping a hexagonal piece to a halfsphere (e.g. the
upper halfplane) and extend by analytic reflection. It is easy
to see that such a function is compatible with the translational
identifications of the P-surface, i1.e., it is defined on the
Riemann surface. This leads to a simpler description of the

P-surface and also allows to derive a Weierstrass representation
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of (4.2.3). We call this function Z . We keep the additional
45°—symmetry of (4.2.3). Then (with a 3-boundary-point-
normalization as in 3.1) we write its special values into a

hexagon:

NG
N

" - - -t - ——

Special values of the function Z on the hexagon of a
P-surface, degree(Z) = 4 .

This,infqrmation combined with the earlier data on g and dh

for the P—suﬁface gives:

5.4.1. g2+ g2=c.(2t-2)

ah = (g2 - g2t

It is easier then with the previous data to check that these

data define the P-surface.

5.4.2 Claim. The Welerstrass representation for the P-surface

with vertical tunnels (4.2.3) is:
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4
g2+g2=c-(}_:_a'.o( Z‘l_z)+§.( Z~2_Zz)
1 - a? 2

dh = ( g2 - g72)

here the parameter a has to be adjusted so that the vertical
tunnels have the correct length. In the limit a — 0 we
obtain the P-surface.

For better comparison with section 4 we sketch the octogon
pleces in the shape of the conjugate contours and write the

special values of our functions into these pictures.

-a
ff?i f“mLQ
- ~ R -
1 e - 3
L= 0w
-7 | ¢ x®
1
-1
Q
. = 3
Special values of g on Z maps the octogon to the
the conjugate octogon and upper halfplane, the symmetry
position of branch points. line to the equator.
degree(g) = 4 . degree(Z) = 4

With the 3 boundary point normalization we put 2Z = 0, @ at
the points where g =0 and Z = 1 at the 1ntersec£10n with
the symmetry line.

- a, - % , e?® are the names for the values of Z at the branch
points of g .

Branch points of Z are at all the vertices of the octogon,
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i.e., at the points where g4 = 1 ; there are no other branch

points of Z and no other points with g4 = 1

All this information is compatible with the ansatz:

(The left hand side needs the factor g4 - 1 and cannot have

other zeros for g # 0, «» because this would lead to more

branch points for Z . The right hand side needs simple zeros
at - a, - % , e*®, e"%® and no others for Z ® 0, = because

this would lead to additional branch points for g . The powers -
of g and Z on both sides have been adjusted for'the
behaviour at 0, « .)

The right side of (5.4.3)

( 22 + 7272, (z+ 21 Y-( -2 cos @ + a +

wi-

@
-
Se—r”
oﬁg

+ 2 - 2cos o *( a +

is not the differential of a rational function unless we choose

i
S’

]
-

cos o <( a +
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We integrate the equation (5.4.3) and use xz =1 if g2 = % {
to get
2 - 1, .2 -2 -1 at 4 1
g° + . g = const.'( f( z° -z ) + (2 -2 ). 5 )
a( a° + 1)
Putting ¢ = -~ 222524 we get the claimed equatiocn.

Finally dh has no poles and has to keep the points where
g = 0,  at finite distance by having simple zeros there.
The given dh has these properties. Moreover

- 1
these symmetry lines:

)-ldhl has the desired reflections and for

g—g—(&)-dh(é) €R .

5.5 Finite total curvature immersions and

embeddings of higher genus.

5.5.1. The first such example with one puncture is the genus

2 example by Chen-Gackstatter [CG], an Enneper surface with
two horizontal handles above each other. — The vertical
symmetry lines tessalate this surface into four 90° -hexagons;
two more straight lines through the middle saddle are diagonals
of the hexagons, giving a 1l-parameter family of Riemann
surfaces. The natural functions are the Gauss map g = r - ?

and the ? and the map Z which is defined by sending one
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same end and the same symmetry lines through

Chen-Gackstatter genus 2 minimal surface
with the simplest Enneper end (5.5.1).



such hexagon to the upper halfplane. There are two horizontal
periods to kill. As in the genus 1 case each can be
separately made to zero by choosing r2 as the quotient of
two integrals. One of these real quotients depends on the
conformal parameter such that it is bounded away from 0, « ,
the other approaches zero and « . Therefore both periods

can be killed. — This idea gets technically unmanagable for

larger genus.

5.5.2. Another idea to increase the genus is by increasing the
dihedral symmetry [HM1]. The toroidal Chen-Gackstatter — and the
Costa — surface are cut by k = 2 vertical symmetry planes

into 90'—quadrilaterals (with one symmetry-diagong} from the
straight lines). Assume that we have a similar surface piece in
a % -wedge for Kk > 2 , then reflection in the vertical faces
of the wedge produces a surface with dihedral symmetry Dk

It is tessalated by 2k quadrilaterals which have all angles
equal to % (and which have one diagonal symmetry from Kk
straight lines through the middle saddle). The Riemann surface
is therefore uniquely determined and it is the same for both
cases! It has two particularly simple functions on it, one
function Z of degree k 1is defined by mapping one such
quadrilateral to the unit disc, the other function W of

degree 2 mapping one of the four 2k-gons ( g0’ angles) of

the dual tessalation to the unit disc. After appropriate

rotations this gives the eqdation of the Riemann surface as
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. 1Y,
‘ «

5.5.3. Wie2® + W" + 27 =1

2 X
or wealoZo g2 Lo W

1+ 22 1+ W

This Riemann surface will be minimally immersed with one Enneper

end, and will be embedded with three ends.
5§.5.4 Data with one Enneper end (pi cture: k = 3>,

The function W has simple zeros and poles at the vertices of
thé quadrilaterals which are going toc be the three saddles and
the Enneper puncture; all are points of order (k - 1) . This

gives (compare section 2)

]

Now dh needs zeros of order (k - 1) at three of the four
vertices to keep these at finite distance, poles can only be
allowed at the end. Now %§ has zeros of the desired order
(k - 1) at all vertices of the quadrilaterals and unwanted
simple poles at their midpoints. Let us assume, the Enneper

puncture 1s at W =0, Z = 1 . Then

12 dZ 1 dZ
dh 77 "¢ A
(Z"l) Z+-Z-'-2

is a differential with the correct zeros and poles (all others
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are proportional). The expected symmetry lines are mapped by
W to meridians; Z maps the planar ones to equator arcs and
the straight arcs to R . Reflections in the expected symmetry
lines therefore indeed preserve the metric (1.4.2).

d . . R
Also —5—(0)-dh(o) € as expected.

g R
i

The Welerstrass data (5.2.4) on the Riemann surface (5.2.3)
therefore define a minimal surface which has the desired puncture

and symmetries. All periods are horizontal and equal. They

have to be killed by choosing r as In (3.5).

‘5.5.5. Data for embedded minimal surfaces with two catenoid and
one planar end, Hoffman-Meeks’' examples of genus > 1 [HM1].

As in the last example, the only zeros and poles of the Gauss
map are at the vertices of the quadrilaterals — simple p;les

at the two catenoid punctures, a pole of order (k - 1) at the
middle saddle and therefore a zero of order (k + 1) at the
planar end.

The function W 1is 0 at the vertices where Z2 = 1 and

W = « where 22 = - 1 . This determines the Gauss map

g =1 W - Z 1

(the middle saddle being at Z = 1, W = 0 ).

Now dh needs simple poles at the catenold ends, and zeros of
order (k ~ 1) at the middle saddle and at the planar end
(2.24).

...90.,.

(
g



v‘\:

Recall: %Z has simple poles at the simple zeros and poles of

Z , and zeros of order (k - !) at the vertices of the quadri-
laterals. The following definition therefore meets the require-
ments for dh :

dh = i o..d._z..

Z + % z

Again the symmetries are immediate; they show that the punctures
have no periods and that the horizontal periods are equal in
size. We have to kill one of them by choosing r similar to

section 3.5.

Remarks. (1) The known 4-ended examples of Callahan-Hoffman-
Meeks [CHM2] can be imagined by putting two of the 3-ended
examples on top of each other. The description can be obtained
along the lines of this lecture. There are two periods to be
killed; this cannot be done as in 5.1.1 and is rather unpleasant.
(ii) Another interesting famlly of embedded examples by
Callahan-Hoffman-Meeks [CHM1] combines the features of Riemann’'s
example (3.4) with the above 3- or 4-ended ones. They have

one translational (or even skrew motion) period, infinitely
many planar ends (as in 3.4); but the minimal surface grows out
of the planar ends not as in (3.4) but as in (3.5) or (5.2.5).
(11i) We have concentrated on minimal surfaces which are either
embedded or not too wildly immersed (so that one can still

describe their main features quite precisely). Gackstatter and
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Kuhnert [GK] took another point of view: they proved that every
compact Riemann surface can be minimally immersed if one allows
a small number of punctures and around these a behaviour as for

an Enneper surface of sufficiently high order.
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