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Part I: Angular Velocity and Rigid Motion

In this first part we will not yet consider solid objects
with their inertial properties, but only so-called rigid
body kinematics, i.e., the study of rotational motions
of space. The (simpler) particle mechanics analogue
of the question that we will discuss is the following:
knowing the velocity curve v(t) of a point how can we
reconstruct the travel path c(t)? Since c′(t) = v(t),
c(t) is an antiderivative of v(t) and we can find it
easily by integration. (Historically v(t) was called
the hodograph of the motion.)

Things to try in 3D-XplorMath

The last three entries of the Action Menu of Space
Curves show demos that illustrate the present discus-
sion. The first of these Actions, Use Curve as Hodo-
graph, interpretes the space curves of 3D-XplorMath
as velocity curves of a particle and reconstructs the
path. The demo emphasizes that the tangent vector
of the constructed path is (parallel to) the position
vector of the selected space curve, the hodograph.



The second of these Actions, Use Curve as Angu-
lar Velocity ~ω(t), reconstructs the rotational motion
which has the given space curve as given angular ve-
locity function. The visualization of the motion uses
a sphere with random dots and shows several consec-
utive points of the orbit of each random dot. One sees
large orbit velocities near the equator of the rotation
and small velocities near the axis of the rotation at
each moment. – More details are explained below.
The third of these Actions, Use Curve as Components
of ~ω(t) in the Moving System, again reconstructs that
rotational motion that has its angular velocity given
in the moving system by the selected space curve.
The space curve therefore rotates with the motion.
It leaves a trace behind which shows the correspond-
ing angular velocity curve in the observer’s space. In
the second Action this curve was the given one.
Finally, there is one very special space curve, Solid
Body (Euler’s Polhode). If this space curve is selected
for the third Action above then the resulting motion
is the physical motion around the center of mass of
a rigid body, taken to be a brick with edge lengths
aa ≥ bb ≥ cc and initial components of the angular
momentum dd, ee, ff , see the ATO of Solid Body.



Angular Velocity given in the Observer’s Space

Mathematicians and Physicists have slightly differ-
ent pictures of a motion in their minds. A physicist
sees a solid object moving in space, the movement is
differentiable and all points ~xi(t) of the moving ob-
ject have their orbit velocities ~xi

′(t). So far these
functions could also describe a mass of moving air.
The word rigid motion means that the pairwise dis-
tances |~xi(t) − ~xj(t)| remain constant in time – the
points ~xi(t) could be the atoms of a stone. For a
mathematician on the other hand the primary con-
cept is that of a distance preserving map of space,
and a motion is a 1-parameter family of such maps.
For physicists and mathematicians it is important to
understand the velocity fields ~xi

′(t) of all the parti-
cles. Physicists begin by studying rotations around
fixed axes with constant angular velocities. In such
a situation one can compute all the velocities ~xi

′(t)
from one vector ~ω that is parallel to the rotation axis
and from the particle positions ~xi(t) as follows:

~xi
′(t) = ~ω × ~xi(t).

It is now a mathematical fact that differentiable fam-
ilies of distance preserving maps have a very similar



formula for the velocities of the particles: For each
time t there exists a vector ~ω(t) such that we have:

~xi
′(t) = ~ω(t) × ~xi(t).

And vice versa, if such a relation between the veloci-
ties and the positions holds then all pairwise distances
between the particles are constant in time. Therefore
mathematicians and physicists agree that a differen-
tiable rigid motion is characterized by this relation
between particle positions and particle velocities.

Now, a natural question is: If ~ω(t) is a given vector
function in R

3, how can one reconstruct the rotational
motion? We answer this question by constructing a
so called moving frame {~ex(t), ~ey(t), ~ez(t)}, a time
dependent orthonormal basis. To do this we have to
solve the following three ODEs:

~ex
′(t) = ~ω(t) × ~ex(t), ~ex(0) = (1, 0, 0)

~ey
′(t) = ~ω(t) × ~ey(t), ~ey(0) = (0, 1, 0)

~ez
′(t) = ~ω(t) × ~ez(t), ~ez(0) = (0, 0, 1).

Next we observe that all linear combinations with
constant coefficients, i.e.



~x(t) := x · ~ex(t) + y · ~ey(t) + z · ~ez(t) satisfy
~x ′(t) = ~ω(t)× ~x(t) and are therefore orbits of the ro-
tational motion defined by the angular velocity ~ω(t).
To visualize this motion observe that for each fixed t

the velocity field ~v(~x) := ~ω(t)×~x is the velocity field
of the ordinary rotation around the axis ~ω(t)R with
constant angular velocity |~ω(t)|.

Angular Velocity given in the Moving Space

What could it mean to give the angular velocity of
a motion in moving space? We saw in the previous
discussion that we can describe the motion of space
by giving a moving frame {~ex(t), ~ey(t), ~ez(t)}. The
particles of moving objects have position vectors that
have constant components ax, ay, az relative to this
frame: ~xi(t) = ax~ex(t) + ay~ey(t) + az~ez(t). Similarly
we can prescribe ~ω(t) by giving its components rela-
tive to the moving frame: {ωx(t), ωy(t), ωz(t)}.
There is again a natural question: can we again re-
construct a corresponding rotational motion for any
vector function ~ω(t) that is given in this way?

The answer is almost the same as for the first ques-
tion, except that the three ODEs are no longer sepa-



rate but are coupled by the fifth line:

~ex
′(t) = ~ω(t) × ~ex(t), ~ex(0) = (1, 0, 0)

~ey
′(t) = ~ω(t) × ~ey(t), ~ey(0) = (0, 1, 0)

~ez
′(t) = ~ω(t) × ~ez(t), ~ez(0) = (0, 0, 1)

with

~ω(t) = ωx(t) · ~ex(t) + ωy(t) · ~ey(t) + ωz(t) · ~ez(t).

Historical note: The given curve {ωx(t), ωy(t), ωz(t)}
in the moving system is called the polhode of the mo-
tion and the corresponding curve ~ω(t) = ωx(t)·~ex(t)+
ωy(t) ·~ey(t)+ωz(t) ·~ez(t) in the inertial space is called
the herpolhode. The moving polhode and the fixed
herpolhode touch each other at each time t with tan-
gents of equal length – because the points on the mo-
mentary axis of rotation, ~ω(t)R, have at time t the
rotational velocity field ~ω(t) × ~ω(t) = ~0 in R

3. A
visual interpretation of this fact is that the moving
polhode rolls without slipping along the fixed herpol-
hode. (This description actually determines the rota-
tional motion because the origin is fixed so that the
polhode has no freedom to rotate around the com-
mon tangent with the herpolhode, there is only one
way to roll along.)


