
Stress Energy Tensor
Simple Examples and Geometric Consequences, a Schur Theorem

Notational conventions. For the Ricci Tensor I will use different names for its bilinear ver-
sion: ric(v, w) and its 1-1-Tensor version: Ric(v), and of course: ric(v, w) = g(Ric(v), w).

The divergence free part of the Ricci Tensor is the Einstein Tensor G:

G := Ric −
1

2
(trace Ric) · id , trace G = −trace Ric.

The Einstein Equation

8πT = G + Λid .

Of course, without further words this means nothing: One could take any Lorentz manifold,
compute (G+Λid )/(8π) and call the result the stress energy of the matter in that universe.

This is not the intended use of the equations. Rather one should have an opinion what
kind of matter is in the universe one intends to model, one should understand this matter

well enough to be able to write down its stress energy tensor and finally look for a Lorentz
manifold such that the Einstein Equation is satisfied. For how much complication should

we be prepared? First, of course, there are the stars. It turned out that for modeling
ordinary stars one does not need General Relativity. And the more exotic stars, imploding

ones for example, require so broad a background in physics that they are out of my reach.
We have seen the Schwarzschild geometry and glimpses of Kerr as models of the outside

of a star. The next larger structures are galaxies and eventually the cosmology. I want
to recall a very successful continuous model of an obviously discrete situation: the kinetic

theory of gases in terms of differentiable functions called volume, pressure and temperature.
A gas consists of molecules of diameter 10−10m and up, and their mean distance is about

a factor 30 larger. Our galaxy has a diameter of about 50.000 light years and the distance

to the Andromeda galaxy is about 20 times that large. It will turn out that a cosmological
model in which the matter is a dust of mass density ρ and the dust grains are the galaxies

(in other words: a very oversimplifying assumption) is surprisingly successful. And for the
galaxies themselves, the ratio of distances between stars to star diameters is more like 107

and therefore maybe too large for a continuous approximation. (I have been told that the
shuttle reentry computations in the very thin high atmosphere do not describe the “gas”

by using a very small continuous density, but really deal with individual molecules.) Very
recently I obtained the following reference:

1995 Phys. Rev. Letters 75, 3046 , Neugebauer, G.; Meinel, R.: General Relativistic

Gravitational Field of a Rigidly Rotating Disk of Dust: Solution in Terms of Ultraelliptic

Functions .

I did not have time to see what one can learn from it, the words “rigidly rotating” do

exclude that it is a galactic model. Concerning galaxies. I know that really huge numerical
simulations have been made, but I do not know any details. Therefore, with obvious regret,

I cannot discuss relativistic models of galaxies in these notes.
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The remaining goal therefore is to discuss a family of cosmological models that are filled
with a very simple type of matter. We will not meet complicated stress energy tensors,

but in the same way as the detailed discussion of our first vacuum solution (Schwarzschild)
turned out to be very educational we will gain insight about the interplay between matter

and geometry on a cosmological scale even though we work with the simplest kind of matter
that can be imagined. Before turning to that goal I end this section with definitions and

with some more local arguments.

A matter is called a perfect fluid if it has just two physical properties called pressure p

and mass density ρ (p, ρ are differentiable functions) and if at every point in the rest system
of the matter (this makes sense only where ρ =/ 0) the stress energy 1-1-tensor T has the

rest space as 3-dim eigenspace with eigenvalue p and the time like unit vector U of the rest
frame is an eigenvector with eigenvalue −ρ. Since U is defined everywhere, it is a time like

unit vector field whose integral curves are the world lines of the matter particles. Note that
the infinitesimal rest spaces U⊥ in general are not an integrable distribution. This means

that in general there are no natural space slices. This phenomenon will be obscured by

our examples: additional simplicity assumptions make U⊥ integrable and therefore lead to
natural space slices. I find it important to emphasize that even with all the specifics above

we do not yet have some physically specific perfect fluid. In addition one needs a
matter equation or equation of state: F (p, ρ) = const, ∂

∂p
F =/ 0.

We shall mainly work with the equation p = 0 that specifies a dust.
We shall mention 3p − ρ = 0 specifying a perfect fluid called photon gas.

In the absence of a matter equation the following inequalities are required: 0 ≤ 3p ≤ ρ.
My knowledge of continuum mechanics is insufficient for comments about these inequalities.

Next we translate the given information about T , using the Einstein equation, in informa-
tion about Ric:

T · W = (p · W + (ρ + p)g(U, W ) · UFor arbitrary vectors W holds:

8π · trace (T ) = trace (Ric) − 2trace (Ric) − 4Λ

Ric = 8π(T −
1

2
trace (T )id ) + Λid

Ric(U) = (Λ − 4π(ρ + 3p)) · U, Ric
∣

∣

U⊥
= (Λ + 4π(ρ − p)) · id

∣

∣

U⊥
.

By looking at the Ricci tensor we can now recognize whether some Lorentz manifold has as
its matter content a perfect fluid. The quadratic examples of lecture 2 do not model such

type of matter.

Recall that, when Einstein wrote down the above field equation, physicists had already

met stress energy tensors of materials and they were convinced that T would be divergence
free for all materials. Therefore Einstein constructed the right side of the equation to be

divergence free. We learn some facts about perfect fluids by computing the divergence of T :

div (T ) :=
∑

i

(Dei
T ) · ei

g(ei, ei)
=⇒ g(div (T ), W ) =

∑

i

g((Dei
T ) · W, ei)

g(ei, ei)

g(div (T ), W ) = TW p + (p + ρ)g(W, DUU) + g(W, U)div ((p + ρ)U).
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If we use div (T ) = 0 and apply this computation for W ⊥ U , then we get
DUU = −(grad p)/(p + ρ), grad = grad Restspace

in particular, in the case of dust, we get geodesic world lines for the dust particles. In

general the acceleration is caused by the pressure gradient (in the rest space).
If we use the computation for W = U in the dust case, we get div (ρ ·U) = 0, a conservation

of mass result. This shows that quite basic facts about the behavior of the perfect fluid

follow from the Einstein field equation without prior knowledge of these facts from classical
physics.

What is div T = 0 good for?

If in some field theory a vector field V with div (V ) = 0 occurs then Gauß’ theorem implies
that the flow of V carries some conserved quantity around. However, there is no Gauß’

theorem for 1-1-tensors and therefore: why is div T = 0 important? A celebrated fact
from classical mechanics is the observation that symmetry groups, or Killing fields, lead to

conserved quantities. And Killing fields X (characterized by the skew-symmetry of their
covariant differential, DX = −DX tr) are similarly useful in our context:

div T = 0 and DX = −DXtr =⇒ V := T · X satisfies div (V ) = 0.Claim:

DV = (DT ) · X + T · DX,Proof:

div (V ) = trace (DV ),

trace (T · DX) = 0 since T is symmetric and DX is skew,

trace ((DT ) · X) =
∑

i

g((Dei
T ) · X, ei)

g(ei, ei)
=

∑

i

g((Dei
T ) · ei, X)

g(ei, ei)

= g(div (T ), X) = 0.

This shows that the divergence free stress energy tensor T together with any Killing field
X leads to a divergence free vector fields V = T · X, i.e. to vector fields V whose flow

transports some conserved quantity. This observation makes div T = 0 important, if there

are Killing fields. Not surprisingly do our simplified models carry Killing fields, but on a
real cosmology with all its individual features there won’t be Killing fields. Is div T = 0

still important? I will argue “yes, and for almost the same reason”.

First recall that in Euclidean space and in Minkowsky’s Special Relativity Killing fields are

explicitly determined by value and derivative at one point:

X(x) = X(p) + DX
∣

∣

p
· (x − p).

Secondly, an observing physicist, of course, cannot leave his world line. Moreover we have
by now some experience in viewing physicists as infinitesimal observers who perform their

experiments in the tangent spaces of the Lorentz manifold, along their world line. This
means that for observing conserved quantities they do not really need globally defined

Killing fields, what they need are “almost” Killing fields defined on a tube around their
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world line. Recall that a Killing field satisfies along any geodesic γ(i.e. along the world line
of any unaccelerated observer) and for any parallel field v along γ the following PDE:

Dγ′(DvX) + R(X, γ′)v = 0.

This says: X and DX is determined along γ by its initial value X(γ(0)) and its initial

derivative DX
∣

∣

γ(0)
, just as in the Euclidean/Minkowski case. Of course DX

∣

∣

γ(0)
needs

to be skew-symmetric, but if this initial constraint is met then DX
∣

∣

γ(s)
continues to be

skew-symmetric:

d

ds
g(Dv(s)X, v(s)) = −g

(

R
(

X(s), γ′(s)
)

v(s), v(s)
)

= 0.

We can therefore construct as many almost Killing fields X on an infinitesimal tube around
γ as we have in Special Relativity and div T = 0 allows us to observe the conserved quanti-

ties of the flows of the fields V := T ·X, so that div T = 0 is really responsible for observable
conserved quantities.

Interplay with Conformal Flatness.

We are interested in conformally flat Lorentz manifolds because then we get solutions of

Maxwell’s equation for free. A (pseudo)-Riemannian metric is (locally) conformally flat iff
its Weil conformal curvature tensor vanishes. In such a case one can write the full curvature

tensor in terms of the Ricci tensor. In the case of a perfect fluid we saw that the Ricci
tensor does not distinguish any space like directions in the rest spaces of the matter. Taking

the two facts together shows:
A conformally flat perfect fluid is curvature isotropic.

We write more explicitly what we mean by “curvature isotropic with respect to U”, i.e., by

the property that the curvature tensor distinguishes no directions in the rest spaces U⊥ of

the matter. Clearly, such a curvature tensor has to have the following properties:

X, Y, Z ⊥ U =⇒ R(X, Y )Z = k(p)(g(Y, Z)X − g(X, Z)Y ),

R(X, U)U = µ(p) · X,

R(X, Y )U = 0,with the immediate consequences:

R(U, X)Y = −µ(p) · g(X, Y ) · U.

(Note that g(R(U, X)Y, Z) = 0 for all Z ⊥ U and g(R(U, X)Y, U) = g(R(X, U)U, Y ).)

This is enough information about the curvature tensor to check that any curvature isotropic

curvature tensor has its Weyl conformal curvature tensor vanish, so that the manifold is
locally conformally flat. Moreover, we find for the Ricci tensor (of such a curvature tensor):

ric(U, U) = 3µ(p) = −λU = (−Λ + 4π(ρ + 3p))

ric(U, Y ) = 0

ric(X, Y ) = (2k − µ)g(X, Y ) = λU⊥ = (Λ + 4π(ρ − p)).
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This shows that the eigenspace decomposition is the correct one for a perfect fluid (we
also need to satisfy 0 ≤ 3p ≤ ρ), so that, essentially, “conformally flat perfect fluid” and

“curvature isotropic space” describe the same Lorentz manifolds.
Note:

6k − 2Λ = 16πρ, 4µ − 2k + 2Λ = 16πp, µ + k = 4π(p + ρ).

After introducing the concepts and show immediate relations we come to a real theorem:

Theorem of Schur type. Let M 4 be curvature isotropic for a time like unit vector field
U so that M4 models a perfect fluid. We also assume ρ > 0, since otherwise one cannot

everywhere define the local rest frame of the matter, namely U, U⊥. Then:
a) U⊥ is an integrable distribution.

b) The 3-dim integral manifolds have intrinsically constant curvature.
c) A matter equation F (p, ρ) = 0, ∂

∂p
F =/ 0 implies DUU = 0 so that extrinsically

these integral manifolds are parallel hypersurfaces with the matter world lines as the
orthogonal geodesics.

The proof is modeled after Schur’s theorem for Riemannian manifolds that states: If the

sectional curvatures are constant at each point then they are constant. The argument relies

on the 2nd Bianchi identity, we will use

0 = (DUR)(X, Y )Z + (DXR)(Y, U)Z + (DY R)(U, X)Z.

(Other combinations of arguments do not contain additional information.) Our curvature

assumptions are such that the orthogonal splitting TpM = U(p)R⊕U⊥ is essential. There-
fore we will use the induced covariant derivative D⊥ on the 3-dim bundle U⊥ over M . By

X, Y, Z we will always denote vector fields from that bundle.

D⊥X := DX + g(DX, U) · U ⊥ U.

D⊥

ċ X = 0 ⇒ DċX = −g(DċX, U) · U = g(X, DċU) · U.

Clearly, D⊥-parallel vector fields have constant scalar products. For the evaluation of the
terms in the Bianchi sum we may assume that the vector fields X, Y, Z ⊥ U are D⊥-parallel

in the direction of the differentiation field. Now compute the Bianchi sum terms:

DU (R(X, Y )Z) = dk(U)(g(Y, Z)X − g(X, Z)Y ) + k(g(Y, Z)DUX − g(X, Z)DUY ).First:

Since DUX, DUY, DUZ are proportional to U we have

R(X, Y )DUZ = 0, R(DUX, Y )Z = −µg(Y, Z)DUX. R(X, DUY )Z = µg(X, Z)DUY

(1) (DUR)(X, Y )Z = dk(U)(g(Y, Z)X − g(X, Z)Y ) ⊥ U

+ (k + µ)(g(Y, Z)DUX − g(X, Z)DUY ) ∈ UR

DX(R(U, Y )Z) = −dµ(X)g(Y, Z) · U − µg(Y, Z)DXU.Second:
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Again, the derivatives of the arguments are either parallel or orthogonal to U , hence

R(DXU, Y )Z = k(g(Y, Z)DXU − g(DXU, Z)Y ), R(U, DXY )Z = 0,

R(U, Y )DXZ = −µg(Z, DXU)Y (recall DXZ = g(Z, DXU)U )

(2) (DXR)(Y, U)Z = −(DXR)(U, Y )Z

= dµ(X)g(Y, Z)U ∈ UR

+ (k + µ)(g(Y, Z)DXU − g(Z, DXU)Y ) ⊥ U.

And similarly (interchange X and Y and a sign)

(3) (DY R)(U, X)Z = −dµ(Y )g(X, Z)U ∈ UR

− (k + µ)(g(X, Z)DY U − g(Z, DY U)X) ⊥ U.

Using the 2nd Bianchi identity in (1)+(2)+(3) gives two equations, one in UR, one in U⊥:

dµ(X)g(Y, Z)U − dµ(Y )g(X, Z)U = −(k + µ)(g(Y, Z)DUX − g(X, Z)DUY ),In UR

dk(U)(g(Y, Z)X − g(X, Z)Y ) =In U⊥

= (k + µ) (g(Y, Z)DXU − g(X, Z)DY U + g(DY U, Z)X − g(DXU, Z)Y ) .

If we use unit vectors X ⊥ Y = Z in the first equation we get

dµ(X) = −(k + µ)g(X, DUU),

we computed earlier

div (T ) = 0 =⇒ 8πdp(X) = −8π(ρ + p)g(X, DUU) =

= d(2µ − k)(X) = −2(µ + k)g(X, DUU),

and both equations together give

dk(X) = 0 for all X ∈ U⊥

This shows: if ρ, hence k, are not konstant then the levels of ρ are the
integral manifolds of the distribution U⊥.

We still have to consider the case of constant k since the absence of matter equations makes

still many examples possible. Therefore we need another proof of the integrability of the
distribution U⊥. We claim, the vector field (k +µ)U has a symmetric covariant differential

and therefore is (locally) the gradient of a function, and since (k +µ) > 0 is implied by our
assumption ρ > 0, this proves integrability of U⊥. To see the claim, first put orthonormal

vectors X, Y, Z in the second part of the above Bianchi equation to obtain

0 = (k + µ)(g(DY U, Z)X − g(DXU, Z)Y ), hence g(DY U, Z) = 0.

This says that for any orthonormal basis in U⊥ the matrix of DU
∣

∣

U⊥
is diagonal, in partic-

ular symmetric. It remains to check, with the above equations, the remaining symmetry:

g(DX((k + µ)U), U) = g(dµ(X)U, U) = (k + µ)g(X, DUU) = g(DU ((k + µ)U), X),

and thus prove the integrability of U⊥ in all cases. We emphasize that this integrability

was deduced from strong assumptions, it is normally false.
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Next we determine the intrinsic curvature of the integral submanifolds of U⊥. We also
refer to them as space slices. The unit (time like) vector field U is of course normal along

them. The Weingarten map (=shape operator) of the space slices therefore is S := DU
and we proved already that DU is diagonal in any orthonormal basis, i.e., is proportional

to id . We use unit vectors X ⊥ Y = Z in the Bianchi equation involving dk(U). Taking a
scalar product with X we obtain:

−
dk(U)

k + µ
· g(Y, Y ) = g(DXU, X) + g(DY U, Y ) = 2 · eigenvalue of S.

We use this in the Gauss equation:

R(X, Y )Z = k(g(Y, Z)X − g(X, Z)Y ) ( assumption about M 4)

(Gauss)
= RHyp(X, Y )Z − ((g(SY, Z)SX − g(SX, Z)SY ) · g(U, U)−1

RHyp(X, Y )Z =

(

k −
1

4

(dk(U)

k + µ

)2
)

· (g(Y, Z)X − g(X, Z)Y ).

This shows that the space slices satisfy the assumptions of the Riemannian Schur theorem

so that the curvature value is indeed constant on each space slice.

Finally we assume a matter equation F (ρ, p) = 0, ∂
∂p

F =/ 0. Recall that we proved for

all X ⊥ U that dk(X) = 0. This says that grad ρ is proportional to U (including 0).
Differentiation of the matter equation gives that grad p is proportional to grad ρ (again

including 0). Therefore we have for all X ⊥ U that 0 = dp(X), hence

0 = dp(X) = −(ρ + p)g(X, DUU).

The integral curves of U , the world lines of the matter particles, are therefore geodesics with
integrable orthogonal complements U⊥ and these space slices are a family of geodesically

parallel hypersurfaces. Q.E.D.
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Summary of Conformal Changes

ḡ = λ−2gGiven

DY Z = DY Z + Γ(Y, Z)then

Γ(Y, Z) = −
TZλ

λ
Y −

TY λ

λ
Z + g(Y, Z)gradλ.with

R(X, Y )Z = R(X, Y )Z + (DXΓ)(Y, Z)− (DY Γ)(X, Z) + Γ(X, Γ(Y, Z))− Γ(Y, Γ(X, Z))

gives with the abbreviation B := Dgrad λ

R(X, Y )Z = R(X, Y )Z +
1

λ

(

g(Y, Z)BX − g(X, Z)BY + (g(BY, Z)X − g(BX, Z)Y
)

−
1

λ2
g(gradλ, gradλ) · (g(Y, Z)X − g(X, Z)Y ).

This gives the new Einstein tensor as

G = λ2
(

G +
2

λ
B +

( 3

λ2
g(gradλ, gradλ) −

2∆λ

λ

)

· id
)

.

We have done no computations with the Weyl conformal curvature tensor, we list it as a

reference:

C(X, Y )Z = C(X, Y )Z =

= R(X, Y )Z −
1

n − 2

(

ric(Y, Z)X − ric(X, Z)Y + g(Y, Z)Ric(X)− g(X, Z)Ric(Y )
)

+
trace (Ric)

(n − 2)(n − 1)

(

g(Y, Z)X − g(X, Z)Y
)

.
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