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Abstract. We construct surfaces of constant mean curvature one
(cmc1) in hyperbolic 3-space H3. They have the symmetry group of a
Platonic tessellation of H3 and therefore compact fundamental domains.

Introduction.
In 1987 Bryant [Br] gave a so called “Weierstraß” representation of cmc1 surfaces in H3: A
holomorphic null immersion F : M2 → SL(2, C) (i.e. 〈F ′, F ′〉C = 0), gives a cmc1 immer-
sion f := FF ∗ : M2 → H3, where H3 is the hypersurface {det = 1} in the fourdimensional
space of positive definite hermitian symmetric 2× 2-matrices. (Note that the determinant
is a quadratic function on this space.) And vice versa, every cmc1 immersion f lifts to
such a holomorphic null immersion into SL(2, C), the double cover of the isometry group.
The connection of cmc1 surfaces with holomorphic data is older; I learnt from Lawson [La]
how simply connected minimal surfaces in R3 give isometric cmc1 surfaces in H3: from the
surface data of any minimal surface, namely Riemannian metric g(, ) and shape operator
S, one gets surface data of a cmc1 surface by taking the same Riemannian metric and
a new shape operator S± := S ± id. This change does not affect the Codazzi equation,
and the Gauss equation for g(, ), S in R3 becomes the Gauss equation for g(, ), S± in H3.
Both, Bryant’s Weierstraß representation and the described Lawson correspondence, can
be used to construct cmc1 surfaces in H3. The Weierstraß representation point of view
was developed by Umehara and Yamada [UY1-5]. They emphasize the following: while
Bryant’s Weierstraß data, namely a so called secondary Gauss map g and the Hopf holo-
morphic quadratic differential Q, come from the minimal surface in R3 and correspond
to a left invariant ODE for the immersion F into the group SL(2, C), they prefer a right
invariant ODE for F in terms of the hyperbolic Gauss map G and the Hopf differential
Q, where G is defined as the map from the surface to the conformal sphere at infinity
of H3 obtained by following the geodesics from the surface in the direction of the mean
curvature vector to infinity. This map is conformal for cmc1 surfaces (the normal map in
the other direction to infinity is not conformal). [UY] give a connection between the two
representations by noting that the map F → F−1 in the group leads to a pair of cmc1
immersions, FF ∗, F−1F−1∗, where the role of the hyperbolic and the secondary Gauss
maps are interchanged. This method leads to a large collection of examples: together with
Rossman [RUY] they construct from many of the finite total curvature minimal surfaces
in R3 corresponding cmc1 cousin surfaces in H3 which have, up to some parameter adjust-
ment, the same meromorphic (hyperbolic) Gauss map and Hopf differential as the minimal
surfaces they started from.
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More recently F. Pacard constructed cmc1 surfaces by functional analysis techniques, he
connected horospheres by tiny necks.
In this paper we use the Lawson correspondence to construct, from solutions of polygonal
Plateau problems in R3, cmc1 surfaces in H3 that are bounded by planar arcs of symme-
try. Reflections in the symmetry planes, repeatedly applied to such compact fundamental
domains, yield the complete surfaces. This is similar to the construction [La, Ka, Gb] of
cmc1 surfaces in R3 from solutions of Plateau problems in S3, except that in the older
situation we could choose the Plateau contours explicitly so that all the angles between
the symmetry planes of the cmc1 surfaces come out correctly. In the present situation
we have to consider 2-parameter families of Plateau contours and show that the contour
parameters can be chosen such that the angles between the symmetry planes of the cmc1
piece in H3 are correct. One of the two Plateau parameters simply scales the size of the
polygonal contour and we have inequalities which control the effect of this change on the
hyperbolic figure. Therefore we can find the correct parameter values with an iterated
intermediate value argument (instead of a more complicated degree argument). In the
[RUY] construction this scaling size appears as a real factor in front of the Hopf differen-
tial Q and leads to 1-parameter families of solutions; in our case, such 1-parameter families
would exist if we were content with the solution of those free boundary value problems in
which a cmc1 surface piece meets all faces of some Platonic polyhedron in convex curves.
Since we look for surfaces in tessellating polyhedra, that is with dihedral angles π/m, only
one, two or three parameter values in these families give the desired surfaces. While the
hyperbolic Gauß map is a known meromorphic map at the beginning of the constructions
of [RUY] we do not even consider it for our examples: Note that every orbit in the sphere
at infinity of the isometry group of a Platonic tessellation is dense so that the orbit of any
Gauß value under the isometries of the surface is dense.
The first section of this paper deals with the Platonic tessellations of hyperbolic space.
Their isometry groups have (as in the Euclidean cubical tessellation) tetrahedral funda-
mental domains in H3 from which one can build (by reflections in the tetrahedron faces)
Platonic polyhedra, polyhedra that is, on whose directed edges their symmetry group acts
transitively. Further repeated reflections in the faces of the hyperbolic Platonic polyhedra
give a tessellation of H3. The symmetry planes of the tessellation are also the symmetry
planes of the looked for cmc1 surfaces. We want to construct these surfaces from the as-
sumption that they are cut in a similar way as Polthier’s minimal surfaces in the following
pictures. Namely, we expect them to be cut into congruent tiles which are bounded by
only four arcs of symmetry. The corresponding Plateau contours in R3 would then be
polygons with only four edges. We therefore start our construction by considering the
Plateau solutions of all such polygons in R3.
In the second section we explain the geometric relations between the minimal patches in
R3 and their cmc1 cousins in H3. Then we prove two comparison lemmas which rely on
the simplicity of the Plateau contours: the projection of a (nonplanar) quadrilateral in the
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direction of an edge is a triangle and the Plateau solution is a graph over this triangle;
this implies that the tangent planes along the vertical edge rotates monotonically (and not
back and forth since that contradicts the graph property) so that the principal curvature
function of the corresponding symmetry arc of the conjugate patch does not change sign.
The two lemmas control the angles between the symmetry planes of the cmc1 patches well
enough so that we can prove existence of a quadrilateral in R3 which spans a minimal sur-
face patch whose cousin in H3 is the fundamental piece of the cmc1 surface with Platonic
symmetry.

Hyperbolic cube and octahedron with vertices at ∞.
Inside these solids are minimal surfaces that meet their faces orthogonal in sym-
metry lines that are close to circles. These minimal surfaces were constructed
by K. Polthier, he also computed the numerical approximations and made these
pictures. Note that the symmetry planes of the Platonic solids cut the mini-
mal surfaces into fundamental domains which are bounded by four planar arcs of
reflectional symmetry. The constant mean curvature surfaces that will be con-
structed in this paper have the same symmetries and meet the faces of the solids
orthogonally, also in fairly circular curves.

Platonic tessellations of H3.
We describe the compact and noncompact hyperbolic Platonic solids that we shall use.
View a Euclidean Platonic polyhedron from its center, assume that the vertices are on a
sphere of radius r and let R3 be the tangent space at p ∈ H3. Then consider the hyperbolic
geodesics of length r from p in the direction towards the vertices; the hyperbolic convex
hull of the endpoints is a hyperbolic Platonic solid with circumsphere of radius r. The
dihedral angles of this polyhedron are smaller than the Euclidean dihedral angles, they
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decrease with growing r and converge to the Euclidean limit as r → 0. In the limit r →∞
we obtain a Platonic solid with vertices on the sphere at infinity; its dihedral angles can
be seen on the intersection with a horosphere around a vertex. The intrinsic geometry of a
horosphere is Euclidean, therefore this intersection is an equilateral triangle for the solids
with trivalent vertices (tetrahedron, cube, dodecahedron), is a square for the octahedron
and is a 108◦ regular pentagon for the icosahedron. Therefore we have the following
tessellating platonic solids (the degrees refer to the dihedral angles [the first ones give the
Euclidean case] and the last one of each kind has the vertices at infinity of H3):

[70.53◦-tetrahedron,] 60◦-tetrahedron
[90◦-cube,] 72◦-cube, 60◦-cube
[116.57◦-dodecahedron,] 90◦-dodecahedron, 72◦-dodecahedron, 60◦-dodecahedron
[109.47◦-octahedron,] 90◦-octahedron
[138.19◦-icosahedron,] 120◦-icosahedron, [108◦-icosahedron, not tessellating H3]

A Platonic solid is cut by its planes of symmetry into tetrahedra; all of them have one
vertex at the center (C), the other three vertices are at the midpoint of a face (F), at the
midpoint of an edge (E) and at a vertex of the solid (V). The dihedral angles of these
tetrahedra are important for our construction, three of them, at the edges CE, FE, FV,
are π/2; at the edge EV we have half the dihedral angle of the solid; at the edge CF the
angle is π/k if the faces are k-gons; and at the edge CV the angle is π/n if n edges of the
solid join to that vertex. (Compare the Euclidean cube.)

Hyperbolic 72◦-dodecahedron and 120◦-icosahedron.
The surfaces inside the solids are the minimal surfaces constructed and computed
by K. Polthier. Quadrilateral fundamental domains for the symmetry groups are
emphasized.
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In Euclidean space the tetrahedron is called selfdual because the convex hull of the mid-
points of its faces is again a tetrahedron; similarly, the Euclidean cube-octahedron or
dodecahedron-icosahedron are called dual pairs. In hyperbolic space one also has selfdual
Platonic solids and dual pairs. The convex hull of the midpoints of all those solids of a
tessellation which have one vertex in common is again a tessellating Platonic solid. It gives
the dual tessellation; if these two tessellations are congruent we also call them selfdual.
In Euclidean space the tessellation by cubes is selfdual. In hyperbolic space the tessel-
lations by 72◦-dodecahedra or by 120◦-icosahedra are selfdual, while the tessellations by
72◦-cubes and by 90◦-dodecahedra are a dual pair. (The dual partners of the solids with
infinite vertices are Platonic solids with infinitely many vertices. They have no Euclidean
analogue and we will not use them here.)
If one projects the edges of a Platonic solid from the center C onto a sphere around the
center then one obtains a Platonic tessellation of S2, and dual polyhedra give dual tessel-
lations of S2. Similarly, one obtains from a tessellation by Platonic solids another Platonic
tessellation of S2, if one intersects a small sphere around a vertex V with the faces of the
solids meeting at that vertex. These spherical tessellations are very helpful to imagine the
neighbours of a solid in a tessellation.

Comparison between Euclidean minimal and their hyperbolic cousin surfaces.

We repeat some known facts (because we have to observe signs carefully) about
Conjugate minimal surfaces in constant curvature spaces.

The notion refers to minimal surfaces which are simply connected (i.e., pieces or coverings).
Let J be the (parallel) almost complex structure (i.e., the oriented 90◦-rotation in each
tangent space). Take the Riemannian metric g(, ) and change the shape operator S of a
given minimal surface to S∗ := J · S; then S∗ is trace free, symmetric and together with
g(, ) satisfies the Gauss- and Codazzi equations, hence these data define an isometric but
usually not congruent minimal surface, that is refered to as the conjugate surface. For
geodesics c we have an interesting relation between (normal) curvature and torsion on the
original and conjugate immersion:

κ := g(c′, S · c′) = g(J · c′, J · S · c′) = g(J · c′, S∗ · c′) = −τ∗

τ := g(c′, J · S · c′) = g(c′, S∗ · c′) = κ∗ .

This is used to relate symmetry lines on a minimal surface and its conjugate: Geodesic
curvature lines lie in a plane orthogonal to the surface and reflection in this plane is a con-
gruence of the minimal surface. On the conjugate immersion this curve has κ∗ = τ = 0, it
is a straight line (i.e. a geodesic in the three dimensional constant curvature space), and
180◦-rotation around it is a congruence of the conjugate surface. The rotation speed of the
tangent plane along such a straight line (segment) is τ∗ = −κ. And vice versa. We use this
as follows: Consider a minimal surface which is the (simply connected) Plateau solution
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in a quadrilateral (non-planar) contour. Each projection in the direction of an edge is a
(convex) triangle so that the Plateau solution is a graph over this triangle. The graph
property implies that the tangent plane along the vertical edge cannot rotate back and
forth, it can only rotate monotonically, i.e. the function τ = κ∗ does not change sign along
the edge. The total rotation of the tangent plane is the angle of the triangular projection
below the vertical edge; of course this angle is also the total rotation of the normal on
the conjugate immersion. This means that the arc conjugate to the edge bounds, together
with the normals at its end points, a convex domain, provided the normals intersect with
an interior angle ≤ π. Finally, the curvature functions κ∗ = τ of arcs conjugate to adjacent
edges have opposite sign: Place these adjacent edges in a horizontal plane, then the two
other edges go both either up or down; since one is at an initial point the other at an end
point of its horizontal neighbour this means that the tangent planes along each pair of
adjacent edges rotate in opposite directions.

Constant mean curvature cousins of minimal surfaces.

Since the sign of the second fundamental form can be changed by reversing the normal, we
assume that the constant mean curvature is positive. Given a simply connected minimal
surface in a space M3(K) of constant curvature K, take its Riemannian metric g(, ) and
change its shape operator S to S+ := S + c · id. Note that S+ is symmetric with the
same eigenvectors (principal curvature directions) as S; together with g(, ) it satisfies the
Gauss- and Codazzi equations for the space M3(K − c2) and therefore defines a surface
with constant mean curvature c in this space; it is referred to as a constant mean curvature
cousin of the given minimal surface.
We will use this with K = 0, c = 1 and apply the construction to the conjugate of the
Plateau solution of a quadrilateral contour, i.e, we use the surface data {g, Ŝ = J ·S+c·id}.
This gives us cmc1 surfaces in H3 which are bounded by four planar symmetry arcs. The
angles between adjacent symmetry arcs are given by the Platonic tessellation into which
we plan to fit the cmc1 surface to be constructed. This determines the angles between
adjacent edges of the quadrilateral Plateau contour. We also need that the angles between
each pair of opposite symmetry planes (of the cmc1 surface piece) has the value needed
for the chosen Platonic tessellation. To achieve this we need the remaining work (to find
the correct quadrilateral contour).

The effect of scaling the minimal surface in R3.

Consider the conjugate piece of the Plateau solution of a quadrilateral contour in R3 and
the angle between the normals at the endpoints of each of the four planar symmetry arcs
that bound the conjugate minimal surface piece. (This angle is of course the angle between
a pair of opposite symmetry planes.) We know that the curvature function κ of each of the
four boundary arcs of the conjugate Plateau surface does not change sign (recall that the
tangent planes of the Plateau solution rotate monotonically along each of the four edges).

6



We also observed above that adjacent arcs have curvature functions of opposite sign. If
we scale the boundary arcs, c → λc, then their curvatures change as κ → 1

λκ and the
corresponding curvatures of the hyperbolic cmc1 cousin boundary arcs are

κh = 1
λκ + 1, where κ equals the torsion function τ of the Plateau patch.

This means that the arcs with κ ≥ 0 have κh ≥ 1, i.e. they have a focal point along
each normal, and independent of λ always on the same side (the limit infinity can be
included). We call these the +arcs. The others, the −arcs, may still have focal points
on the same side as the corresponding Euclidean arc for sufficiently small λ, but as λ

increases, κh eventually changes sign along the whole arc. Curvature as a function of arc
length determines a planar curve, and, in our case, the dependence on λ is continuous;
moreover, for λ→ 0, the behaviour of the hyperbolic arc converges to that of the Euclidean
arc from which we started (this is best seen if we scale H3 to M3(−λ2)).
As long as the normals of the hyperbolic arc intersect on the same side as for the Euclidean
arc (which they do for sufficiently small λ), we can compute the angle ω between the
normals at the endpoints with the Gauss-Bonnet theorem. Let l be the length of the
hyperbolic arc and A the area bounded by the arc and the normals at its endpoints.
For +arcs we have

ω+ = 2π − (π/2 + π/2 + (π − ω+)) =
∫

κh ds−A =
∫

κds + l −A.

For −arcs the normals intersect for small λ on the negatively curved side, i.e. −κh = |κ|−1,
hence

ω− =
∫
−κh ds−A =

∫
|κ|ds− l −A.

Now we show that the angle ω− decreases from its Euclidean value
∫

κds to 0 as the
scaling increases the hyperbolic length l from ∼ 0 to a maximal length smaller than the
obvious bound

∫
|κ|ds. And we show that the angle ω+ increases from its Euclidean value∫

κds to π/2 as l is scaled up, but we do not obtain a bound on l that guarantees that
ω+ = π/2 is reached before ` is increased to that bound. In both cases we will need that
the normals at the endpoints of the arc do not meet the arc before they intersect each
other. Consider a one quarter arc of a very elongated ellipse and extend it a bit beyond
the vertex of maximal curvature; the normal line at this endpoint meets the arc again
before it intersects the normal line at the other endpoint. This explains why we require
the additional hypothesis, that we start with a Euclidean angle

∫
|κ|ds ≤ π/2.

We deal with the −arcs first. For them, ω− is at least by −l smaller than the turning
angle of the Euclidean arc. By making λ, hence l, larger we can indeed decrease ω− to
0, even with the obvious a priori bound: l <

∫
|κ|ds ≤ π/2. Note that the assumption∫

|κ|ds ≤ π/2 for the Euclidean turning angle is also sufficient to exclude (use Gauß-
Bonnet) that the normals at the endpoints of the hyperbolic arc meet the arc before they
intersect each other.
Next we deal with the +arcs. We will prove the inequality A < l and we want to increase ω+

to values well above the Euclidean turning angle
∫

κds just by increasing λ. Unfortunately
this means that we cannot reach ω+ = π/2 with an intermediate value argument; our
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following proof will reach π/2, but without an a priori bound on l. Such a bound would
be convenient in view of such a bound for the −arcs. Therefore we cannot extend our
construction from the above mentioned Platonic tessellations to tessellations by Platonic
prisms (given by infinite orthogonal prisms over a Platonic tessellation of a hyperbolic
plane).

Lemma 1
On the area A between a convex arc of hyperbolic length l and its end point normals.
Assumptions. Consider a hyperbolic arc with curvature κh ≥ 1 and such that the normals
at the endpoints intersect each other with interior angle ≤ π (and do not meet the arc
except at their foot point).
Claim.

A ≤
∫ l

0

(κh −
√

κ2
h − 1)ds =

∫ l

0

ds

κh +
√

κ2
h − 1

≤ l(1)

Proof. By assumption the arc and its end point normals bound a convex domain. Connect
any interior point p to the endpoints of the arc by shortest geodesics, both must meet the
arc with an angle < π/2. The endpoints are therefore not the nearest points on the arc
from p and a nearest point q to p must exist as an interior point of the arc. Then p is not
beyond a focal point on the normal of the arc in q. This means that we can get an upper
bound for the area if we integrate in parallel coordinates of the arc along each normal
up to the focal point. The focal distance rf at a point of curvature κh ≥ 1 is given by
κh = coth rf . The line element in parallel coordinates (t, r) is

ds2 = dr2 + (cosh r − κh(t) sinh r)2dt2.
Therefore we get the following bound for the area:

A ≤
∫ l

0

∫ rf (t)

0

(cosh r − κh(t) sinh r)dr dt =
∫ l

0

(sinh rf (t)− κh(t)(cosh rf (t)− 1))dt.

Now use the relation κh = coth rf to simplify the integrand:
sinh rf (t)− κh(t)(cosh rf (t)− 1) = sinh rf (t)− cosh rf (t)2/ sinh rf (t) + κh(t)

= κh(t)− 1/ sinh rf (t) = κh −
√

κ2
h − 1.

The integrand is strictly < 1 unless κh(t) = 1 and the focal distance is infinite; this limit
is included in the proof.

Lemma 2
On the change of the normal angle of +arcs under scaling.
Assumptions. Consider a fixed +arc on a minimal surface in R3 with curvature function
κ ≥ 0 and total turning angle

∫
κ ds < π/2. Take it so small that the normal angle ω+ of

its hyperbolic cousin is still ≤ π/2. The +arc and its scalings define hyperbolic symmetry
arcs on cmc1 surfaces with curvature κh(s) = 1

λκ(s/λ) + 1. As long as the normal angles
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satisfy ω+(λ) ≤ π/2 we have the
Claim.

ω+(λ)−
∫

κ = l(λ)−A(λ) ≥
∫

2κ(t) dt

1 + 2κ/λ
,(2.1)

ω+(λ)−
∫

κ = l(λ)−A(λ) ≥
√

2λ

∫ √
κ(t)dt

1 +
√

2κ/λ
.(2.2)

Proof. Insert the expression κh(s) = 1
λκ(s/λ) + 1 in the upper bound for A of the

preceeding lemma to get the lower bound

l(λ)−A(λ) ≥
∫ λl

0

(1−
(
κh(s)−

√
κh(s)2 − 1

)
)ds =

∫ l

0

(
√

1 + 2λ/κ(t)− 1)κ(t)dt.

Then use
√

a− 1 = (a− 1)/(
√

a + 1) with a = 1 + 2λ/κ and simplify in the denominator
with

√
1 + 2x ≤ 1 + x, respectively with

√
1 + x ≤ 1 +

√
x to get the two lower bounds.

The lower bound (2.1) increases with λ to
∫

2κdt. If this makes ω+ as large as we want (at
most π), then we have an a priori upper bound for λ in terms of max κ, i.e. a bound for the
required length of the hyperbolic arc . The lower bound (2.2) increases with λ to infinity,
but less explicitly. – In the first examples below one would get a better understanding if
one had an upper bound better than l(λ)−A(λ) ≤ l(λ); focal point arguments do not give
that.

Illustrating examples, the symmetric n-noids.
These surfaces have already been constructed in [UY]. With the conjugate cousin method
they are simpler than the following compact fundamental domain examples. Therefore
they are constructed here to explain this method. It will be sufficient to explain the cmc1
three-noid. For a qualitative picture place a small Euclidean minimal three-noid at the
center of a ball model of H3 and let small horospheres around the limit points of the three
axes of the half-catenoids grow until they touch the minimal three-noid; imagine that the
three horospheres are connected by the central piece of the three-noid. Notice that the
underlying Riemann surface is a 3-punctured sphere and the hyperbolic Gauss map is of
degree two; the Weierstraß representation construction starts from here. Such a surface has
the same planar symmetries as the minimal three-noid, one equator symmetry plane and
three planes orthogonal to it which intersect in the normal line through the two umbilic
points of the three-noid. These symmetry planes cut the surface into six simply connected
(congruent) pieces, each of them bounded by three planar symmetry arcs. The first arc (a)
comes from infinity to the umbilic point, the next (b) starts from there making a 60◦ angle
with the first arc and meets the last one, the arc (c), in the equator plane orthogonally.
Arc (c) then goes back to infinity. The length of the finite arc (b) we call |b|. The minimal
surface in R3 of which the cmc1 surface patch is the conjugate cousin, is bounded by two
half lines (a), (c) which are connected by a segment (b) which meets (a) under 60◦ and
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(c) under 90◦. If we project this contour in the direction of (b) then we obtain an infinite
sector, the angle ω of which parametrizes a 1-parameter family of solutions. We need to
assume (because our lemmas are not optimal) ω < π/2. The Plateau solution is a graph,
which implies that the tangent plane along (b) rotates only in one direction. We orient the
normal so that the conjugate arc of (b) has curvature κ ≥ 0, because we want to consider
it as the +arc. (On the cmc1 surface we denote the corresponding boundary arcs also (a),
(b) and (c).)
Now we apply our lemmas. As long as |b| < π/2−ω we have for the angle between the end
point normals of the corresponding hyperbolic arc ω+ ≤ ω+ |b| < π/2. On the other hand,
the lower bound (2.2) for l − A (which grows with λ to ∞) shows that we can scale the
Plateau contour enough to make ω+ = π/2. This says that the normal of the cmc1 surface
rotates along the finite symmetry arc (b) by π/2, or in other words, the symmetry plane of
(a) meets the symmetry plane of (c) orthogonally. This completes the existence proof since
the intersection line (in H3) of the symmetry planes of (a),(b) meets the symmetry plane
of (c) with the angle ω+; consequently: the reflections in these symmetry planes make a
smooth surface out of six copies of the fundamental piece. – If the Euclidean turning angle
ω is very close to π/2, then the lower bound (2.1) for l(λ) − A(λ) shows that κ/λ has to
be large, i.e. |b| is small. In the other direction, one could suspect that ω → 0 implies
|b| → ∞, but, as mentioned in the lemma, we miss a sufficiently good upper bound for
l −A and cannot prove that.

The quadrilateral Plateau contours needed for the Platonic examples.

The surfaces we want to construct are already vaguely suggested by the Schwarz P–surface,
a triply periodic minimal surface in R3 which meets all the boundary squares of a cubical
tessellation of R3 orthogonally in convex almost circular curves. The pictures of Polthier’s
minimal surfaces in each hyperbolic Platonic solid give a more precise idea. Analoguous
constant mean curvature (> 1) surfaces can be described more easily: take a sphere in-
scribed in a Platonic solid and puncture it where it touches the faces in their midpoints;
shrink the sphere a bit and replace the punctures by small necks which meet the faces
orthogonally in convex curves around the face midpoints. This limit of surfaces with ex-
tremely small necks does not exist for cmc1 surfaces in H3 since the horospheres are too
big for our Platonic solids. Therefore it is not a priori plausible that this picture will lead
to an existence proof, and we will see at the end that it only succeeds because of explicit
angle properties of our Euclidean Plateau contours.
The symmetry planes of any Platonic solid cut this solid into tetrahedral fundamental
domains, described above; they also cut a Schwarz type surface inside the solid (see Pol-
thier’s pictures above) into fundamental pieces which lie in these tetrahedra and meet their
faces orthogonally. I have indicated such quadrilateral fundamental domains on all of the
preceeding pictures. The simplest such situation has been studied by Smyth [Sm] for min-
imal surfaces in Euclidean tetrahedra: these surface patches meet each face of the given
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tetrahedron once; they miss two edges and they meet the other four edges orthogonally, so
that the angle between the neighbouring boundary arcs of the patch is the dihedral angle
at that tetrahedron edge. This description implies a 2-parameter family of quadrilateral
contours for the conjugate minimal surface patch in R3 and the existence proof starts with
these: one takes the Plateau solution to any such contour and proves that the symmetry
planes of its conjugate patch indeed bound (up to scaling) the tetrahedron from which
Smyth started.

Patch in a fundamental tetrahedron with angles π/2 at edges 2,3,4 and quadri-
lateral polygon contour of conjugate patch. The arrows are normal vectors.

Our initial situation is more special, since our tetrahedra are fundamental domains for the
symmetry groups of (hyperbolic) Platonic solids. But the required control is more difficult
since it cannot be done explicitly in terms of the conjugate contour. The fundamental
surface patches do not meet two edges of the fundamental tetrahedron, not the edge CF
from the center to the face nor the edge EV from an edge midpoint of the Platonic solid
to a vertex. The surface patch meets the other edges orthogonally so that the dihedral
angles of the tetrahedron are also the angles between the bounding arcs of the patch. The
boundary arc (a) of the patch in the face FEV meets the boundary arc (b) in the face
EFC with the dihedral angle π/2 of the edge FE. The boundary arc (A) of the patch in
the face EVC and the boundary arc (B) in the face FVC meet with the dihedral angle
φ = π/n of the edge VC (n is the number of edges of the solid that meet at the vertex
V). The boundary arcs (b) and (A) meet with the dihedral angle π/2 of the edge CE,
and the boundary arcs (a) and (B) meet with the dihedral angle π/2 of the edge FV. (To
see the three dihedral angles π/2, note that the edge CF is orthogonal to the face FEV,
and the edge VE is orthogonal to the face EFC.) The four angles at the vertices of the
patch are also the angles of the quadrilateral conjugate contour, they are therefore easily
achieved. However, the four planes of the boundary arcs of the patch also intersect in two
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lines which are not met by the patch: along the edge CF with a dihedral angle π/k (where
k is the number of vertices of a face of the Platonic solid) and along the edge EV with the
dihedral angle π/m, where 2π/m is the dihedral angle of the Platonic solid. The special
form of this last angle is not needed for the conjugate construction, but it is needed for
the solids to tessellate H3. This leaves us with the following two conditions: the normals
at the endpoints of the arc (a) must intersect with the angle π/k, and the normals at the
endpoints of the arc (b) must intersect with the angle π/m. Indeed, if we can construct
such a patch then completion by repeated reflection in the planes of its planar bounding
arcs gives the desired cmc1 surface.
Therefore we can now describe the families of conjugate contours: start with two half lines
(A), (B) which meet under the angle φ, take a half line (a) which meets (B) under the angle
π/2 and take the common perpendicular (b) of (a) and (A). For each given φ this gives
a 2-parameter family of quadrilaterals. If we start with the Plateau solutions for these
contours and take their conjugate cousin cmc1 patches then, indeed, these are bounded by
planar symmetry arcs which meet under the correct angles π/2, π/2, π/2, φ; their planes
therefore intersect in a hyperbolic tetrahedron which has already four correct dihedral
angles. It remains to show with lemmas 1 and 2 that we can choose the quadrilaterals to
get also the other two dihedral angles correct. If the Platonic solid (see the above list)
has k-gon faces then the correct angle αcor between the end point normals of the arc (a)
has to be π/k, k = 3, 4, 5. If the Platonic solid has dihedral angles 2π/m then the correct
angle βcor between the end point normals of the arc (b) has to be π/m, m = 3, 4, 5, 6.

Explicit determination of the Euclidean data of the contour quadrilaterals.
Let α be the angle through which the tangent plane of the Plateau solution rotates along
the (a)-edge (this is also the angle between the direction vectors of (b) and (-B)); let β be
the corresponding rotation angle for the (b)-edge. – If we position (b) vertically, then we
see a right triangle: (a), (A) are horizontal with angle β between them and the projection
of (B) is orthogonal to (a). Similarly, if we position (a) vertically. This gives two relations

a = A cos β, b = B cos α.
Because of the right angles between (a),(B) and also between (b),(A) we can express the
diagonal between the other two vertices as D2 = a2 + B2 = b2 + A2. We eliminate a, b (or
instead A, B) with the previous equations and obtain

B sinα = A sinβ, b tanα = a tanβ.
The length of the other diagonal gives d2 = a2 + b2 = A2 + B2− 2AB cos φ; eliminate first
a, b then A/B to obtain

cos φ = sinα · sinβ.

Control of the angle between the end point normals.
We orient the normals to make the curvature of (a) positive, that of (b) negative. The
strategy then is: For all a/b in a certain range we can, by simply scaling the quadrilateral
from a very small size up, decrease βh from the Euclidean value ≤ π/2 to the correct
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value without increasing αh beyond π/2. Moreover, for a/b ¿ 1 the value of αh stays
below the correct value and for a/b ≈ 1 the value of αh stays above the correct value.
The intermediate value argument with respect to the parameter a/b achieves the correct
normal angles for (a) and (b), so that the Schwarz type cmc1 surfaces exist for all the
tessellating Platonic solids of H3.
Now the details. Recall that φ = π/n, n the number of edges at a polyhedron vertex,
αcor = π/k, k = the number of edges of a polyhedron face and βcor = π/m = half the
dihedral angle of the polyhedron.

tetrahedron cube dodecahedron octahedron icosahedron
π/2− φ 30 30 30 45 54

αcor 60 45 36 60 60
βcor 30 36,30 45,36,30 45 60

First, if a/b ¿ 1, then we show how to achieve βh = βcor with αh staying below αcor. In
the limit a/b → 0 we have the following rotation angles αe = π/2 − φ, βe = π/2 of the
Euclidean quadrilateral. As we scale the quadrilateral down, the hyperbolic angles αh, βh

converge to the Euclidean ones. We check in the above list of correct angles that βe is well
above all desired values for βh and αe is smaller by at least 6◦ = 36◦−30◦ = 60◦−54◦ than
all the correct values αcor. Therefore we start with a very small quadrilateral and scale it
up at most to a length lb ≤ π/2− βcor to achieve βh = βcor. If we start with a/b < 6/90
then the trivial bound αh ≤ αe + la shows that αh does not increase above αcor.
Secondly, we show how to achieve βh = βcor while holding αh between αcor and π/2:
Consider the first three cases which have φ = 60◦. We start with quadrilaterals with
αe = αcor and check with sinβe := cos φ/ sinαe that in all cases βe > βcor. Again, by
scaling up from a very small size we can decrease βh to βcor, while αh increases further
and we only have to hold it below π/2 in (i) to (iii).
(i) The three dodecahedra. αe = 36◦ hence sin βe := cos φ/ sinαe = sin 58.283◦, and the
desired correct values are βcor = 45◦, 36◦, 30◦. Since a < b we can decrease βh to the
smallest value 30◦ without αh growing above (36 + 28.283)◦. This proves existence for the
dodecahedra.
(ii) The two cubes. αe = 45◦ hence βe = 45◦ and a = b. Therefore we can decrease, by
scaling, βh from the Euclidean limit down to the interesting values βcor = 36◦, 30◦ without
αh growing by more than the needed decrease, i.e. αh ≤ 60◦. This proves existence for
the cubes.
(iii) The 60◦-tetrahedron. αe = 60◦ hence βe = 35.264◦ and a/b = tanα/ tanβ ≤ 2.45.
Again we can decrease, by scaling, βh from the Euclidean limit βe down to the desired
value βcor = 30◦ without increasing αh to more than (60 + 2.5 · 5.3)◦ < 75◦. This proves
existence for the infinite tetrahedron.
The 120◦-icosahedron: Choose φ = 36◦ and a = b. Then cos 36◦ = (sin 64.086◦)2 shows
that we need to scale only to a length lb ≤ 4.086/180 ·π to decrease βh from the Euclidean
value 64.086◦ for very small quadrilaterals to the desired βcor = 60◦. Here αh increases at
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most by the same amount because of la = lb, in particular stays below π/2. q.e.d.
The 90◦-octahedron: φ = 45◦; cos φ = sinα ·sinβ = sin 60◦ ·sin 54.735◦ shows that we have
to decrease βh by less than 10◦ from 54.735◦ to 45◦, and from a/b = tanα/ tanβ = 1.225
follows that αh does not increase more than 12.25◦. q.e.d.
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