
Free Rotational Motion of Rigid Bodies

What is to observe in the 3D-XplorMath exhibit
Solid Body (Euler’s Polhode) ?

A brick – in the program of edge lengths aa ≥ bb ≥
cc ≥ 0 – is a good example of a solid (also: rigid)
body. The program illustrates the free rotational
movement of such a brick (i.e. gravity is ignored):
Select Solid Body (Euler’s Polhode), stop the alterna-
tion between two pictures by a mouse click and select
Do Poinsot Construction From Polhode at the bot-
tom of the Action Menu. The resulting animation
shows a freely tumbling brick. By changing aa, bb, or
cc one may watch other bricks tumbling.
There are three other input parameters, dd, ee, ff .
These are initial conditions for the the tumbling mo-
tion. If one chooses (dd, ee, ff) ≈ (1, 0.1, 0.1) or
(dd, ee, ff) ≈ (0.1, 0.1, 1) then there is not much tum-
bling. These motions are almost rotations around the
longest axis (aa) of the brick, respectively the short-
est axis (cc) . The fact that these rotation axes stay
close to their initial position is expressed by saying:
the rotations around the longest and the shortest axis
are stable. Now look again at the default initial con-



ditions (dd, ee, ff) ≈ (0.1, 1, 0.1). One observes that
the momentary axis of rotation moves almost to the
direction opposite to the initial direction and then
returns back. One says: the rotation around the mid-
dle axis of the brick is unstable. – By putting a tape
around a book and trying to throw it so that it rotates
around one of the three axes one can experimentally
test these theoretical predictions.

The explanation of this behaviour has a mathematical
part and a physical part. The physical part is con-
tained in the initial picture, the mathematical part
is the connection between the initial picture and the
annimation. We explain the mathematical part in

Part I: From Angular Velocity to Rotational Motion

It is available in the Topics part of the Documenta-
tion. This mathematical part has no physical limi-
tations, any of the space curves in the program can
be used as angular velocity curve and in the Action
Menu one can select animations that show the result-
ing motions.
The physical part requires in addition to angular ve-
locity the physical notions tensor of inertia and an-



gular momentum. These are explained below. What
can one say before this theory about the initial pic-
ture of the program? We see two space curves. The
one on the sphere is the angular momentum as a func-
tion of time in the coordinate system of the brick.
The other one is the angular velocity curve (called
Polhode). Both are intersections of quadratic sur-
faces, represented by dots in the picture. The two
curves are related by a fixed linear map – given by
the tensor of inertia. To emphasize this linear map
the quadratic surfaces alternate between the domain
and the range of this map. Finally, these two curves
together determine Euler’s differential equation for
either of them. For example the derivative of the
angular momentum curve is the cross product of the
corresponding position vectors of the angular momen-
tum curve and the angular velocity curve, in formu-
las: ~̀′(t) = ~̀(t)× ~ω(t). The Action Menu entry Show
Repère Mobile and ODE illustrates this connection.
The dotted curves on the sphere are solutions for
other initial conditions dd, ee, ff with the same value
dd2 +ee2+ff2. The default morph varies bb between
aa and cc, it illustrates how the family of polhodes
depends on the shape of the brick.



And here is the theory:

Part II: Tensor of Inertia and Angular Momentum

The tensor of inertia is a map that transforms angular
velocity into angular momentum.
Historical note: The word tensor is a generic word
that describes objects from linear algebra that can
be given by components (indices!) with respect to
a base. The tensor of inertia is a linear map from
the 3-dim vector space of angular velocities to the
3-dim vector space of angular momenta. What we
need below is that for each solid body there exists an
orthonormal frame {~ex(t), ~ey(t), ~ez(t)} in the rest
space of the body (i.e. moving with the body) so
that the tensor of inertia Θ is a diagonal map:

angular momentum = Θ(~ω(t)) =

ωx(t) · Θx~ex(t) + ωy(t) · Θy~ey(t) + ωz(t) · Θz~ez(t).

Θx,Θy,Θz are called principal moments of inertia.

We now explain the tensor of inertia in some more de-
tail. The result of the explanation will be the above
formula for the angular momentum. We view a solid



body as a collection of points of mass mi and po-
sition vector ~xi(t); the pairwise distances between
these points are constant. The origin is the center of
mass of these points, i.e.

∑

i mi~xi(t) = ~0. For each
mass point we have the following definitions, the cor-
responding notions for the solid body are obtained by
summation:
linear momentum: ~pi(t) := mi~xi

′(t)
angular momentum with respect to the origin:

~̀
i(t) := ~xi(t) × ~pi(t)

kinetic energy: Ei(t) := 1

2
mi〈~xi

′(t), ~xi
′(t)〉.

The body is rigid, i.e. the distances between the
points are constant, therefore there is an angular ve-
locity function ~ω(t) that relates the positions and ve-
locities:
rotational motion: ~xi

′(t) = ~ω(t) × ~xi(t).

angular momentum: ~̀
i(t) = ~xi(t) × (~ω(t) × ~xi(t)).

=: Θi(~ω(t)).
This tensor of inertia is most easily understood if we
use the relation between cross-product and matrix-
product and insert it into the above definitions. We
obtain the expressions for angular momentum and ki-
netic energy in terms of the tensor of inertia and the
angular velocity as follows:
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= Θi(~ω) (Note the symmetry of the matrix of Θi).

Ei(t) =
1

2
〈Θi(~ω), ~ω〉.

The symmetry of Θ :=
∑

i Θi implies that we have
an orthonormal eigen basis for Θ. The correspond-
ing eigen values are the principal moments of inertia,
Θx,Θy,Θz.



Finally, we will derive Euler’s equations, a first order
ODE for ~ω(t). Together with part I this determines
the motion of a solid body that rotates without exte-
rior forces. We will always take the eigen basis of Θ
as the moving frame of part I.

Newton’s laws imply that the total angular momen-
tum is constant in situations that are more general
than the force free rotation of a solid body. We omit
this general theory and show only that the conser-
vation of angular momentum is equivalent to Euler’s
equations.

~̀(t) :=
∑

i

~̀
i(t) = Θ(~ω(t)) =

∑

ξ∈{x,y,z}

ωξ(t)Θξ~eξ(t)

implies

d

dt
~̀(t) =
∑

ξ∈{x,y,z}

ωξ(t)
′Θξ~eξ(t) +

∑

ξ∈{x,y,z}

ωξ(t)Θξ~eξ
′(t).

Insert ~eξ
′(t) = ~ω(t) × ~eξ(t) to get

∑

ξ∈{x,y,z}

ωξ(t)Θξ~eξ
′(t) = ~ω(t) × ~̀(t),



next compute the cross product in the base given by
the moving frame:

~ω(t) × ~̀(t) =
∑

ξ∈{x,y,z}
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finally compare coefficients to get Euler’s equations:
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where the physics is contained in the relation

between ω and ` :

`x = Θxωx, `y = Θyωy, `z = Θzωz.

Considered as differential equation for the ω-compo-
nents these are Euler’s equations. This ODE-system
implies immediately that the two quadratic functions

|~̀ |2 = `2x + `2y + `2z = Θ2

xω2
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yω2
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zω
2

z and

2E = `xωx + `yωy + `zωz = Θxω2

x + Θyω2

y + Θzω
2

z

are constant along solution curves. The solutions are
therefore intersections of two ellipsoids. If one consid-



ers the ODE-system as differential equations for the
`-components then one of the ellipsoids is a sphere,
the solutions (`x(t), `y(t), `z(t)) are spherical curves.
The choice of the `-components as the functions to be
determined therefore simplifies the visualization and
also leads to a slightly simpler ODE-system, since the
tensor of inertia enters only on the right side, linearly,
into the equations.


