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Preface
When the Mathematics Department of the University of Pennsylvania contacted me to
spend a term with them, I discussed with Chris Croke and Wolfgang Ziller plans for a
course topic. They thought that a course on Relativity, addressed to graduate students
in di↵erential geometry, would find most interest. This turned out to be the case and the
interest I met encouraged me to write these notes. The notes, while written as a di↵erential
geometric text, do develop many applications until observable numbers are obtained.

For the preparation of this course I had substantial help from the summaries that my former
students wrote for each of my lectures in the summer 1994. I hope that these extended
Philadelphia notes will find their way back to some of them. Their enthusiasm motivated
me to suggest to Chris and Wolfgang that such a course might work again. – The advice
I got from Jürgen Ehlers, Peter Schneider and Andreas Quirrenbach was essential for my
background in Astrophysics, i.e., for the words to be said between the mathematics.

There are nonessential di↵erences to other expositions and one essential one. The fact that
I wrote for an audience with a good working knowledge in di↵erential geometry is irrelevant
for the contents, adaption to other audiences is therefore straight forward. However, there
is one deviation from other texts which is more than a matter of taste: I have heavily
emphasized world lines and de-emphasized space slices. The reason is that our clocks are
now good enough to measure proper time on the clocks’ world lines with enough precision
to show relativistic e↵ects. And they are also precise enough so that definitions of rest
spaces of observers, definitions that go back to Einstein in Special Relativity, do not work
in less linear situations, e.g. in the Schwarzschild geometry.

I am grateful to my colleagues at Penn and to the graduate students I met for creating
such a friendly and interested atmosphere in which it was a pleasure to work. In addition,
many thanks to Herman Gluck for all the help in other matters.

Philadelphia, Spring 2007
Hermann Karcher
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Einstein’s Clocks
How can identical clocks measure time at di↵erent rates?

Einstein’s theory of Special Relativity started with thought experiments that analyzed the
concept of simultaneity. It took 50 years before more and more experiments started to
be performed that verified Einstein’s predictions to higher and higher accuracy. 25 years
ago relativity entered daily life when the global positioning system (GPS) was built. But
many people still react with complete disbelief to the statement that time may pass with
di↵erent speed – nowadays measurably in many situations. I will first try to explain what
the precise meaning of this statement is and then show that this basic fact of relativity
theory is in perfect agreement with other facts from physics that are less di�cult to accept.

What are clocks?

The first precision time pieces were pendulum clocks. They had one imperfection that
caused problems in astronomy and made them useless on the ocean: When transported
they lost their precision completely. Time pieces with balance springs were much better
behaved and quartz clocks essentially did not loose precision when transported. These
classical clocks have a common principle: They have a very regular but delicate clock pulse
generator, a mechanism that counts the pulses, translates the count into and shows the time
that passed, and finally an energy source that keeps the pulse generator going. Presently
our standard time is measured with atomic clocks. Basically the clock pulse generator is
the transition frequency between two energy levels of the element cesium and the point is
that the transition radiation has an extraordinarily narrow band width. More technically,
a microwave radiation of approximately this transition frequency is synthesized and its
absorption by the cesium atoms is used to regulate it to precisely the correct transition
frequency. Again, the frequency is counted and the count is translated into time that
passed. Let me now emphasize that it does not really matter what opinions about time
one has. But one needs to realize that all statements involving time in physics mean the
time that is measured, presently by cesium clocks. For example, the physicists and the
engineers involved in the installation of the global positioning system did not agree about
how time passes. Therefore two di↵erent counting systems had to be installed in the early
GPS satellites. The non-relativistic version was so far o↵ that the system did not work.

The choice of the element cesium for our standard clocks has technical reasons for achieving
high precision. In principle one can use the transition frequency between any two energy
levels of any atom. I connect this fact with a fundamental astronomical observation: If one
observes spectral lines in the light of any celestial object, then one can identify subfamilies
of lines as the lines of specific elements because the ratios of the celestial lines are
the same as the ratios in our laboratories! Rephrased as time measurements this
says: The atomic clocks at any place in the universe (that we have been able to observe)
agree among each other about how time passes at that place. The fact that the ratios agree
and not the frequencies themselves means that we are observing clocks which agree among
each other but their time passes with di↵erent speed than ours. We will see that relative
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motion, the so called Doppler e↵ect, can explain this.

Observation of identical clocks that tick with di↵erent speed.

What kind of an experiment could one imagine that lets us observe identical clocks ticking
with di↵erent speed? In principal we could sit next to one clock and observe another one
ticking di↵erently. A skeptic would still blame the clock rather than accept our statement
about time passing di↵erently. Therefore I want to describe another type of clock that,
admittedly, cannot be built to the precision of a cesium clock, but they convey such a
robust impression of the passing of time that I find it very di�cult to disbelieve them.
These clocks measure the passing of time with radioactive material: one unit of time of
such a clock has passed, if one half of the original amount of material has decayed. Several
such clocks are in practical use in archaeology. There is no indication so far that they might
not agree with the cesium clocks. Now, if we hand to two physicists equal blocks of radium,
let them go their ways and when they later meet again we count the radium atoms they
have left. If one of them has 5% fewer than the other aren’t we forced to say that for him
5% more time has passed? – Well, except for the skeptical remark: I would prefer to see
such an experiment instead of speculating about its possible outcome.

Already when I was a student the physicists Pound and Rebka performed such an experi-
ment. They put one (generalized) atomic clock on the ground floor of a 40 m tower and an
identical clock at the top. The bottom clock sent its time signals to the top. Technically
simpler, the bottom clock sent directly the transition radiation of its clock pulse generator
to the top clock. The newly discovered Mösbauer e↵ect had to be used so that the emitted
radiation did not loose momentum to the emitting atom. At the top Pound and Rebka
observed that the incoming frequency was too slow to be absorbed by the identical atoms
of the top clock pulse generator. In other words: they observed that the bottom clock was
ticking more slowly than the top clock! Even more surprising, they could determine how
much too slow the bottom clock was and found that the di↵erence in clock speed was in
perfect agreement with older well established facts from physics. Here are the details:
From an electromagnetic wave one can absorb energy only in portions

E = h · ⌫
These portions are called photons.
These photons have a mass m

E = m · c2, m = E/c2 = h · ⌫/c2

Here c denotes the speed of light.
If some mass m flies a distance s upwards in the gravitational field of the earth, then it
looses the following amount of kinetic energy

�E = m · g · s.
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Pound and Rebka found that also photons loose exactly this much energy! We can translate
this energy change into a frequency change:

�⌫ =
�E

h
= ⌫ · g · s

c2
,

and it is exactly this frequency change that was responsible for the bottom clock to tick
more slowly. (Summary on transparency 1 at the end.)

In other words, if we accept the two Nobel prize formulas above and the Pound
Rebka measurement (made possible by the Mösbauer Nobel prized e↵ect) then
the time signals of the bottom clock arrive at the top clock at the slowed down
rate predicted by energy conservation!

Clocks in motion relative to each other.

Now we turn to the origin of Special Relativity. Decades before cesium clocks and the
Pound Rebka experiment Einstein predicted on the basis of thought experiments that rel-
ative motion would a↵ect how identical clocks measure time. History shows that many
people are unable to accept Einstein’s analysis (among them were even the engineers of the
GPS project). I believe one reason is that we have absolutely no every day experience with
observations made by two people in fairly fast motion relative to each other. Therefore I
chose the Pound Rebka experiment as introduction: An observer can sit quietly and watch
the two identical clocks tick at di↵erent rate. This situation is so simple that one cannot
argue with its set up.
In Einstein’s 1905 analysis there was no gravity. We are asked to imagine two observing
physicists in whose laboratories one cannot measure the faintest traces of any acceleration.
However they are allowed to be in constant relative motion. As far as we know, the laws of
physics have to be exactly the same in all such situations. This is now postulated as the
principle of relativity and neither experiments nor theoretical analysis raise any suspi-
cion that this principle might be wrong. Such laboratories are called inertial systems. Note
that such inertial systems are an idealization which does not exist in our world. Einstein’s
falling elevator can only turn o↵ a strictly homogenous gravitational field, not the real fields
we live in. Therefore no practical reference frame will be strictly inertial. Special Relativity
is part of the ideal world of inertial systems and its acceptance has to be in this idealized
form. Its assumptions are never strictly satisfied, in no real or imagined laboratory of our
world.
Let me recall that the situation is the same with our 3-dimensional Euclidean geometry. We
are completely at ease in using this ideal geometry, although we can never check whether
our physical surroundings strictly satisfy its axioms. Let me recall one property of Eu-
clidean geometry which is very similar to what we will meet in Special Relativity. We are
accustomed to use coordinates called Height, Width and Depth, they measure distances in
three orthogonal directions. Given these orthogonal measurements we compute the length `
of a vector (x, y, z) with the Pythagorean theorem as ` =

p
x2 + y2 + z2. Then we discover

that this formula is not tied to our standard coordinates: we can take any three pairwise
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orthogonal unit vectors {e1, e2, e3}, write (x, y, z) = x1e1+x2e2+x3e3 and find the surpris-
ing fact that the length is always computed by the same formula: ` =

p
x2

1 + x2
2 + x2

3. In
other words, although we usually think of having a naturally preferred coordinate system it
is true that all the other coordinates are equally good and no geometric di↵erence between
them exists. In a completely analogous way we will describe the geometry of Special Rel-
ativity first from the point of view of one preferred inertial observer and then we discover
that in all inertial systems the same formulas hold. The analogy goes still farther. Of
course we know from our Euclidean geometry the following: If we join two distinct points
in space by two di↵erent curves then we find it silly to expect that the two curves have
the same length. If we accept the geometry of Special Relativity with the same trust then
the famous twin paradox goes away by turning silly: the time measured by a clock is the
length of that curve that describes the traveling life of the clock, and length means length
with respect to the geometry of Special Relativity. As in the Euclidean analogue: it is silly
to expect that di↵erent curves have the same length.
To derive the geometry of Special Relativity we only use the principle of relativity and
a fundamental hypothesis formulated by Einstein: The traveling speed of a light signal is
independent of the motion of its source, or in more colloquial words: the speed of light
is constant. Physicists had met this constant traveling speed of electromagnetic waves
already before Einstein, in Maxwell’s theory of electromagnetism. And briefly before Ein-
stein published ‘Special Relativity’, further support was given to the constant speed of light
hypothesis by the (negative) result of the Michelson-Morley interferometer experiment.

The Geometry of Special Relativity.

What we have to understand can be condensed into the following main problem. Consider
two inertial observers whose inertial systems have the velocity v relative to each other. We
assume further that they meet at some moment and set their clocks to zero at that instant.
When their clocks show time 1 each of them sends a light signal towards the other one
(moving away with velocity v).

The time T when these light signals are received will be the same for both of these
inertial observers because of the relativity principle.

How large is T?

To answer this question they agree to return a light signal at the moment when the first
signal is received (i.e. at clock time T ). The first signals were sent at clock time 1 and
received at clock time T . For the second pair of signals the time intervals are stretched by
a factor T : sent at clock time T and received at clock Time T 2. Both of them use the same
clocks, hence the same units of time. To measure lengths they agree on units such that the
speed of light is c = 1. Now both of them can plot the world line of the other and the world
lines of the light signals in coordinates of their inertial systems, see transparency 2 at the
end. Our observers solve two linear equations and find T 2, hence T , in terms of c and v.
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This fundamental relation gives the factor T by which the time between two received light
signals is longer than the time between the emissions of these signals (positive v means
moving apart). This frequency shift is called the Doppler e↵ect.

T 2 =
c + v

c� v
.

Now both can mark on the world line of the other(!) the points where the clock time is
one. They now observe that for all inertial observers the Time-1-Points on the other
world lines satisfy (in their own coordinates) the equation of a two-sheeted hyperboloid:

t2 � |x|2 = 1.

The two physicists therefore have achieved for Special Relativity what corresponds, in our
Euclidean 3-space, to the determination of the unit ball.
The quadratic expression t2 � |x|2 plays for Special Relativity the same role that the
Pythagorean theorem plays for Euclidean space. In particular it determines the time-
like arc length on world lines without reference to any(!) observer. But this time-like arc
length on a world line is the time that an atomic clock having this world line does measure:
Measured time is a geometric property of the world line in question.

In the last statement we apply the insight that we obtained for inertial observers more
generally to accelerated observers, in other words: to curved world lines. We justify this
generalization by noting that the time-like arc length of a curved world line can be ob-
tained by approximating the world line by piecewise straight, i.e. non-accelerated, world
lines. Since the corners of such approximations are not physically meaningful one might
also want to see experimental support. Indeed, we can observe particles with a very short
lifetime circling at high speed in a synchroton. Not only do we notice immediately that
they circle many more times than their lifetime permits, we also find after doing the com-
putation (see transparency 3 at the end) that the number of completed orbits is exactly
what the computed passing of time on these world lines allows them. Notice that this is a
twin paradox experiment: a twin particle watching from the center of the synchroton its
orbiting twin will reach the end of its life time long before the orbiting particle decays. Put
di↵erently, it is not di�cult to imagine two physicists starting their rather di↵erent lives
with two equal chunks of radium. When they meet again late in life it would be a colossal
coincidence if the time-like arc lengths of their world lines really were the same. Therefore
they will find their remaining chunks of radium to be of di↵erent size.

One can even observe the di↵erent passing of time in (fairly) inertial systems and on inertial
world lines. Of course, in such a situation the two world lines cannot have the same start
point and the same end point. For a full explanation it would therefore be necessary
to discuss how distances are measured in the two inertial systems. This requires more
definitions than just clocks. Therefore we only mention the experiment without detailed
explanation:
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Collisions by cosmic rays generate high in the atmosphere very short lived but fast traveling
mesons. They are measured in a laboratory about 30 kilometers away. Even with the speed
of light they could not travel 30 km in their life time. However the Time-1-Point for their
world line is given by Minkowski’s hyperbola and the result is that much less proper time
passes on the meson’s world line from the top of the atmosphere to the ground laboratory
than passes on the world line of a rocket that flies between the same places. Therefore its
life time su�ces to reach the ground.

Summary and repetition:
1.) Since, according to Pound and Rebka, photons flying upwards in a gravitational field
loose the same amount of (kinetic) energy as a mass m = h⌫/c2 gains in potential energy,
the frequency ⌫ of the corresponding wave is decreased by the same percentage. This can be
rephrased by saying: the distance between time signals increases by the same percentage.
Therefore we watch the clock that is higher up in the gravitational field ticking faster by
exactly this percentage.
2.) The principle of relativity and the constancy of the speed of light imply that the Time-1-
Points on unaccelerated world lines in inertial systems lie on the gauge surface t2�|x|2 = 1.
This allows to define a time-like arc length on world lines and our analysis of clocks means
that this time-like arc length is the (so called proper) time that passes along such a world
line and is measured by atomic clocks or decaying radium.

Experiments that support Special Relativity:
http://www.atomki.hu/fizmind/specrel/experiments.html

Clock debate before the start of GPS satellites:
http://www.leapsecond.com/history/Ashby-Relativity.htm
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Transparency 1

1.) According to Max Planck one can absorb energy from an electromagnetic
wave only in portions

E = h · ⌫.

These portions are called photons.

2.) These photons have a mass m according to Einstein’s famous formula

in general: E = m · c2, for photons: m =
h · ⌫
c2

,

where c denotes the speed of light.

3.) If some mass m flies a height s upwards in the gravitational field of the
earth, then it looses the following amount of kinetic energy

�E = m · g · s.

4.) The experiment of Pound and Rebka shows that the same is true for photons

�E =
h · ⌫
c2

· g · s.

This energy change translates into a frequency change

�⌫ =
�E

h
= ⌫ · g · s

c2
.

5.) A clock which is a height s above another clock in the field of the earth
ticks faster by this same percentage

�⌫
⌫

=
g · s
c2

!

9



Transparency 2

The Time 1 Points of Minkowski Geometry

1

T

T2

1.) World line of a light signal starting from 1 (red):
�0
1

�
+
�1
1

�
· t

The world line of the second observer, starting at 0 (blue):
�a
1

�
· s

The intersection of these two world lines (at yet unknown clock time T ) is:

✓
0
1

◆
+
✓

1
1

◆
· a

1� a
=
✓

a

1

◆
· 1
1� a

.

2.) The returning signal is received at clock time T 2 in
✓

0
T 2

◆
=
✓

0
1+a
1�a

◆
,hence T =

r
1 + a

1� a
.

3.) The Time-1-Point on the second world line therefore is at

1
T

·
✓

a

1

◆
· 1
1� a

=
1p

1� a2
·
✓

a

1

◆
.

4.) All the Time-1-Points
�x

t

�
(green) therefore satisfy the following hyperbola

equation
t2 � x2 = 1.
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Transparency 3

How Time passes in a Synchroton

It is a theorem that the arc length of smooth curves in Euclidean space can
be determined via approximation by polygons. The same proof shows that
the time-like arc length of world lines can be determined via approximation
by piecewise non-accelerated worldlines, even though the corners of these ap-
proximations are physically unrealistic. Since we have found the Time-1-Points
on straight world lines we can conclude how time passes on the world lines of
particles circling in the synchroton. Such a world line is a

helix: c(s) :=

0
@ cos(s)

sin(s)
h · s

1
A , h > 1

and time passes as
T (s) =

p
h2 � 1 · s,

while on the world line that is the axis of the helix the larger time Taxis = h · s
passes.

It is a correct idea to imagine time as time-like arc length of world lines.
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Indefinite Scalar Products
Isometry Groups, Geodesics on Spheres, Space Time Coordinates

For the interpretation of the machinery of Relativity some intuitive understanding of in-
definite scalar products is required.

In terms of the standard scalar product h., .i on Rn we can define indefinite scalar products
with the help of a diagonal matrix S

S := diag (+1, ..p-times..,+1,�1, ..(n� p)-times..,�1) as

hhu, vii := hS · u, vi or hhu, vii =
pX

i=1

uivi �
nX

i=p+1

uivi.

Linear maps A : Rn ! Rn are called isometries or hh., .ii-orthogonal if they satisfy

u, v 2 Rn ) hhAu,Avii = hhu, vii.

We define quadratic surfaces (called generalized spheres)

Q± := {v 2 Rn : hhv, vii = ±1}.

Of course we cannot avoid to look at pictures with eyes trained in Euclidean geometry.
Therefore one should note the following

Transitivity Theorem
The isometries of (Rn, hh., .ii) are transitive on Q+ and on Q�.

Proof. Writing hhu, vii =
Pp

i=1 uivi �
Pn

i=p+1 uivi we have O(p) ⇥ O(n � p) as that
subgroup of the isometry group which a Euclidean trained eye can observe immediately.
For x := (x1, . . . , xp, xp+1, . . . , xn) 2 Q± we put A2 :=

Pp
i=1 x2

i , B2 :=
Pn

i=p+1 x2
i .

Because of the transitivity of the groups O(p), O(n� p) on the spheres Sp�1 resp. Sn�p�1

we can isometrically move x to (A, 0, . . . , 0, B). Since x 2 Q± means A2 � B2 = ±1we
can write A,B as cosh ⌧, sinh ⌧ . It remains to show that (cosh ⌧, 0, . . . , 0, sinh ⌧) 2 Q+

can isometrically be moved to (1, 0, . . . , 0) 2 Q+ and (sinh ⌧, 0, . . . , 0, cosh ⌧) 2 Q� can
isometrically be moved to (0, . . . , 0,�1). Indeed, the matrix

M :=

0
BBBB@

cosh ⌧ 0 . . . 0 � sinh ⌧
0 1 0
...

. . .
...

0 1 0
sinh ⌧ 0 . . . 0 � cosh ⌧

1
CCCCA

does this. And M is an isometry because

x2
1 � x2

n = (cosh ⌧x1 � sinh ⌧xn)2 � (sinh ⌧x1 � cosh ⌧xn)2.

Note that it is enough to check squares since also for indefinite scalar products we have the
polarization identity:

4hhu, vii = hhu + v, u + vii � hhu� v, u� vii.
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Tangent Space Restriction Theorem
The restriction of the bilinear form hh., .ii from Rn to a tangent space of Q+ resp.
Q� looses a +sign (i.e. has signature (p � 1, n � p)) on Q+ respectively looses a
�sign (i.e. has signature (p, n� p� 1)) on Q�.

Proof. Because of the transitivity theorem we only need to check this on the tangent
space at (1, 0, . . . , 0) 2 Q+ resp. (0, . . . , 0, 1) 2 Q�, where it is trivial.

Definition. The cone LC := {u 2 Rn : hhu, uii = 0} is called the light cone of the
indefinite scalar product hh., .ii.

Tangent Space Intersection Theorem
The intersection of Q± with one of its tangent spaces TpQ± ist the light cone of
the restriction of hh., .ii to this tangent space.

Proof. A curve c(t) ⇢ Q± through p satisfies hhc(t), c(t)ii = ±1, c(0) = p, hence

0 =
d

dt
hhc(t), c(t)ii|t=0 = 2hhp, ċ(0)ii.

We therefore have for the tangent vector space TpQ± = {v 2 Rn : hhp, vii = 0}. The a�ne
tangent space in Rn is p + TpQ±. Any point u in the a�ne tangent space satisfies:

u = p + v, hhp, pii = ±1, hhp, vii = 0.

Therefore u 2 Q±, i.e. hhu, uii = ±1, is equivalent with

0 = hhu, uii � hhp, pii = hhp, vii+ hhv, vii = hhv, vii,

which says that u is in the light cone of the a�ne tangent space (with the restricted scalar
product) or in other words that v is in the light cone of the tangent vector space.

Oblique Reflection Fact
The map M that was used in the transitivity proof clearly satisfies M2 = 1. It
obviously has n � 2 Eigenvalues +1 (with the eigenvectors being vectors of the
basis). The remaining eigenvalues are +1 and �1 with eigenvectors (x1, xn)+ =
(cosh ⌧/2, sinh ⌧/2) and (x1, xn)� = (sinh ⌧/2, cosh ⌧/2). All eigenvectors together
are an hh., .ii-orthonormal basis. – Of course the last two eigenvectors are not or-
thogonal for the Euclidean metric that we naturally use for picture interpretations.
But, as in the Euclidean case, (cosh ⌧/2, sinh ⌧/2) is a point on the “indefinite
sphere” {(x1, xn) : x2

1 � x2
n = 1} and the other eigenvector is a tangent vector to

this sphere at that point.

If we use instead of the standard basis {e1, . . . , en} the eigenbasis {e+, e2, . . . , en�1, e�} in
which x 2 Rn has the coordinates {x+, x2, . . . , xn�1,+x�} then Mx has the coordinates
{x+, x2, . . . , xn�1,�x�} and hhx, xii = hhMx,Mxii is obvious.
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Next we turn to geodesics on these quadratic surfaces. Because of the indefiniteness of
the metric it does not make good sense to look for shortest curves. I will introduce the
covariant derivative of an indefinite Riemannian metric soon. Presently we use the

Definition of Straightest Curves. A curve c(t) on Q± (later: on a submanifold)
is called a straightest curve or a geodesic if its acceleration c̈(t) has no tangential component.

Planar Geodesics Theorem
The geodesics on Q± are – as in the case of the Euclidean sphere – intersection of
Q± with 2-planes that pass through the origin of Rn.

Proof. We abbreviate � := ±1. For any curve t 7! �(t) 2 Q� we have

hh�(t), �(t)ii = �, hence hh�(t), �̇(t)ii = 0, or �̇(t) 2 T�(t)Q�.

Geodesics have by definition no tangential acceleration. Presently the tangent spaces are
orthogonal to the position vector, hence �̈(t) = �(t)�(t). This implies

d

dt
hh�̇(t), �̇(t)ii = 2hh�̇(t), �̈(t)ii = 0, hence hh�̇(t), �̇(t)ii = hh�̇(0), �̇(0)ii

Similarly, di↵erentiating hh�(t), �̇(t)ii = 0 gives

0 = hh�̇(t), �̇(t)ii+ hh�(t), �̈(t)ii = hh�̇(t), �̇(t)ii+ hh�(t), �(t)�(t)ii
and therefore we have �(t) = �hh�̇(0), �̇(0)ii/� =: �k. So we have obtained a simple
di↵erential equation for �(t):

�̈(t) + k · �(t) = 0.

The solution can be written as linear combination of the initial conditions with the help of
either trigonometric or hyperbolic functions. For unification I use the following

Function Definition: Denote the function that solves f̈ + k · f = 0 with initial
conditions

f(0) = 1, f 0(0) = 0 by ck(t)
f(0) = 0, f 0(0) = 1 by sk(t).

General geodesic: �(t) := �(0) · ck(t) + �̇(0) · sk(t). Clearly this curve is in the vector
subspace spanned by {�(0), �̇(0)}. QED

The quadratic surfaces Q± are analogous to spheres because of their definition in terms
of the scalar product. They also share a curvature property with the Euclidean spheres.
Recall the

Definition of the Weingarten Map (or Shape Operator): Let N(.) be a
unit normal field along a hypersurface. For each curve t 7! c(t) in the hypersurface we put

Sc(t)ċ(t) :=
d

dt
N(c(t)) ? N(c(t)).

Apply this definition using that for all x 2 Q± the normal is N(x) = x. All eigenvalues of
the shape operator of the hypersurface Q± are therefore 1 (this property is called umbillic):

Sc(t)ċ(t) = ċ(t) or S = id : TxQ± ! TxQ±.
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Light Cone Determines Metric Theorem
Two indefinite quadratic forms with the same light cone are proportional.

Proof. Observe that two quadratic forms that agree on an open set are equal. Choose a
fixed timelike vector v, i.e. hhv, vii < 0. For all w from the open set of spacelike vectors,
i.e. hhw,wii > 0, consider the straight line u(t) := v+tw. For small |t| the vectors u(t) are
timelike, for large |t| they are spacelike. Each such line therefore hits the light cone twice.
Let q(., .) be the other quadratic form, with the same light cone. Choose �(v) such that
q(v, v)��hhv, vii = 0. Define b(., .) := q(., .)��hh., .ii and observe that t 7! b(v+tw, v+tw)
is a quadratic polynomial with three zeros, one at t = 0, the other two on the light cone.
These polynomials are therefore zero, in other words b(u, u) = 0 for an open set of u, hence
b = 0, q = � · hh., .ii. QED

Here are two reasons why we will meet conformal changes of the metric extensively: (i)
The Maxwell equations, which control electromagnetic waves, are conformally invariant.
(ii) The important cosmological models by Friedman are conformally flat. To get used to
conformal changes we prove that stereographic projection is a conformal map.

Definition of Stereographic Projection. Let p 2 Q± and let TpQ± be the
a�ne tangent space, i.e. we write its elements as p+v with hhp, vii = 0. The stereographic
projection projects p + v from the point �p 2 Q± (opposite to p) to Q±. In other words,
the line

g(t) := �p(1� t) + (p + v)t = �p + (2p + v)t

intersects Q± in �p = g(0) and in St(v), at t = 4�/(4� + hhv, vii).

Stereographic Projection:

St(v) := �p + (2p + v)
4�

(4� + hhv, vii)

Conformality Theorem: Stereographic projection is conformal.

Proof. The statement means that every derivative is a linear conformal map. We expand
St(v + �v) = St(v) + Lin(�v) + O

�
(�v)2

�
and have to prove that the linear term is

conformal.

St(v +�v) = �p + (2p + v +�v)
4�

4� + hhv +�v, v +�vii

= St(v) +
4�

4� + hhv, vii
⇣
�v � 2

(2p + v)hhv,�vii
4� + hhv, vii

⌘
+ O

�
(�v)2

�
Next observe that 4� + hhv, vii = hh2p + v, 2p + vii and abbreviate x := 2p + v. Then

St(v +�v)� St(v) =
4�

4� + hhv, vii
⇣
�v � 2

xhhx,�vii
hhx, xii

⌘
+ O

�
(�v)2

�
,

where the linear term �v !
⇣
�v � 2

xhhx,�vii
hhx, xii

⌘
is an isometry, hence conformal. QED
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Examples

SL(2, R) :=
⇢✓

a b
c d

◆
: ad� bc = 1

�
.

We rename a, b, c, d as

a := x1 + x4, b := x2 + x3, c := x3 � x2, d := x1 � x4, hence
1 = ad� bc = x2

1 + x2
2 � x2

3 � x2
4 = hhx, xii.

The following curves (=subgroups) are geodesics – check �̈(t) + k�(t) = 0:

t 7!
✓

et 0
0 e�t

◆
t 7!

✓
cosh t sinh t
sinh t cosh t

◆
t 7!

✓
cos t � sin t
sin t cos t

◆
.

In all cases �(0) =
✓

1 0
0 1

◆
= id, or x = (1, 0, 0, 0), and

�̇(0) =
✓

1 0
0 �1

◆
�̇(0) =

✓
0 1
1 0

◆
�̇(0) =

✓
0 �1
1 0

◆
,

= (0, 0, 0, 1) = (0, 0, 1, 0) = (0, 1, 0, 0).

All geodesics through the identity are 1-parameter subgroups. But not all points are reached
by these geodesics: Because they are subgroups we have �(t) = �(t/2) ·�(t/2) so that every

reached point is a square – but while
✓
�1 0
0 �1

◆
=
✓

0 �1
1 0

◆
·
✓

0 �1
1 0

◆
, only slightly

di↵erent ones are not squares:
✓
�r 0
0 �1/r

◆
, r > 1. In other words: This very simple

and nice example does not have the Hopf-Rinow property! This indicates that geodesic
completeness (which is such a natural assumption in Riemannian geometry) may NOT
be so useful in the indefinite cases. Indeed, except for the Minkowski space of Special
Relativity, all our astronomically interesting examples are not complete.

Our characterization of geodesics as 2-plane sections of Q± allows to discuss completeness
further: Any pair of non-antipodal points p, q 2 Q± determines exactly one 2-plane and it
cuts out the only geodesic through p and q. If this geodesic is a hyperbola and p, q are on
di↵erent components then they cannot be joined by a geodesic.

Next we look at di↵erent parametrizations of Q+ ⇢ R5 for the scalar product

hhx, yii :=
4X

i=1

xiyi � x5y5.

The restriction of this scalar product to the tangent spaces of Q+ has the signature of
Special Relativity. Our parametrizations of Q+ can be described as di↵erent families of
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timelike geodesics. The distribution given as the hh., .ii-orthogonal completement of the
tangent vectors of these geodesics is integrable. We therefore get a foliation of Q+ by
“spaces” that are quite di↵erent.

1. Parametrization:

Q+ =
⇢✓

e · cosh ⌧
sinh ⌧

◆
: e 2 S3, ⌧ 2 R

�
and the curves ⌧ 7!

✓
e · cosh ⌧
sinh ⌧

◆

are the timelike geodesics mentioned above. Now we compute the induced scalar product
using this parametrization. For a curve �(.) we have

�(t) :=
✓

e(t) · cosh ⌧(t)
sinh ⌧(t)

◆
, �̇(t) =

✓
ė(t) · cosh ⌧

0

◆
+
✓

e(t) · sinh ⌧(t)
cosh ⌧(t)

◆
· ⌧̇(t)

and hence (using e(t) ? ė(t))

hh�̇(t), �̇(t)ii = �⌧̇(t)2 + cosh2 ⌧ · hė(t), ė(t)iS3 .

The spacelike time slices {⌧ = const} = {x5 = const} are 3-dimensional round spheres
with equator length 2⇡ cosh ⌧ .

2. Parametrization:

Q+ �

8<
:q(!, ⇢, ⌧) :=

0
@! sinh ⇢ sinh ⌧

cosh ⌧
cosh ⇢ sinh ⌧

1
A : ⌧ 2 R, ! 2 S2, ⇢ 2 R+

9=
;

and the curves ⌧ 7! q(!, ⇢, ⌧) are the timelike geodesics mentioned above. Now we
compute the induced scalar product using this parametrization. For any curve �(t) :=
q(!(t), ⇢(t), ⌧(t)) we have

�̇(t) =

0
@ !̇(t) · sinh ⇢ sinh ⌧

0
0

1
A+

0
@! cosh ⇢ sinh ⌧

0
sinh ⇢ sinh ⌧

1
A · ⇢̇(t) +

0
@! sinh ⇢ cosh ⌧

sinh ⌧
cosh ⇢ cosh ⌧

1
A · ⌧̇(t),

hence (using ! ? !̇)

hh�̇(t), �̇(t)ii = �⌧̇(t)2 + sinh2 ⌧ · (⇢̇2 + sinh2 ⇢h!̇(t), !̇(t)iS2).

Here the time slices {⌧ = const} = {x4 = const} are 3-dimensional hyperbolic spaces
of curvature �1/ sinh2 ⌧ . – Note that these coordinates do not cover all of Q+ although
the hyperbolic spaces and the timelike geodesics are complete, except for the singularity at
⌧ = 0.

3. Parametrization:

Q+ �

8<
:q(!, u, ⌧) :=

0
@ !u exp ⌧

cosh ⌧ � 0.5u2 exp ⌧
sinh ⌧ + 0.5u2 exp ⌧

1
A : ⌧ 2 R, ! 2 S2, u 2 R+

9=
;
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and the curves ⌧ 7! q(!, u, ⌧) are the timelike geodesics mentioned above. Now we
compute the induced scalar product using this parametrization. For any curve �(t) :=
q(!(t), u(t), ⌧(t)) we have

�̇(t) =

0
@ !̇(t) · u exp ⌧

0
0

1
A+

0
@ ! exp ⌧
�u exp ⌧
+u exp ⌧

1
A · u̇(t) +

0
@ !u exp ⌧

sinh ⌧ � 0.5u2 exp ⌧
cosh ⌧ + 0.5u2 exp ⌧

1
A · ⌧̇(t),

hence (using ! ? !̇ and the orthogonality of the last two vectors)

hh�̇(t), �̇(t)ii = �⌧̇(t)2 + exp 2⌧ · (u̇2 + u2h!̇(t), !̇(t)iS2).

Here the time slices {⌧ = const} = {x4 + x5 = const} are 3-dimensional Euclidean
spaces, their metric given in polar coordinates u, !. Again, the coordinates do not cover
all of Q+, this time without showing a coordinate singularity, and as before with complete
timelike geodesics and complete Euclidean spaces.

4. Parametrization:

Q+ �

8<
:q(!, ↵, ⌧) :=

0
@ ! sin↵

cos↵ cosh ⌧
cos↵ sinh ⌧

1
A : ↵ 2 [0, ⇡/2), ! 2 S2, ⌧ 2 R

9=
; .

Here the timelike parameter lines ⌧ 7! q(!, ↵, ⌧) are neither geodesics nor is ⌧ the time-
like arc length on them. We list this example because it appears as limit in a family of
astronomically interesting examples. We compute the induced scalar product using this
parametrization. For any curve �(t) := q(!(t), ↵(t), ⌧(t)) we have

�̇(t) =

0
@ !̇ sin↵

0
0

1
A+

0
@ ! cos↵
� sin↵ cosh ⌧
� sin↵ sinh ⌧

1
A · ↵̇(t) +

0
@ 0

cos↵ sinh ⌧
cos↵ cosh ⌧

1
A · ⌧̇(t),

hence, using the orthogonality of these vectors we get

hh�̇(t), �̇(t)ii = � cos2(↵)⌧̇(t)2 + ↵̇2 + sin2(↵)h!̇(t), !̇(t)iS2 .

The slices {⌧ = constant} = {sinh ⌧ · x4 = cosh ⌧ · x5} are unit 3-spheres parametrized in
polar coordinates.

One can look at similar examples on Q� ⇢ R5. Since we want the product on the tangent
spaces to have the signature of Special Relativity one takes as product on R5

hhx, xii := x2
1 + x2

2 + x2
3 � x2

4 � x2
5.
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Special Relativity
Minkowski Diagrams, Simultaneity, Distance, Compton E↵ect, Center of Mass

We come back to the discussion at the end of lecture 1, but we explain the basic definitions
in more detail. We consider first one preferred inertial observer. His world is R4 = R3 ⇥R
and each event has coordinates (x, y, z, t). The statement that his laboratory is inertial
means that a mass point (x, y, z) that

a) is at rest at time t0 and
b) has no forces acting on it

stays at rest. We express this by saying

The world line of a point at rest is t 7! (x, y, z, t).

Being an inertial system means a little more. If the mass point moves at initial time t = 0
with velocity v = (v1, v2, v3) then it continues to do so, i.e.

The world line of a force free mass point is t 7! (x + v1t, y + v2t, z + v3t, t).

Today, time measurements are more precise than length measurements. Therefore the unit
of time, the second, is defined first, namely in terms of the frequency of the cesium transition
that is used in our standard clocks. The meter is defined as the distance which light travels
in an agreed fraction of a second. For drawing diagrams it is best to take the unit of length
such that the speed of light is 1. The world lines of light signals in the coordinate space of
our preferred observer are therefore straight lines with slope 1.

Constant Speed of Light Hypothesis. The world lines of light signals do
not depend on the source that emitted the signals. – In other words: when we
look at the world line of a light signal we can draw no conclusion about the velocity of the
emitting source.

Next we connect these statements with observations. The experiments will be described
assuming the Constant Speed of Light Hypothesis. This hypothesis is therefore not checked
directly. It is supported indirectly because all our predictions about the outcome of exper-
iments agree with the measurements.

How can two inertial observers check that they are relative to each other at rest?
(i) Light signal travel times are constant: One observer sends a light signal to the other.
The other observer returns the signal upon arrival. The first observer records the round
trip travel time of the signal and checks whether this time is constant.
(ii) Angle sizes of known objects are constant: The second observer shows the first observer
an object known to both of them. The first observer measures under which angle he sees
the known object. (For example, the angle under which we see the sun is about one half of
a degree.) This angle size has to remain constant in time.
(iii) Baseline measurements give constant distance: The first observer has two telescopes
and he knows the distance between them. He points both telescopes to the same point
that the second observer shows him. For each telescope he measures the angle between the
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direction in which this telescopes points and the direction to the other telescope. In other
words, he determines a triangle from one edge and the two adjacent angles; the distance is
the distance to the opposite (the third) corner of this triangle. This distance has to remain
constant in time.

If the two inertial observers have constant velocity relative to each other then the above
measurements give that the measured distance changes linearly in time. – However this is
not the usual way in which relative velocity is measured. Physicists and Astronomers use
the fact that the time between two light signals is di↵erent for the emitter and the receiver
if the two have a velocity relative to each other. This very important phenomenon is called
the Doppler e↵ect. We derive its size with the help of a second basic assumption of Special
Relativity:

Inertial Observer Hypothesis, also referred to as Relativity Principle.
The laws of physics are the same for any two inertial observers.

Example of its application. If two inertial observers fly away from each other
with velocity v and each of them sends two light signals to the other that are one
second apart then the time T between the received signals is the same for both
observers.

We now look once again at the discussion in the first lecture:
Doppler E↵ect and Time 1 Points of Minkowski Geometry

1

T

T2

1.) World line of a light signal starting from 1 (red):
�0
1

�
+
�1
1

�
· t

The world line of the second observer, starting at 0, relative velocity v (blue):
�v
1

�
· s

The intersection of these two world lines (at yet unknown clock time T ) is:✓
0
1

◆
+
✓

1
1

◆
· v

1� v
=
✓

v

1

◆
· 1
1� v

.
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2.) The returning signal is received at clock time T 2 in
✓

0
T 2

◆
=
✓

0
1+v
1�v

◆
,hence Doppler Ratio: T =

r
1 + v

1� v
.

3.) The Time-1-Point on the second world line therefore is at

1
T

·
✓

v

1

◆
· 1
1� v

=
1p

1� v2
·
✓

v

1

◆
.

4.) All the Time-1-Points
�x

t

�
(green) therefore satisfy the following hyperbola equation

t2 � x2 = 1.

As a consequence of the two stated physical hypotheses we have obtained via a harmless
computation two very important consequences. There is first the Doppler e↵ect that can
now be used to
measure relative velocity:

If two observers fly away from each other ( v > 0 in this case) then the time di↵er-
ence between received light signals is larger by the factor T =

p
(1 + v)/(1� v)

(Doppler Ratio, or Doppler Red Shift,) than the time di↵erence between the emit-
ted signals.

Secondly, the determination of the Time-1-Points on the world lines of all inertial observers
determines the Minkowski Geometry of Special Relativity. In the language
of this geometry all inertial observers are treated in the same away, in particular, there
is no more distinction of the originally preferred observer! The importance of having a
geometric picture based on the most important notion – Time – of Relativity cannot be
overestimated.

We have almost finished the discussion of the passage of time. Only a short addition is
needed, an addition that is in perfect agreement with experiments with short lived particles
that fly in fields that bend their world lines. Any curve c(s) = (x(s), y(s), z(s), t(s)) in our
Minkowski geometry that has everywhere a slope larger than 1, or in other words

hhc0(s), c0(s)ii = x0(s)2 + y0(s)2 + z0(s)2 � t0(s)2 < 0,

can be the world line of a clock. The time measured by the clock is called proper time,
it is the timelike arc length of the world line:

Proper Time =
Z t1

t0

p
�hhc0(s), c0(s)iids

Proper time is a geometric quantity that depends only on the world line of the measuring
clock, no other oberservers or their clocks are involved. Already at this point there is no
“twin paradox” left, only “twin facts”: The proper times along two world lines that have
the same initial points and the same final points will be di↵erent from each other in most
cases (and whether you notice this or not only depends on the precision of your clock).
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Synchronization of clocks relative at rest to each other

Einstein started his discussion of Special Relativity with thought experiments that deter-
mine what we mean by: synchronization of clocks which are at rest relative to each other.
My view of the history is that the reason for so many people to have di�culty in accept-
ing Relativity Theory lies in this synchronization discussion. Einstein’s proposal depends
heavily on the constant speed of light hypothesis and there is nothing in our daily life
experiences that has any similarity with this constancy of the speed of light. .

Einstein’s Thought Experiment. Assume we have two inertial observers relative
at rest to each other in our Minkowski world. This means they have parallel straight lines
as their world lines and the natural clocks on these world lines tick with the same speed
(given by the same Time-1-Point on the hyperboloid |x|2 � t2 = �1). The question is:

which points on the two world lines are simultaneous?
Einstein’s answer is simple (but only possible because of the constant speed of light):

Events A1 on the first, A2 on the second world line are simultaneous, if
light signals emitted at A1, A2 reach the middle world line simultaneously!

Since our model is the vector space R4 there is no ambiguity about what the middle world
line is. (One can also invoke more light signals: (a) when looking from the first world line
then the middle world line should be seen in the same direction as the second world line
and (b) the light signal travel times from the middle world line to either the first or the
second world line should be the same.)

Einstein’s answer leads to a geometrically satisfying statement:
The set of events that are simultaneous with an event A on a straight world line is the
hh., .ii-orthogonal complement through A of the straight world line.
Moreover:
The light signal travel time distance between parallel world lines is the geometric length
of the segment between simultaneous events on these two world lines. (Reflection in the
simultaneity space of (v, 1) is the map given by (1, v) 7! (1, v), (v, 1) 7! (�v,�1), it
preserves the light cone.)

Note that the discussion of clock synchronization also led to a geometric statement about
distances. For emphasis I repeat:
We only measure the distance between observers relative at rest to each other - well, of
course, the two ends of the original prototype meter in Paris where at rest relative to each
other. And, the light signal travel time distance between the world lines of two observers
relative at rest has a geometric interpretation: Pick two simultaneous events A1, A2 on
these two parallel world lines, then

Light Signal Travel Time Distance between World Lines =

=
p
hhA1 �A2, A1 �A2ii = Geometric Distance between A1, A2.
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With these explanations we are ready to finish the discussion from the first lecture con-
cerning the short lived particles that cannot travel 30 km in their life time but that are
nevertheless measured 30 km from where they are created.

Consider the two parallel world lines (0, 0, 0, t) and (30, 0, 0, t) of two, say, clocks that are at
rest in the inertial system of the observing physicist and have a distance of 30 km from each
other. A particle flying with relative velocity v may have the world line (v · t, 0, 0, t) that
meets the first one at t = 0 and the second one at t = 30/v. The proper time s =

p
1� v2 ·t

on the particle’s world line is clearly less than t and quite a bit so if v is close to 1. Now, the
particle stays (statistically: 50%) alive as long as this proper time is shorter than its (half)
life time, so that these particles can easily travel from one to the other world line. I repeat:
the key to understand this experiment is to clearly realize that there is no “universal”
passing of time, but time passes locally, for each world line as the geometry dictates.

One should also ask: how much distance does the particle travel? Recall that this distance
is by definition the light signal travel time distance between the world line of the particle
and another parallel world line through some event B in the space that is simultaneous
with the event A = (0, 0, 0, 0) of the particle at the moment when it starts. What is B?
We intersect the orthogonal complement of (v, 0, 0, 1) with the world line (30, 0, 0, t), more
specifically, we intersect (1, 0, 0, v) · r with (30, 0, 0, t), This gives B = (30, 0, 0, t = 30v).
It is important to note that A and B are indeed simultaneous for the particle, but B is
later than A for the physicist. The geometric length of B � A is 30

p
1� v2, obviously

considerably shorter than 30 km if v is close to 1, but, a pleasant surprise, equal to v · s.
This fact is often translated into non-physics language by saying that a measuring rod that
moves with velocity v is shortened by the factor

p
1� v2. This completely disregards that

this shortened length is measured in a di↵erent inertial system, a system in which the initial
point of the rod and the end point of the rod are no longer simultaneous for the original
observer. I have not seen a discussion how one should achieve this miracle: keep the initial
point of the rod at the event A and transport the end point from (30, 0, 0, 0) into the future,
to B. Already at this early stage of Relativity Theory the geometric language is so superior
that such mysteries do not even arise.

Time, Velocity, Distance Summary. Our primary measurements are time mea-
surements. This includes frequency changes, when we use the Doppler e↵ect to determine
relative velocities (even the police does it this way). Finally, distances are defined and
measured via light signal travel times. The original meter is now an object of only historic
interest.

The isometries of the indefinite metric of Special Relativity are called Lorentz Transfor-
mations. They were known before Einstein from Maxwell’s theory of electromagnetism.
It was Minkowski who formulated the geometry of Special Relativity. Nevertheless it is
called Lorentz Geometry because of Minkowsi’s contributions in the geometry ofnumbers.

The main examples of relativistic mechanics are collision experiments with elementary
particles. I will treat the Compton e↵ect, the collision of a particle of mass m0 that is at
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rest at the origin with a photon of energy h⌫ flying in the x-direction. After the collision
the photon has energy h⌫0 and its direction of flight makes an angle ↵ with the x-axis,
the particle flies with velocity v under an angle �. To formulate what equation has to
be satisfied we need the notion of energy-momentum vector. For a particle with restmass
m0 =/ 0 we take the timelike unit vector of its world line and multiply it by m0. For a
photon we have to agree on the inertial system in which we want to give its energy as h⌫.
In this coordinate system we multiply the nullvector (1, 0, 0, 1) tangent to its world line
with h⌫. Then we have the

Collision Equation for Compton Scattering

Sum of energy-momentum vectors before collision
= Sum of energy-momentum vectors after collision

m0(0, 0, 0, 1)+h⌫(1, 0, 0, 1) =
m0p
1� v2

(v cos�, v sin�, 0, 1) + h⌫0(cos↵, sin↵, 0, 1).

The first three components of this equation are called conservation of (linear) momentum,
the last component is called conservation of energy, here m0 + h⌫ = m0/

p
1� v2 + h⌫0.

The three nonzero momentum vectors form a triangle with two edges of lengths h⌫, h⌫0

and the angle ↵ between them. The cosine theorem therefore gives the length (squared)
of the third edge, which is the momentum (squared) of the particle. From the momentum
squared we eliminate v using the conservation of energy. This gives the relation between
the deflection angle ↵ and the frequency ⌫0 (with m0, ⌫ given), or still simpler between ↵
and the wave lengths �, �0 for Compton Scattering:

(h⌫)2 + (h⌫0)2 � 2h2⌫⌫0 cos↵ =
m2

0

1� v2
v2 =

m2
0

1� v2
�m2

0 = (m0 + h(⌫ � ⌫0))2 �m2
0

hence:

h

m0
(1� cos↵) = (⌫ � ⌫0)/(⌫⌫0) = (�0 � �).

The habit of mathematicians to take the speed of light as c = 1 and then drop c from all
formulas is not too popular among physicists. Certainly the most famous formula from all
of physics, E = mc2, that relates mass and energy, I have never seen without the speed
of light being explicitly there. The connection between relativistic and classical energies is
best illustrated by a power series expansion which also contains c explicitly:

E = m(v)c2 =
m0p

1� (v/c)2
c2 = m0c

2 +
1
2
mv2 + . . .

We see: relativistic mass-energy equals restmass-energy plus classical kinetic energy plus
higher order terms (in (v/c)2).
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An important notion in collision experiments is the center of mass. Consider a collection
of particles (with restmas =/ 0, i.e. no photons) that fly with di↵erent constant velocities
so that clocks tick di↵erently on their world lines and mass depends on the velocity and
therefore on the inertial system that we choose. How should one define their center of mass?
Recall from classical mechanics that the sum of the momenta of a collection of particles
equals the momentum of the center of mass (defined as sum of the masses times velocity
of the center). This suggests for Special Relativity to add the momenta of the particles
involved and write the result as (equivalent) mass of the center Mc times a timelike unit
vector (vc 2 R3, 1)/

p
1� v2

c that defines the inertial system of the center. Let mi be the
rest masses of the particles involved and vi the velocities in some inertial system.

X
i

mip
1� v2

i

(vi, 1) =:
Mcp
1� v2

c

(vc, 1).

The timelike unit vector (vc, 1)/
p

1� v2
c that defines the time axis of the center system is

thus determined as an average of the timelike unit vectors of the world lines of the particles
with their rest masses taken as weights. In particular, this definition is independent of the
choice of the (inertial) coordinate system in which this equation is written. It describes
the inertial system of the center, except that its origin, the center of mass point, is not yet
defined. We switch to this center system and readjust notation: we still call the velocities of
the mass points vi. Using this center system means:

P
i mivi/

p
1� v2

i = 0. Next we want
to define the center point, more precisely, the world line of the center point. We intersect
the world lines of the mass points mi with the simultaneity spaces of the center system
(i.e., with the orthogonal complements of vc). At center time t = 0 we call these points
(Pi, 0), at other times these intersection points are (Pi(t), t) = (Pi, 0) + (vi, 1) · t. Clearly,
the average of the Pi(t) with the relativistic weights mi/

p
1� v2

i is independent of t. This
average therefore defines the center of mass point in such a way that its world line is parallel
to the time axis {(vc, 1) · t, t 2 R} of the center system (vc = 0 when in this system). Thus
the minimal requirements for a reasonable definition are met. Comparison with collision
experiments shows that this center of mass is not changed in a collision. Therefore the
definition is not only mathematically but also physically reasonable.

We continue the physics introduction to Special Relativity by discussing the Maxwell equa-
tions after the following mathematical chapter.
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Pseudo-Riemannian Calculus
Covariant Derivative, Curvature Tensor, Einstein Tensor Jacobi Fields

The goal of covariant di↵erentiation is to set up a machinery on manifolds that works as
similar as possible to standard di↵erentiation in a vector space. By definition of a manifold
M we need to write functions, vector fields etc on M or maps between manifolds in terms
of local coordinates. Of course one tries at first to di↵erentiate the coordinate expressions
in the same way as on a vector space. But problems arise: the second coordinate derivative
of a function is NOT a bilinear form on M , and the derivative of a vector field in the
direction of another vector field is NOT a vector field because the results depend on the
coordinates in a way that does not occur in vector spaces: If one changes coordinates then
the second derivative of the change of coordinates map interferes. If one has nothing more
but a di↵erentiable manifold one has to live with this inconvenience. However, if one has a
Riemannian or a Pseudo-Riemannian metric on the manifold then one can do much better
by adjusting di↵erentiation to the given metric.

Notational Convention. Most books in analysis denote the first derivative of a map
F : Rn ! Rm in a way that later collides with other notations. Since the tangent spaces
of manifolds M are fairly universally denoted as TpM Serge Lang suggested to denote
the first derivative of F : M ! N by TF : TM ! TN , the derivative of F at p 2 M
by TF |p : TpM ! TF (p)N and the directional derivative of F at p in the direction of a
tangent vector X 2 TpM by TXF|p 2 TF (p)N , or also TXF|p = TF|p · X = TF|p(X). I did
not run into any collisions of notation with this suggestion and I therefore adopted these
conventions. Of course, if F is given in terms of local coordinates (x1, . . . xm) for M and
(y1, . . . yn) for N as yj = f j(x1, . . . , xn) then these coordinates define bases for the tangent
spaces of M and N and TF |p is with respect to these bases given by the Jacobi matrix
( @

@xi f j) = (TF )j
i .

Before I come to the covariant derivative I mention two earlier examples of successful defi-
nitions that avoided being disturbed by the second derivative of the change of coordinates.
Consider two coordinate systems for the manifold M , call the change of coordinates map  .
I denote the coordinate expressions of two vector fields by X, X̃, Y, Ỹ with X̃ = T ·X and
Ỹ = T ·Y . We compute the derivative of Y in the direction X in the two coordinate sys-
tems: TXY and TX̃ Ỹ = T 2 (X,Y )+T ·TXY . This shows how the second derivative T 2 
interferes in an unwanted way. However, because of the symmetry T 2 (X,Y ) = T 2 (Y,X)
this problem does not arise in the computation of the Lie bracket:

[X̃, Ỹ ] = TX̃ Ỹ � TỸ X̃ = T · [X,Y ] = T · (TXY � TY X).

Similarly, a 1-form has the coordinate expressions !, !̃ with ! = !̃ · T and di↵erentiation
does not give a bilinear form because of TX!(.) = TX̃ !̃ · T (.) + !̃ · T 2 (X, .). Again, the
unwanted second derivative drops out when we compute the exterior derivative of !:

d!(X,Y ) = (TX!)(Y )� (TY !)(X) = d!̃(X̃, Ỹ ).
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The Lie bracket and the exterior derivative are important notions of analysis, they were
defined on manifolds long before the covariant derivative was invented. I hope the above
computations show what kind of a problem has to be overcome.

The covariant derivative was developed in stages until the following characterization was
reached:

If a Riemannian or Pseudo-Riemannian metric g(., .) on a manifoldM is given then
one has a uniquely defined covariant derivative DXY (covariant means “com-
patible with coordinate changes”, i.e., T ·DXY = D̃X̃ Ỹ ). DXY is characterized
by the following two properties (axioms):

[X,Y ] = DXY �DY X (Symmetry)
TX(g(Y,Z)) = g(DXY,Z) + g(Y,DXZ) (Product Rule)

From the two axioms one obtains both, a coordinate expression for DXY which does not
show the compatibility with coordinate changes, and a coordinate independent expression,
the Koszul formula. We do the invariant formula first:

TZ(g(X,Y )) + TY (g(Z,X))� TX(g(Y,Z)) + g([X,Y ], Z)� g([Z,X], Y ) + g([Y,Z],X) =
g(DZX,Y ) + g(X,DZY ) + g(DY Z,X) + g(Z,DY X)� g(DXY,Z)� g(Y,DXZ)
+ g([X,Y ], Z)� g([Z,X], Y ) + g([Y,Z],X) =

2g(DY Z,X).

The first line consists of coordinate independent terms, therefore the last line is coordinate
independent. For the local expression we write out the left side of the product rule in
coordinates: TX(g(Y,Z)) = (TXg)(Y,Z)+g(TXY,Z)+g(Y, TXZ) and do the same +,+,�
cyclic sum as for the Koszul formula. We simplify using [X,Y ] = TXY � TY X etc. and
obtain the local expression for 2g(DY Z,X):

2g(DY Z,X) = 2g(TY Z,X) + (TZg)(X,Y ) + (TY g)(Z,X)� (TXg)(Y,Z)
or, with the definition of the Christo↵el symbols (note the symmetry):
g(�(Y,Z),X) := (TZg)(X,Y ) + (TY g)(Z,X)� (TXg)(Y,Z) = g(�(Z, Y ),X),

DY Z = TY Z + �(Y,Z).

If one wants to see indices one has to use bases, either some orthonormal moving frame
{e1, . . . , en} or the basis coming from the coordinates ej := @

@xj . Then

Y =
X

j

yjej , !(ej) =: !j , !(Y ) =
X

j

yj!j , g(ei, ej) =: gij , �(ej , ek) =
X

i

�i
jkei.

The so called Einstein sum convention omits all
P

-signs and assumes that pairs of lower
and upper indices are summation indices.
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Example. If the metric g on a submanifold is induced from the metric of the surrounding
space then the covariant derivative of the submanifold metric is the tangential component
of the covariant derivative in the surrounding space — because this tangential component
satisfies the two axioms above.

Example. We call a vector field along a curve c parallel if its covariant derivative vanishes:
DċY = 0. In local coordinates this is a first order linear di↵erential equation Ẏ (t) +
�|c(t)(ċ(t), Y (t)) = 0. Every initial vector Y (0) 2 Tc(0)M extends to a parallel field, and a
basis of orthonormal initial vectors extends to an orthonormal basis of parallel fields along
the curve c.

Next we have to extend the definitions to other objects, we want to di↵erentiate forms,
endomorphisms, in general: tensors. These objects have in common that we can represent
them by a bunch of components as soon as we have bases in the tangent spaces involved.
In the Euclidean situation we call a form or an endomorphism field or any tensor field

parallel if its components with respect to a parallel basis are constant.
Of course, arbitrary tensor fields along a curve are linear combinations of parallel fields with
functions as coe�cients. These are di↵erentiated by di↵erentiating the coe�cient functions
as in the standard vector space situation. Thus we have defined directional derivatives
of tensor fields. Finally, as in the standard situation, if these directional derivatives are
continuous then the result of the di↵erentiation depends linearly on the direction vector.
This linear map is then called the covariant di↵erential of the tensor field.

Since this whole sequence of definitions is completely the same as in the standard situation
(i.e., in a vector space instead of in a manifold) we have of course those same di↵erentiation
rules to which we are used: linearity, product rule, chain rule, computations in terms of
partial derivatives. So, why do di↵erential geometry computations look so di↵erent from
standard analysis computations? The reason is that, of course, we always choose parallel
bases in standard computations and we will see that these are in general not available on
a manifold (except along curves). Now, if the components that we di↵erentiate are NOT
with respect to a parallel basis, then we do not get the derivative of the tensor before
we correct for the nonvanishing derivative of the basis fields: If !j(t) := !|t(ej(t)) then
!̇j(t) := !̇|t(ej(t))+!|t(ėj(t)). In many textbooks this is expressed by saying: the derivative
of an endomorphism field A is defined as (DXA)(Y ) := DX(A(Y ))�A(DXY ). If this were
indeed the definition then we would have a huge di↵erence from our standard theory and
we could not really expect di↵erentiation rules to be similar. But as I explained, we know
the derivative of tensor fields before this formula and the formula is the computational way
to deal with non-parallel bases.

Here is another point where standard and covariant di↵erentiation are closer than it often
looks. Let the above endomorphism field be the covariant di↵erential of a vector field:
A · Y := DY Z. In this case we have to distinguish two di↵erent second derivatives, the
iterated second derivative DX(DY Z) (which appears more frequently in printed computa-
tions) and the tensorial second derivative D2

X,Y Z = DX(DY Z) �DDXY Z which is closer
to the standard second derivative and which is tensorial in X and Y , i.e. we have linearity
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with functions f, g as coe�cients: D2
fX,gY Z = fgD2

X,Y Z.

We have gone through almost all properties of standard di↵erentiation and made the co-
variant derivative look the same. There is only one property left namely the symmetry
of second and higher derivatives, and these symmetries are not shared by the covariant
derivative. We compute the local expression of D2

X,Y Z �D2
Y,XZ and find:

D2
X,Y Z �D2

Y,XZ = (TX�)(Y,Z)� (TY �)(X,Z) + �(X,�(Y,Z))� �(Y,�(X,Z)).

This is a very remarkable result: The left side is an invariant expression (it is independent of
the coordinate system), the right side quite unexpectedly does not depend on the derivatives
of Z, it is tensorial also in the argument Z! Of course such a surprise gives rise to a
definition:

The Riemann Curvature Tensor:

R(X,Y )Z := D2
X,Y Z �D2

Y,XZ.

Note however that the covariant hessian of a function does not feel the curvature, it is still
symmetric. Observe that for the first derivative of a function there is no di↵erence between
standard derivative and covariant derivative, TXf = DXf .

TX(TY f)� TTXY f =: hessstdf(X,Y )Standard Hessian:
TX(TY f)� TDXY f =: hesscovf(X,Y )Covariant Hessian:
hesscovf(X,Y )� hessstdf(X,Y ) = �T�(X,Y )f,

hesscovf(X,Y ) = hesscovf(Y,X).Hessian Symmetry:

When the skew symmetric part of the second derivative is applied to a product of tensor
fields A,B then the first derivatives drop out. Let A,B be tensor fields for which a product
A · B is defined. Then we have a

Product Rule for (D2
X,Y �D2

Y,X):

(D2
X,Y �D2

Y,X)(A · B) = ((D2
X,Y �D2

Y,X)A) · B + A · (D2
X,Y �D2

Y,X)B.

Example for a form ! and a vector field Z:
0 = (D2

X,Y �D2
Y,X)(! · Z) = ((D2

X,Y �D2
Y,X)!) · Z + ! · R(X,Y )Z

Example for an endomorphism field A and a vector field Z:
R(X,Y )(A · Z) = (D2

X,Y �D2
Y,X)(A · Z) = ((D2

X,Y �D2
Y,X)A) · Z + A · R(X,Y )Z.

Example for the metric g(., .) and two vector fields V,W :
0 = (D2

X,Y �D2
Y,X)g(V,W ) = g((D2

X,Y �D2
Y,X)V,W ) + g(V,R(X,Y )W ).

For working with the curvature tensor it is important to understand its symmetries. In the
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following list the first line is true by definition, the second follows from the local formula,
the third one rephrases the last example to the product rule for (D2

X,Y � D2
Y,X) and the

fourth line follows from the first three:

Symmetries of the curvature tensor:
R(X,Y )Z = �R(Y,X)ZSkew Symmetry in the first pair
R(X,Y )Z + R(Y,Z)X + R(Z,X)Y = 01. Bianchi Identity
g(R(X,Y )V,W ) = �g(R(X,Y )W,V )Skew Symmetry in the second pair
g(R(X,Y )V,W ) = g(R(V,W )X,Y )Symmetry in both pairs

Hypersurface Theory is the same as in the Riemannian case, except for signs related to
the normal N . For some manifold M let F : M ! Rn, hh., .ii be a hypersurface immersion
such that hhN,Nii = ±1 and does not change sign. Since we assume that the metric is
induced from Rn we di↵erentiate hhTF (Y ), TF (Z)ii�g(Y,Z) = 0 and since F = F 1, . . . , Fn

is a collection of n functions the above definitions apply: D2F (X,Y ) = TX(TY F )�TDXY F .
Hence

hhD2F (X,Y ), TZF ii+ hhTY F,D2F (X,Z)ii = 0.

Next we do the same +,+,� cyclic computation as for the Koszul formula and, noting the
symmetry D2F (X,Y ) = D2F (Y,X) we get a first result: D2F (Y,Z) is normal:

2hhTXF,D2F (Y,Z)ii = 0, hence D2F (Y,Z) = hhD2F (Y,Z), Nii/hhN,Nii · N.

Recall the definition of the shape operator (or Weingarten map, or second fundamental
tensor) and di↵erentiate 0 = hhN,TY F ii to relate the shape operator and D2F (X,Y ):

TY N =: TF · S · Y
0 = hhTXN,TY F ii+ hhN,D2F (X,Y )ii, or g(SX, Y ) = �hhN,D2F (X,Y )ii.

In particular, the shape operator is g-symmetric. Next, di↵erentiate the definition of S,
note the normal and the tangential component of the result and get the Codazzi equation:

D2
X,Y N = D2

Y,XN = D2F (X,SY ) + TF ((DXS)Y )
(DXS)Y = (DY S)X.Codazzi Equation:

Finally di↵erentiate g(SY,Z)/hhN,Nii · N = �D2F (Y,Z) observe tangential and normal
components and get the Gauss equation by observing the product rule:

0 = (D2
X,Y�D2

Y,X)(TZF ) = (D3
X,Y,Z �D3

Y,X,ZF ) + TF · R(X,Y )Z
g(SY,Z)SX � g(SX,Z)SY = hhN,NiiR(X,Y )Z.Gauss Equation:

From the full curvature tensor one defines, by taking a trace, a simpler tensor that will be
important for formulating the Einstein equations.
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Definition of the Ricci tensor: g(Ric Y, Z) = ric(Y,Z) :=
P

i g(R(Y, ei)ei, Z)/g(ei, ei),
where {e1, . . . , en is an orthogonal basis (not necessarily orthonormal). The Ricci tensor
is g-symmetric because of the symmetries of the curvature tensor - but only for positive
definite g does this imply the existence of a basis consisting of eigenvectors of Ric.

The Codazzi equation leads to somewhat analogous equations for the curvature tensor and
for the Ricci tensor from which one gets the following

Constancy Theorems
S = f(p)id) f = const.Umbilicity theorem
R(X,Y )Z = f(p)(g(Y,Z)X � g(X,Z)Y )) f = const.Schur’s theorem, dim > 2
ric = f(p)g ) f = const.Einstein metric, dim> 2

Before the proofs I derive the identities for the other tensors. Di↵erentiate the Gauss
equation and observe, that the cyclic sum over U,X, Y gives zero (because of Codazzi):

g((DUS)Y,Z)SX � g((DUS)X,Z)SY + g(SY,Z)(DUS)X � g(SX,Z)(DUS)Y
= hhN,Nii(DUR)(X,Y )Z.

(DUR)(X,Y )Z + (DXR)(Y,U)Z + (DY R)(U,X)Z = 0.2. Bianchi Identity:

This short proof applies only to curvature tensors of hypersurfaces. The general case can
be obtained by suitably applying di↵erentiation rules. Consider, for a given vector field
Z the definition of the curvature tensor, (D2

X,Y � D2
Y,X)Z = R(X,Y )Z, as an equation

between vector valued twoforms and di↵erentiate once more. (Another way to justify the
following is, to assume that the fields X and Y are parallel in direction U). We obtain:

(D3
U,X,Y �D3

U,Y,X)Z = (DUR)(X,Y )Z + R(X,Y )DUZ.

To obtain another commutation formula apply the product rule example for endomorphism
fields to the endomorphism A·X = DXZ. Note ((D2

U,Y�D2
Y,U )A)·X = (D3

U,Y,X�D3
Y,U,X)Z.

Then the quoted product rule gives

(D3
U,Y,X �D3

Y,U,X)Z = R(U, Y )DXZ �DR(U,Y )XZ.

These two commutation formulas combine to

(D3
U,X,Y �D3

Y,U,X)Z = (DUR)(X,Y )Z �R(Y,U)DXZ + R(X,Y )DUZ �DR(U,Y )XZ.

Cyclic permutation over (U,X, Y ) and summation kills most terms, only the second Bianchi
identity remains. Q.E.D.

To see what the second Bianchi identity implies for the Ricci tensor, we compute the
divergence of the Ricci tensor and the derivative of its trace. From the definition we have
g((DURic) · Y,Z) =

P
i g((DUR)(Y, ei)ei, Z)/g(ei, ei), hence

g(div(Ric), Z) =
X
i,j

g((Dej R)(ej , ei)ei, Z)/(g(ei, ei)g(ej , ej)).

31



Again from the definition we compute trace Ricci:

TZtrace(Ric) =
X
i,j

g((DZR)(ej , ei)ei, ej)/(g(ei, ei)g(ej , ej)).

The second Bianchi identity and the curvature symmetries imply

2g(div(Ric), Z) = TZtrace(Ric).

Therefore we can define the

G := Ric� 1
2
trace(Ric) · id.Divergence free Einstein tensor:

The proofs of the constancy results are now immediate, e.g. S = f(p)id ) (DXS)Y =
(TXf)Y and if we use the Codazzi equation with two independent vectors X,Y we get
Tf = 0.
Similarly for Schur’s theorem: R(X,Y )Z = f(p)(g(Y,Z)X � g(X,Z)Y ))

(DUR)(X,Y )Z = (TUf)(g(Y,Z)X � g(X,Z)Y ).
If one chooses X,Y,Z ? U, Z ? X, Y = Z then only one term remains in the 2. Bianchi
identity, 0 = (TUf)g(Y, Y )X, and f is constant.
Finally the Ricci case: Ric = f(p) · id)

DZRic = TZf · id, TZ(traceRic) = nTZf, 2g(div(Ric), Z) = 2TZf .
If n > 2 then div(G) = 0 implies TZf = 0, so f is constant.

An important tool: The Jacobi Equation
Recall that, any time one has a 1-parameter family of solutions of some nonlinear (di↵eren-
tial) equation, then one can di↵erentiate the family with respect to its parameter to obtain
an object that is a solution of a linear (di↵erential) equation. A family of geodesics is a
family of solutions of the geodesic equation D

dt ċ = 0 and di↵erentiation with respect to the
family parameter gives a vector field along each geodesic. Because of the general statement
above this vector field must solve a linear second order ODE. We should expect that the
coe�cients of the equation are some geometric invariant. This ODE is as important for the
geometry as the derivative is for the study of a function. This ODE is called the Jacobi
equation. For its derivation we have to commute di↵erentiations in di↵erent directions,
therefore the curvature tensor must show up.

Let c(s, t) be a family of geodesics, s is the family parameter and t 7! c(s, t) are geodesics,
i.e. D

dt
d
dtc(s, t) = 0. We abbreviate ċ(s, t) := d

dtc(s, t) and c0(s, t) := d
dsc(s, t). First observe

the symmetry

D

dt

d

ds
c(s, t) =

d

dt

d

ds
c(s, t) + �(ċ, c0) =

d

ds

d

dt
c(s, t) + �(ċ, c0) =

D

ds

d

dt
c(s, t)

which implies for every vector field v(s, t) along c(s, t)
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D

dt

D

ds
v(s, t)�D

ds

D

dt
v(s, t) = D2

ċ,c0v(s, t)�D2
c0,ċv(s, t) = R(ċ, c0)v(s, t).

D

ds

D

dt

d

dt
c(s, t) = 0, i.e., v(s, t) = ċ(s, t), and obtainWe apply this to

0 =
D

dt

D

ds

d

dt
c(s, t)+R(c0, ċ)ċ =

D

dt

D

dt
c0(s, t) + R(c0, ċ)ċ

which is the looked for linear second order ODE for c0, called the Jacobi Equation

Note that J 7! R(J, ċ)ċ is a g-symmetric operator. It has ċ as eigenvector with eigenvalue
0 and it maps the orthogonal complement {ċ}? into itself. In case g has the signature
of Special Relativity and t 7! c is a timelike geodesic then g is positive definite on the
orthogonal complement {ċ}?. Therefore one can estimate J 7! R(J, ċ)ċ by the smallest
eigenvalue � from below and by the largest eigenvalue � from above, on {ċ}?:

� · g(J, J)  g(R(J, ċ)ċ, J)  � · g(J, J).

Because the curvature tensor has so many indices some people believe that the Jacobi
equation is more complicated than the geodesic equation. To weaken this belief somewhat
I prove an important inequality for Jacobi fields J ? ċ and satisfying J(0) = 0:

d

dt
|J | = g(J,

D

dt
J)/|J |,

d

dt

d

dt
|J | = g(J,

D

dt

D

dt
J)/|J | + g(

D

dt
J,

D

dt
J)/|J | � g(J,

D

dt
J)2/|J |3

� �g(J,R(J, ċ)ċ)/|J | by Schwarz inequality
� �� · |J |.

This inequality is used to show that the function f(t) := |J(t)|/s�(t) is increasing (the
definition of s�() is d

dt
d
dts�(t) + �s�(t) = 0, s�(0) = 0, d

dts�(0) = 1):

ḟ(t) =
� d

dt
|J | · s�(t)� |J | · ṡ�(t)

�
/s�(t)2

=
� Z t

0
(

d

dt

d

dt
|J | · s�(t)� |J | · s̈�(t))dt

�
/s�(t)2

� 0

Since by l’Hospital f(0) = |J 0(0)| we have one of the Rauch estimates:

|J 0(0)| · s�(t)  |J(t)|.

If �  0 this says that J is growing at least linearly and if � > 0 this implies that J has
no zero in (0, ⇡/

p
�), so that there are no conjugate points in this interval.
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Special Relativity II
Maxwell’s Equations, Hodge-*, Conformal Invariance, Plane Waves,
Lorentz Force, Aberration of Light.

Maxwell’s equations are included in this introduction to Special Relativity for the following
reasons: Practically all astronomical information reaches us via electromagnetic waves; the
most important cosmological models are conformally flat. therefore we will use the confor-
mal invariance of the Maxwell equations and how field strengths change under conformal
changes of the metric; the measured electromagnetic fields depend on the considered so-
lution to the equations and on the observer, but only on the rest frame of the observer –
such observers I will call infinitesimal observers and they will help us to connect theory
and experiment also in other situations.

We will write the indefinite scalar product as

hhX,Xii = (x1)2 + (x2)2 + (x3)2 � (x4)2, x4 = c · t (the Lorentz form)

The dual basis is {~e1, . . . , ~e4} with dxi(~ej) = �i
j .

Threedimensional formulation of Maxwell’s Equations:
D
!

= ✏0E
!

, B
!

= µ0H
!

, ✏0µ0 = c�2

rotE
!

= � d

dt
B
!

, div B
!

= 0homogenous equations

rotH
!

= ~j +
d

dt
D
!

, div D
!

= ⇢.non-homogenous equations

Next we define a twoform, the Faradayform F , from E
!

, B
!

and show that the homogenous
Maxwell equations can be expressed as dF = 0 (which is a very coordinate independent
formulation). We introduce the components of E

!
, B
!

with respect to the above basis,
E
!

=
P

i Ei~ei, B
!

=
P

i Bi~ei and define the

Faraday Form
F := (E1dx1 + E2dx2 + E3dx3) ^ dx4 + B1dx2 ^ dx3 + B2dx3 ^ dx1 + B3dx1 ^ dx2

The matrix associated to F is

F (~ei, ~ej) =

0
B@

0 B3 �B2 E1

�B3 0 B1 E2

B2 �B1 0 E3

�E1 �E2 �E3 0

1
CA

Vice versa, if such a twoform is given then we define ,
Ei := F (~ei, ~e4), i = 1, 2, 3, Bk := F (~ei, ~ej), (i, j, k) a cyclic permutation of (1, 2, 3),
and the fields E

!
=
P3

i Ei~ei, B
!

=
P3

i Bi~ei depend only on the tangent vector ~e4 to the
world line of the observer, since a Lorentz transformation that preserves ~e4 is a usual
orthogonal transformation of the rest space (~e4)? of the observer, so E

!
, B
!

do not change.
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We compute dF

dF =
X

i

dEi ^ dxi ^ dx4 +
X

(i,j,k)=(1,2,3)

dBi ^ dxj ^ dxk,

where the subcript under the second sum means that we sum over all cyclic permutations
of (1, 2, 3). Of course, for any function, df =

P @
@xi f dxi. The terms in the second sum

that do not contain dx4 are all multiples of dxi ^ dxj ^ dxk = dx1 ^ dx2 ^ dx3 and the
coe�cients add up to

P @
@xi Bi = div B

!
. All other terms contain dx4. The first sum is

X
i

(
@

@xj
Eidxj +

@

@xk
Eidxk)^ dxi ^ dx4 =

X
i

(� @

@xj
Eidxi ^ dxj +

@

@xk
Eidxk ^ dxi)^ dx4

We assume again that (i, j, k) is a cyclic permutation of (1, 2, 3) and we recall that
(rotE

!
)j = @

@xk Ei � @
@xi Ek. Therefore one can reorganize the first sum also as a sum over

cyclic permuatations; X
(i,j,k)=(1,2,3)

(rotE
!

)idxj ^ dxk ^ dx4.

Therefore we have the homogenous Maxwell equations expressed as dF = 0:

dF = 0 , div B
!

= 0, rotE
!

+
@

@x4
B
!

= 0.

The first half of the Maxwell equations therefore means: F is a closed twoform, and this
has nothing to do with the Lorentz scalar product that we want to use. The second set of
equations does depend on the metric, but I postpone discussing them and first explain how
physical situations are described with the help of the Faraday form.

1. Example: Charged Wire. In the rest system of the wire (along the x-axis) we
assume a charge density of ⇢ = 1 per unit length. There we observe no magnetic field and
the electric field is orthogonal to the wire (and of strength 1/r). Therefore we have:

E
!

= (0,
y

y2 + z2
,

z

y2 + z2
), B

!
= 0

F =
� ydy

y2 + z2
+

zdz

y2 + z2

�
^ dt =

1
2
(dlog r2) ^ dt

Clearly dF = 0 and we check the other equations later. Now consider a second observer
that flies in the x-direction with velocity v, what does he see? First, his unit timelike vector
is ~f4 = (v~e1 + ~e4)/

p
1� v2 and a convenient basis in his restspace is

~f1 := (~e1 + v~e4)/
p

1� v2, ~f2 := ~e2, ~f3 := ~e3.
We plug this frame into the Faraday form and find

F (~f1, ~f4) = 0, F (~f2, ~f4) =
1p

1� v2

y

y2 + z2
, F (~f3, ~f4) =

1p
1� v2

z

y2 + z2
,(E

!
)new :

F (~f2, ~f3) = 0, F (~f3, ~f1) =
vp

1� v2

z

y2 + z2
, F (~f1, ~f2) =

vp
1� v2

�y

y2 + z2
,(B

!
)new :
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First, the second observer sees a stronger electric field. Most important, this does agree
with observation. But, from our geometric point of view, we would actually expect this
before the experiment, why? Take the world lines of the electrons on one unit of length
on the wire. Their world lines are parallel to the time axis of the first observer and they
carry the charge ⇢. These worldlines intersect the restspace of the second observer in a
segment that is shorter by the factor

p
1� v2, therefore the charge density is larger by this

factor and the electric field is accordingly stronger. – Secondly, the magnetic field is, in
agreement with observations, proportional to the {charge per length times the velocity}, i.e.
proportional to the electric current in the wire. The magnetic field lines are circles around
the wire. The size of the field decreases as 1/r.

One should pause to contemplate this result for a moment: One writes down the Faraday
form in the inertial system in which the form is simplest. Then one obtains the electric
and magnetic fields of any observer by plugging its 4-dimensional rest frame into the form.
The procedure could hardly be simpler.

2. Example: Point Charge. In the rest system of a point charge of size q we have
no magnetic field and the radially symmetric electric Coulomb field:

E
!

=
q

r3
· (x, y, z), B

!
= 0 hence

F =
q

r3
(xdx + ydy + zdz) ^ dt =

q

r2
dr ^ dt.

Consider an observer that rotates around the charge with velocity v on a circle of radius r
at height z = h. This non-inertial observer has the

c(t) = (r cos(v/r · t), r sin(v/r · t), h, t)world line
and the rest frame at time t = 0 is:

~f1 = ~e1, ~f2 =(~e2 + v~e4)/
p

1� v2, ~f3 = ~e3, ~f4 = ~̇c(0) = (~ve2 + ~e4)/
p

1� v2.

Although this observer is not inertial we obtain the electromagnetic field that he experiences
by plugging its rest frame at time t into the Faraday form. At t = 0 we obtain:

E1 = F (~f1, ~f4) =
x

r3

qp
1� v2

, E2 = 0, E3 = F (~f3, ~f4) =
z

r3

qp
1� v2

,

B1 = F (~f2, ~f3) = 0, B2 = F (~f3, ~f1) = 0, B3 = F (~f1, ~f2) =
x

r3

qvp
1� v2

.

It is more interesting to let the point charge (or the charged wire) rotate around the
observer, but we cannot exchange the observer and the charge as in the first example since
not both of them are inertial. However, in many interesting situations the charges move
slowly (e.g. for a current in a wire the speed is millimeter per second). Therefore we can
use the above computation to obtain the field created by a rotating charge (a current in
a circular wire) for an observer at rest (on the rotation axis or, with more work, o↵ the
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axis). I will not pursue this further because the physicists solve the Maxwell equations from
scratch for those other situations. My goal has been to explain how di↵erent observers see
the electromagnetic fields coming from the same Faraday form.

We return now to the non-homogenous Maxwell equations, in particular, how are they ex-
pressed in terms of the Faraday form? For that we need to discuss the

Hodge-map * : ⇤k ! ⇤4�k.

First we define the induced scalar products on ⇤1, . . . ,⇤4. On ⇤1 we use the dual basis
dx1, . . . , dx4, dxi(~ej) = �i

j and we define

hh!, µii :=
4X

i=1

!(~ei)µ(~ei)
hh~ei, ~eiii

hence hhdxi, dxjii = hh~ei, ~ejii,!, µ 2 ⇤1 )

in particular, the scalar product on ⇤1 has the same signature as the given Lorentz form.
Similarly for the other cases:

!, µ 2 ⇤2 )

hh!, µii :=
X
i<k

!(~ei, ~ek)µ(~ei, ~ek)
hh~ei, ~eiiihh~ek, ~ekii

hence hhdxi ^ dxk, dxi ^ dxkii = hh~ei, ~eiiihh~ek, ~ekii,

!, µ 2 ⇤3 )

hh!, µii :=
X
i<k

!(~ei, ~ej , ~ek)µ(~ei, ~ej , ~ek)
hh~ei, ~eiiihh~ej , ~ejiihh~ek, ~ekii

hence

hhdxi ^ dxj ^ dxk, dxi ^ dxj ^ dxkii = hh~ei, ~eiiihh~ej , ~ejiihh~ek, ~ekii,
⇤4 has the canonical basis vol := dx1 ^ dx2 ^ dx3 ^ dx4, hhvol, volii = �1.

These indefinite scalar products are independent of the used orthonormal basis and they
are non-degenerate in all four cases. Therefore they give isomorphisms between the ⇤k

and their dual spaces (⇤k)⇤ via ! 7! hh!, . ii. Also, the ^-product gives an isomorphism
between ⇤4�k and (⇤k)⇤: For µ 2 ⇤4�k define lµ 2 (⇤k)⇤ by ! ^ µ = lµ(!) · vol. Now we
can define the Hodge-*-map independent of the used orthonormal bases as follows:

* : ⇤k ! ⇤4�k by representing for each µ 2 ⇤k the map
! 2 ⇤k ! hh!, µii · vol as ! ^ *µ := hh!, µii · vol.

Of course, the Hodge-* depends on the Lorentz form. But one can check, that it behaves
simple if one changes the Lorentz form conformally, i.e., hh., .ii changed to f2(p) · hh., .ii.
Namely, on ⇤2 the Hodge-* is invariant under conformal changes and on ⇤1,⇤3,⇤4 it is
just a conformal map.
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Because of the many minus-signs in the formulas it is convenient to have a list of how
Hodge-*acts on the usual bases:

* : ⇤1 ! ⇤3

dx1 7! dx2 ^ dx3 ^ dx4

dx2 7! dx3 ^ dx1 ^ dx4

dx3 7! dx1 ^ dx2 ^ dx4

dx4 7! dx1 ^ dx2 ^ dx3

* : ⇤3 ! ⇤1

*(*(!)) = !

* : ⇤2 ! ⇤2

dx1 ^ dx2 7! dx3 ^ dx4

dx2 ^ dx3 7! dx1 ^ dx4

dx3 ^ dx1 7! dx2 ^ dx4

dx1 ^ dx4 7! �dx2 ^ dx3

dx2 ^ dx4 7! �dx3 ^ dx1

dx3 ^ dx4 7! �dx1 ^ dx2

*(*(!)) = �!

Note in particular that the Hodge-*is a complex structure on ⇤2. Next we compute d(*F ).

F =
X

i

Eidxi ^ dx4 +
X

(i,j,k)

Bidxj ^ dxk

*F = �
X

(i,j,k)

Eidxj ^ dxk +
X

i

Bidxi ^ dx4

The computation for d(*F ) is therefore the same as for dF (using df =
P @

@x

i
dxi), we get:

d(*F ) = �div E
!

dx1 ^ dx2 ^ dx3 +
X

(i,j,k)

�
rotB

!
� @

@x4
E
!�

i
dxj ^ dxk ^ dx4.

This is another place where a physicist would keep the factors c. Rewrite the last line,
using dx4 = c dt and ✏0c2 = 1/µ0:

✏0d(*F ) = �div D
!

dx1 ^ dx2 ^ dx3 +
1
c

X
(i,j,k)

�
rotH

!
� @

@t
D
!�

i
dxj ^ dxk ^ dt.

The 4-vector with components current density and charge density is called 4-current J :

J :=
✓

rotH
! � @

@tD
!

div D
!

◆
=
✓
~j
⇢

◆
=
✓

current density
charge density

◆
.

We denote the vector that corresponds to a 1-form ! 2 ⇤1 by !#. Then we can rewrite
the non-homogenous Maxwell equations as

(*d* F )# = J.

One checks easily that the first two examples satisfy this equation away from the charges.
— Since the Hodge-*is invariant under Lorentz transformations (= hh., .ii-isometries), we
have proved that the Maxwell equations are Lorentz invariant. The operators d and *
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exist tangent space wise on any Lorentz manifold. Therefore it is clear how to generalize
the Maxwell equations to Lorentz manifolds. Experimental evidence about electromagnetic
waves in curved space can only come from astronomical observations. So far there are no
doubts that dF = 0, (*d*F )# = J are the correct equations. If we agree to make this
generalization of what we call the Maxwell equations then we have also proved:

Theorem. The Maxwell equations are conformally invariant.
This means: If we change the metric conformally then solutions of Maxwell’s equations
remain solutions.

Plane Waves

With a function f of period 1 consider the fields

E
!

= f(! · (x1 � t)) · ~e2, B
!

= f(! · (x1 � t)) · ~e3,

With an antiderivative g, g0 = f define h(x1, t) := g(! · (x1 � t)). We can write the
corresponding Faraday form F and *F as

F = f(! · (x1 � t)) · (dx2 ^ dt + dx1 ^ dx2) =
1
!

dh ^ dx2

*F = f(! · (x1 � t)) · (�dx3 ^ dx1 + dx3 ^ dt) =
1
!

dh ^ dx3

Clearly, dF = 0, d*F = 0, so that the homogenous Maxwell equations are satisfied. We
interpret this solution as a wave, traveling in the x1-direction. What does another observer,
traveling with velocity v in the x1-direction, see? His rest frame is

~f1 = (~e1 + v~e4)/
p

1� v2, ~f2 = ~e2, ~f3 = ~e3, ~f4 = (v~e1 + ~e4)/
p

1� v2,

and his coordinates (y1, y2, y3, ⌧) are

y1 = (x1 � vt)/
p

1� v2, y2 = x2, y3 = x3, ⌧ = (�vx1 + t)/
p

1� v2.

His electric field E
!

new is given by

(E
!

new)2 = F (~f2, ~f4) = f(!(x1 � t)) · ( 1p
1� v2

� vp
1� v2

) = f(!(x1 � t)) ·
r

1� v

1 + v

= f(! ·
r

1� v

1 + v
(y1 � ⌧)) ·

r
1� v

1 + v
,

fnew = f ·
r

1� v

1 + v
, !new = ! ·

r
1� v

1 + v
.

This result says that the observer that moves away with velocity v sees frequency and
amplitude smaller by the factor

p
(1� v)/(1 + v). For the frequency this is in agreement
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with our earlier discussion of the Doppler ratio in which we used light rays rather than waves.
The weakening of the amplitude is also important in astronomy, it is called Ausdünning
(thinning?).

Charged Particles

Assume the 2-form F satisfies Maxwell’s homogenous equations, dF = 0, d*F = 0. Define
a skewsymmetric endomorphism field F̃ by

F (X,Z) =: hhX, bF (Z)ii = �hhZ, bF (X)ii.
With an orthogonal basis {~e1, . . . , ~e4} we have

bF (Z) =
X

i

hh bF (Z), ~eiii
hh~ei, ~eiii

~ei =
X

i

F (~ei, Z)
hh~ei, ~eiii

~ei.

The world line c(t) of a particle with charge e and rest mass m satisfies the ODE

c̈(t) =
e

m
bF (ċ(t)) (so called Lorentz Force)

Such a world line is automatically parametrized proportional to proper time:

d

dt
hhċ(t), ċ(t)ii = 2hhc̈, ċii =

2e
m
hh bF (ċ(t)), ċ(t)ii = 0.

Usually one therefore assumes hhċ, ċii|t=0 = �1, so that for each t the rest frame of the
particle has ~e4 = ċ(t). This implies

bF (ċ(t)) =
X

i

F (~ei, ~e4)
hh~ei, ~eiii

~ei = E
!

.

We see that in the rest frame of the particle only the electric field exerts a force, the
magnetic field may be nonzero but it does not contribute to the acceleration of the world
line.

Next assume that in the rest frame of an inertial observer we have a field

E
!

= 0, B
!

= (0, 0, b), hence F = b · dx1 ^ dx2.

The charged particle may have a world line c(t) whose tangent field can be written as

ċ(t) = (v(t) cos↵(t), v(t) sin↵(t), 0, 1)/
p

1� v2.

Since F (~e1, ~e2) = b is the only non-vanishing component, we find

e bF (ċ) = bF (cos↵~e1 + sin↵~e2)
evp

1� v2
=
�b · evp
1� v2

(~e2 cos↵� ~e1 sin↵).
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Compare with the 3-dimensional formulation of the Lorentz force:
force = (charge · velocity)⇥magneticField.

We have computed the force along a given world line, now we want to solve the correspond-
ing ODE. In the rest system of the above observer (the one with the constant magnetic
field and a world line t! (0, 0, 0, t) ) we look for a circular orbit (with its proper time s as
parameter):

c(s) := (r cos!s, r sin!s, 0, ⌧s)

c0(s) := (�r! sin!s, r! cos!s, 0, ⌧) =
1p

1� v2
(v1, v2, 0, 1), ⌧ =

1p
1� v2

, v =
r!

⌧
,

c00(s) = �r!2(cos!s, sin!s, 0, 0) =
e

m
bF (c0) =

eb

m
r!(cos!s, sin!s, 0, 0), ! =

�eb

m
.

What is the interpretation of this computation? The non-inertial orbiting particle has s
as proper time. It observes !/2⇡ as its rotation frequency. The parameter m is its rest
mass. The force that causes c00 to be nonzero is purely Coulomb, i.e. eE

!
. — The other

observer has an inertial laboratory whose points have world lines t ! (x, y, z, t), where
t is the synchronized proper time on all these laboratory world lines. The rotating par-
ticle meets the world line (r, 0, 0, t) at s0 = 0, s1 = 1/!, . . ., that is at laboratory times
t0 = 0, t1 = ⌧ · s1 = ⌧/!, hence !lab = !/⌧ . In other words, one complete rotation takes
the factor ⌧ more time in the laboratory system, in agreement with the more elementary
discussion in the first lecture. If a collision were observed the particle mass would be larger
than the rest mass, mlab = ⌧ ·m. And, there are no electric fields observed in the laboratory,
only the constant magnetic field. – Note ! · m = !lab · mlab.

Aberration of Light
We need to understand in which way the sky is di↵erent when we look at it from opposite
points of the orbit of the earth around the sun (the orbit velocity is 30 km/sec = 10�4c). We
can think of the sky as the 2-sphere at infinity, as the 2-sphere of directions. This 2-sphere
is the (for example: unit) 2-sphere in the observer’s simultaneity space e?4 . How does one
translate the statement: We see a star in direction ~e 2 S2 ⇢ e?4 into the 4-dim language of
Special Relativity? Clearly, the world lines of the incoming light signals are straight lines
on the observers backwards light cone. And the question means: which such null world
line corresponds to the 3-dim direction ~e? We can translate the simulaneity space with its
unit 2-sphere one unit of time backwards and observe that this translated space intersects
the light cone in the unit 2-sphere. Therefore we identify the 3-dim direction ~e with the
null ray (~e, 1) ·R. Since these null world lines of light from the stars are independent of the
observers we need to explicitly say, in a Lorentz invariant formulation, how we obtain the
angle ' with cos' = h~e, ~fi between two directions ~e, ~f of the above observer from the null
world lines:
Let ẽ4 = (~v, 1)/

p
1� |v|2 be the time unit vector of another observer. Intersection of the

light cone with ẽ4’s simultaneity space at time �1 means: choose the tangent vectors ċ to
the null world lines c such that hhċ, ẽ4ii = �1. This implies for the di↵erence ċ� ẽ4 2 ẽ?4 ,

41



in other words, these di↵erence vectors are the unit vectors pointing to the stars in the rest
space of the second observer. Therefore we have for the angle between two stars as seen by
the second observer

cos '̃ = hhċ1 � ẽ4, ċ2 � ẽ4ii.

We do this computation for the directions ~e, ~f of the first observer. First we have the
reparametrization factor �(~e,~v) so that

hh�(~e,~v) · (~e, 1),
(~v, 1)p
1� |v|2

ii = �1 or �(~e,~v) =
�
p

1� |v|2
(h~e,~vi � 1)

The new direction vectors in the second rest space are the di↵erences

~̃e := �(~e,~v) · (~e, 1)� (~v, 1)p
1� |v|2

, ~̃f := �(~f,~v) · (~f, 1)� (~v, 1)p
1� |v|2

.

Their hh., .ii-scalar product is the Euclidean scalar product in the rest space and therefore
gives cos '̃.
Since the orbit speed of the earth is only 10�4c we simplify these formulas by dropping all
terms that are at least quadratic in ~v. This gives the

small |~v| approximation of the aberration of light:

�(~e,~v) = 1 + h~e,~vi, ~̃e =
�
~e� ~v + h~e,~vi~e, h~e,~vi

�
, ~̃f =

�
~f � ~v + h~f,~vi~f, h~f,~vi

�
cos '̃ ⇡ hh~̃e, ~̃fii ⇡ cos'� (h~e,~vi+ h~f,~vi) · (1� cos') + o(|~v|2).

Images to sort out
It needs some practice to translate 3-dim descriptions into Special Relativity. For example:
An observer cannot move from one point of its rest space to another point, as soon as
he moves, his rest space changes. He can only receive light signals and know later what
happened in his rest space. To discuss relative movement of two systems the simplest
situation is: pick the world lines of two observers in relative motion, draw a segment in the
rest spaces of each observer, consider the world lines of all the points of the two segments
in the two systems. At the instant where a world line c1 of a segment point a1 in the first
system intersects the world line c2 of a segment point b2 of the second system, at that
instant the first observer says: the other guy’s point b just now flies past my point a and
the second observer says: the other guy’s point a just now flies past my point b.
Starting from this picture one can answer questions like: How long does it take, in each
system, for one point of a segment to fly past the other segment? There is no problem with
the length of a segment in its own system, but what does the other observer take as the
segment length?
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Lightcone Geometry
Null Geodesics, Distance Measurements, Red Shift

Remark. At some point I should present a homogenous, flat (i.e. curvature tensor R = 0)
example with incomplete null geodesics.

In this section M,g is a Lorentz manifold (i.e. g has the signature of Special relativity).
We discuss properties of null geodesics, emphasizing similarities with Special Relativity.

1. Geodesic Lightcones. The null vectors v 2 TpM form the light cone in TpM .
Initial data {p, v} for geodesics integrate to null geodesics because

D�0�
0 = 0 and g(�0(0), �0(0)) = 0) g(�0(t), �0(t)) = 0.

We say these null geodesics form the geodesic light cone with vertex p. This lightcone is the
image of the light cone in TpM under the exponential map.

2. Tangential Jacobi Fields. Let �✏(s) be a family of null geodesics with �✏(0) =
p. The Jacobi fields J(s) := @

@✏�✏(s)|✏=0 are tangent vectors to the light cone. From
g(�0✏(s), �0✏(s)) = 0 we obtain by di↵erentiation

0 =
@

@✏
g(�0✏(s), �

0
✏(s))|✏=0 = 2g(�0(s),

D

ds
J(s))

The derivatives of such Jacobi fields therefore lie in the subspace T := {u : g(�0(s), u) = 0}.
In Special Relativity this equation defines the tangent spaces of the light cone. Because

0 = g(�0(s),
D

ds
J(s)) =

d

ds
g(�0(s), J(s))) g(�0(s), J(s)) = const = g(�0(0), J(0)) = 0.

we also have in M,g that the tangent vectors J(s) to the lightcone satisfy this equation.

3. Parallel Tangent Planes. In Special Relativity the tangent space to the light
cone at one point of a light ray is tangential to the light cone along the whole ray. Similarly
in general: Let u(s0) be a tangent vector to the light cone at the point �(s0) of the null
geodesic �(.). Extend this tangent vector to a parallel field u(.) along �(.).

Claim: u(s) is tangent to the light cone at �(s).
Proof: D

dsu = 0) g(�0(s), u(s)) = const = g(�0(s0), u(s0)) = 0.
This says that the geodesic light cone geometry is as well behaved as in Special Relativity:
We can pick any point on a null geodesic and consider the light cone with that vertex. We
proved that all these light cones are tangential to each other and their common tangent
planes are parallel along the common null geodesic. — In Riemannian geometry often
problems are caused by the rotation of Jacobi fields. Along the light cone we are in a
better situation.

4. Parallel Null Vectors. If one picks a null vector u that is linearly independent of
�0(s0) then it is tangential only to the light cone with vertex �(s0) and otherwise transversal
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to the common tangent plane of the light cones containing �(.). Of course, if we parallel
translate u along � then it stays a null vector because g(u(s), u(s)) is constant.

5. Non-Tangential Jacobi Fields. We consider a family �✏(s) of null geodesics
that are not assumed to have a common initial point. As in that special case we obtain for
the Jacobi field J(s) := @

@✏�✏(s)|✏=0 that g( D
dsJ(s), �0(s)) = 0. This says that the derivative

of J lies in the tangent spaces of the light cone along �. We can therefore decompose

J(s) = u(s) + T (s),
where u(.) is parallel along � and T (.) is tangential to the light cone.

Warning: both, u(.), T (.) are in general not Jacobi fields. Proof of the decomposition:
begin with J(0) = u(0) + T (0) as desired, extend u(0) to a parallel field u(.) and define
T (s) := J(s)�u(s). Then D

dsT (s) = D
dsJ(s), hence d

dsg(�0(s), T (s)) = 0 and g(�0(s), T (s)) =
const = g(�0(0), T (0)) = 0, as claimed.

6. Killing Fields. A map A : M !M is called a Pseudo-Riemannian isometry (often
Lorentz isometry for short) if it satisfies for arbitrary tangent vectors Y,Z

g(TA · Y, TA · Z) = g(Y,Z).

Let At be a family of Lorentz isometries with A0 = id.

X(p) :=
@

@t
At(p)|t=0.Definition of a Killing field

Claim: The covariant di↵erential DX of a Killing field is a skew-symmetric endo-
morphism field, i.e. g(DY X,Y ) = 0. And vice versa, the flow of a vector field X with
skew-symmetric DX consists of Lorentz isometries, i.e., X is a Killing field.

Choose a curve p(s), p(0) = p, p0(0) = Y . Then

0 =
d

dt
g(TAt · Y, TAt · Y )|t=0 = 2g(

D

dt

� d

ds
At(p(s))|s=0

�
, TAt · Y )|t=0

= 2g(
D

ds

� d

dt
At(p(s))|t=0

�
|s=0, Y )

= 2g(
D

ds

�
X(p(s)

�
|s=0, Y )

0 = = 2g(DY X(p), Y ).

In the reverse direction, if the covariant di↵erential of a vector field X is a skew-symmetric
endomorphism field and if At denotes the flow of this vector field then the above compu-
tation (read backwards) shows that the scalar products g(TAt · Y, TAt · Y ) do not depend
on t so that the At are indeed Lorentz isometries.
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7. Killing Fields and Conserved Quantities. If X is a Killing field and � is a
geodesic (for example a force free world line) then

g(X(�(s)), �0(s)) = const

Proof: d
dsg(X(�(s)), �0(s)) = g( D

dsX(�(s)), �0(s)) + g(X(�(s)), D
ds�

0(s)), the first term is
zero by skew-symmetry of DX, the second because of the geodesic equation.

We will have to discuss the question: why do we observe conserved quantities even though
our cosmological Lorentz manifold has no Killing fields. The following will be needed.

8. Second Order PDE for Killing Fields. The di↵erential equation for Killing
fields – the skew-symmetry of DX – cannot be solved on arbitrary manifolds, because there
exist not enough Isometries. We want to connect this more directly with the equation and
we will find that the Killing fields also solve a second order PDE that reduces along geodesics
to second order ODEs. This shows that the initial value and the initial derivative at one
point, i.e. X(p),DX|p, determine a Killing field uniquely – while not every such candidate
really is a Killing field.
The flow of a Killing field moves each geodesic through a family of geodesics, so that the
restriction of a Killing field to a geodesic is a Jacobi field. That means, for every tangent
vector of a geodesic, �0, the Killing field X has to satisfy D2

�0,�0X + R(X, �0)�0 = 0. Hence
we have for all tangent vectors Y,Z

D2
Y +Z,Y +ZX + R(X,Y + Z)Y + Z = 0,

D2
Y,Y X + R(X,Y )Y = 0, D2

Z,ZX + R(X,Z)Z = 0,
D2

Y,ZX + D2
Z,Y X + R(X,Y )Z + R(X,Z)Y = 0,by subtraction

D2
Y,ZX �D2

Z,Y X = R(Y,Z)X.by definition
2D2

Y,ZX + R(X,Y )Z = R(Z,X)Y + R(Y,Z)X,Finally
D2

Y,ZX + R(X,Y )Z = 0.with 1.Bianchi

Remark. If one tries to construct X by solving Jacobi equations along radial geodesics,
then one can guarantee the correct second derivative of X only in the direction of those
geodesics – while the second order PDE (derived above) requires much more.

The most important class of cosmological models will be conformally flat. Recall also that
the Maxwell equations are conformally invariant. Conformal changes of the metric will
therefore be important for the discussion of such cosmological models. We will see that
null geodesics remain null geodesics under conformal changes – except that they are no
longer parametrized so that the tangent field is parallel. We briefly discuss such (“non
a�ne”) parametrizations of geodesics.

9. Geodesics with non affine parametrization. Start with D
dsc0(s) = 0 and

reparametrize s = '(�), i.e., consider �(�) := c('(�)).
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d

d�
�(�) = c0('(�)) · d

d�
'(�)

D

d�

⇣ d

d�
�(�)

⌘
=

D

ds
c0|'(�) · (

d

d�
'(�))2 + c0('(�)) · '00(�)

=
'00

'0
(�) · d

d�
�(�).

Vice versa, consider a curve such that the covariant derivative of the tangent field is pro-
portional to the tangent field:

D

d�

⇣ d

d�
�(�)

⌘
= m(�)

d

d�
�(�).

We insert a parameter change � =  (s) and determine  (.) so that D
ds( d

ds(�( (s)))) = 0:

D

ds

⇣ d

ds
(�( (s)))

⌘
=

D

ds

⇣
 0(s) · d

d�
�(�)))

⌘

=  00(s) · d

d�
�(�)) + ( 0(s))2 · D

d�
(

d

d�
�(�))

=
�
 00(s) +  0(s)2m(�)

� d

d�
�(�).

Indeed, by solving the ODE

 00(s) = �m( (s)) ·  0(s)2,

we can return to an a�ne parametrization of the given curve. In our application the
function m(.) will be related to the conformal factor and we can explicitly solve the ODE.
Here we only remark: if m = '00/'0 then, expectedly, the ODE is solved by  := '�1.

10. Null Geodesics under Conformal Changes of g(., .).
We consider the conformally changed metric g̃(X,Y ) := ��2g(X,Y ), � > 0 (the exponent
�2 turns out to be slightly more convenient). We define the di↵erence tensor between the
two covariant derivatives and find from a short computation

�(X,Y ) := D̃XY �DXY = �TY �

�
X � TX�

�
Y + g(X,Y )grad�

Remark. From g(grad�,X) = TX� = g̃(]grad�,X) = ��2g(]grad�,X) we see

grad� = ��2 ]grad�, g(X,Y )grad� = g̃(X,Y )]grad�.

In Riemannian geometry geodesics do not remain geodesics under conformal changes of the
metric because of the Term g(X,Y )grad� in the di↵erence tensor �. This term drops out
for null geodesics � with D

d��
0(�) = 0, g(�0(�), �0(�)) = 0. We obtain
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D

d�
�0(�) = 0 ) D̃

d�
�0(�) = �(�0, �0)(�) = �2

T�0�

�
· d

d�
�(�) = �2

d
d��(�(�))

�
· d

d�
�(�).

So indeed, � is also a null geodesic for g̃(., .), but not with a�ne parametrization. The
function m(�) in the above reparametrization computation equals in the present case
m(�) = �2 d

d��(�(�))/�, so that the second order ODE  00(s) = �m( (s)) 0(s)2 can
be integrated once to:

 0(s) = �2(�( (s))), since this solves the ODE:

 00(s) = 2� · d

d�
�(�(�)) ·  0(s) ·  

0

�2
= �m( (s)) 0(s)2.

11. Reshift in Lorentz Manifolds. Consider the following experiment:
A source S emits light signals of known frequency. These signals are observed by an observer
O. Source and observer have their world lines parametrized by proper time. The unit
tangent vectors of these world lines are denoted u (source) and v (observer), g(u, u) =
�1 = g(v, v). The light signals travel on null geodesics that join the world lines of S and
O. Note that the light signals emitted at source time t travel on all the null geodesics of
the light cone that has its vertex at the point of emission. These light rays thus fill a
3-dimensional surface and if the world line of O meets the light cone for emission time t,
then, by transversality, O’s world line continues to meet the light cones from later emission
points of S. So we have a family of null geodesics that join the two world lines. We assume
a�ne parametrizations for these null geodesics on the interval [0, 1].
Now we di↵erentiate the family and have a Jacobi field J along one null geodesic c from S to
O. J(0) is proportional to u, we may assume J(0) = u (for example with the interpretation:
the time signals are sent at unit time intervals). J(1) is proportional to v and the factor
determines how the observed frequency di↵ers from the emitted frequency.
Standard conventions are that the ratio of the source frequency divided by the observer
frequency is written as 1+z and this ratio (or also the number z) is called red shift because
for most astronomical situations the source frequency is larger and red shift is meant to
indicate a change towards slower frequencies because red is at the slow end of the visible
light spectrum.

!S

!O
=: 1 + z.Definition of red shift:

!S

!O
=

g(u, c0)
g(v, c0)

.Claim:

Note that an a�ne change of parameter on the null geodesic c drops out of this quotient.
Note also that this formula captures red shift as a natural geometric quantity. We do
not have distances associated to an indefinite metric, but in addition to proper time on
world lines we now also have red shift as a geometric quantity. And in the development of
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astronomy the discovery of red shift was certainly a dramatic moment. Before I prove the
claim first an

Example from Special Relativity.
Take u := (0, 0, 0, 1) and v = (a, 0, 0, 1)/

p
1� a2 and a null ray c in the x-direction,

c0 = (1, 0, 0, 1). Then we have

g(u, c0) = �1, g(v, c0) = �
s

(1� a)
(1 + a)

) g(u, c0)
g(v, c0)

=

s
(1 + a)
(1� a)

.

This is the same answer that we obtained before: for source and observer flying apart the
emitted frequency is larger by the given factor than the observed frequency.

Proof of the Claim. We arranged the variation by null geodesics so that J(0) = u
and J(1) is proportional to v, say J(1) = µv. Observe that µ is the quantity we need to
determine because time signals that are emitted one unit of time apart are received µ units
of time apart. Rephrased as frequency change this says: !S/!O = µ. We need point 5.
above:

g(µv, c0(1)) = g(J(1), c0(1))
(5.)
= g(J(0), c0(0)) = g(u, c0(0)) ) !S

!O
= µ =

g(u, c0(0))
g(v, c0(1))

.

12. Reshift and Conformal Change of g(., .). We want to add a conformal
change of the metric, g̃ = ��2g to the previous red shift discussion. This ought to be
possible since the null geodesics that connect the world lines of source and observer remain
null geodesics, we only have to correct for the change of paramerization. We call the
g-geodesics �(�) and the g̃-geodesics c(s) = �( (s)) with  0(s) = �2(�( (s))) and of
course c0(s) = d

d��(�) ·  0(s) = �2�0(�). The timelike unit vectors of S and O are easily
changed ũ = �(S)u, ṽ = �(O)v so that again g̃(ũ, ũ) = �1 = g̃(ṽ, ṽ). If we forget to take
the parametrization change of the null geodesics into account this would indicate that the
frequencies are changed with ��1. This statement by itsself does not make sense since there
are no experiments that connect frequencies in di↵erent Lorentz manifolds. The correct
computation of the frequency ratio takes the reparametrization of the null geodesics into
account:

!̃S

!̃O
=

g̃(ũ, c0|S)
g̃(ṽ, c0|O)

=
��2(S) · g(�(S)u, �2(S)�0|S)
��2(O) · g(�(O)v, �2(O)�0|O)

=
!S

!O
· �(S)
�(O)

In our discussion of cosmological observations it will be very convenient that the change of
red shift under conformal changes of the metric does not depend on solutions of ODEs but
involves only the ratio of the conformal factors at the source S and the observer O.

13. Quotient Geometry on the Light Cone. The induced metric on any light
cone LC is degenerate: let c(s) be a null geodesic on LC, then we have for all v 2 Tc(s)LC
that g(c0(s), v) = 0. It is therefore useful to introduce the quotient geometry by defining

[v] := v + Rc0(s).equivalence classes:
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We have a well defined positive definite scalar product on the quotient of Tc(s)LC:

g([v], [w]) := g(v + �c0, w + µc0)
= g(v, w) + �g(c0, w) + µg(v, c0) + �µg(c0, c0) = g(v, w).

We have a covariant derivative on the quotient bundle along c(s):
let [v](s) = [v(s) + �(s)c0(s)] then we can define (with ( D

dsv(s))tang denoting the LC-
tangential component of D

dsv(s) )

D

ds
[v](s) := [(

D

ds
v(s))tang + �0(s)c0(s)] = [(

D

ds
v(s))tang] and hence have

d

ds
g([v](s), [w](s)) =

d

ds
g(v(s), w(s)) = g(

D

ds
v(s), w(s)) + g(v(s),

D

ds
w(s))

= g(
D

ds
[v](s), [w](s)) + g([v](s),

D

ds
[w](s)).

Also, the Jacobi equation descends to the quotient.
Since R(v + �c0, c0)c0 = R(v, c0)c0 2 Tc(s)TC we can define

[R]([v], c0)c0 := [R(v + �c0, c0)c0],

so that [R] is a symmetric operator on the 2-dimensional quotient space at c(s). Finally,
since a tangential Jacobi field J(s) has a tangential covariant derivative, we have the twodi-
mensional quotient equation

D

ds
(
D

ds
[J(s)] + [R]([J ](s), c0)c0 = 0.

The two eigenvalues of [R] will be important for measurement discussions.

Distance Measurements in Relativity Theory

First we describe in Newtonian language methods to determine distances that are used in
astronomy.

1. Luminosity Comparison. Because the area of spheres grows as r2 (with r the
distance) the intensity of light goes down as r�2. Since the Fraunhofer spectra of the stars
are so complicated one is often in a position to say that two stars have the same absolute
brightness. Then the ratio of their apparent brightnesses in the sky is the square of the
ratio of their distances (twice as far away = one quarter as bright). This method is applied
not only to individual stars in our and in nearby galaxies but also to whole galaxies or
other objects (e.g. certain supernovae) where one has a good argument why their absolute
brightness should be the same. – For each type of object of known absolute brightness
one needs at least one object of known absolute distance, otherwise the method cannot be
applied to that type of object.
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2. Trigonometric Distance via Parallax. The fact, that a triangle is determined
if one knows one edge and two angles, allows to find the position of a boat if it can see two
known light houses. The same principle is used in astronomy by observing a star from two
opposite points of the orbit of the earth around the sun. The main observational problem is
to compare the two directions in which one sees the star from those two opposite positions.
Today one has an enormous list of objects in the sky that are so far away that their angle
distances from each other do not change while the earth changes its position on the orbit.
One therefore measures how much the nearer object changes its position relative to those
very distant objects. Historically it was the first method to determine any star distances –
and it was much more complicated to use than today.

3. Angular Size of Known Objects. If one can derive from solar and lunar
eclipses that the diameter of the moon is one quarter of the (known) diameter of the earth,
then one can determine the distance to the moon from its angular size of ⇡ 0.5�. Similarly,
if one knows the absolute size of an object (in the sky) that is large enough to have an
angular size then its distance is easily obtained. No single star is large enough. However, for
some double stars one has been able to determine the diameter of their orbit around each
other. The 1987 supernova illuminated a gas disk that is tilted towards us. The nearest
edge showed this illumination first and from the observed(!) time di↵erence between the
illumination of the nearest edge and the farthest edge one easily obtained the size of this
object. The most important example before 1987 was a star cluster named Hyaden. It is so
close to us that photos taken at 10 year intervals show a movement of these stars against
the distant sky. As in perspective drawings the tangents of these orbits converge to a point
in the sky and the position of this convergence point tells us the direction of the movement
in space. From the Doppler shift of the Fraunhofer lines one knows the radial velocity
of this movement. Both informations give the absolute velocity and comparison with the
angular velocity in the sky gives the absolute distance. – The data of the 1987 supernova
are presently the best absolute distance measurements to get the luminosity comparison
method started.

4. Red Shift. It was possible to determine the red shift of electromagnetic signals from
objects of very di↵erent distance. The observations showed, that farther away objects have
a larger red shift, in fact, the red shift grows almost linearly with the distance. (This is
not true for nearby galaxies where rotations around each other are the dominant cause
of frequency shifts.) The simplest explanation for such red shift is the Doppler e↵ect.
The observation of the red shift provided the first evidence of an expanding universe. – For
many objects with large red shift it is not possible to determine their distance independently
from the red shift. In those cases one takes the red shift itself as distance information, by
extrapolating the expansion law.

The descriptions of these distance measurements are obviously in pre-Einstein language.
We need to redescribe them so that they fit into the world of Relativity Theory.
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Special Relativity Description of Distance Measurements

All electromagnetic information reaches an observer along its backwards light cone. In-
terpretation of such information will not give a distance immediately, instead, the most
direct interpretation will place the observed star somewhere on the observer’s backwards
light cone. We can intersect that light cone with hyperplanes that are parallel to the simul-
taneity space of the observer. We can compute distances by multiplying the time distance
of each simultaneity space with the speed of light and we associate these distances to the
star positions on the backwards light cone. Next consider a di↵erent observer at the vertex
of the above light cone. It has a di↵erent time unit vector and therefore its simultaneity
spaces are tilted against the simultaneity spaces of the first observer. While we will see that
the geometric positions on the backwards light cone remain the same the result of the tilt
is that stars at equal distance for the first observer are not at equal distance for the second.
This means that all distances in the universe change as the earth orbits the sun (although
by considerably less than the error margin of astronomical distance measurements).

1. It is easy to adjust the luminosity comparison from a Newtonian description to a rela-
tivistic one: For a given observer the a�ne parametrizations of the light rays are given by
the intersection of the light cone with the simultaneity spaces. Also, these intersections
are spheres and their area increases quadratically with the (time) distance. Therefore, if
we have placed one star on the backwards light cone and observe a second one of the same
type, but one quarter as bright, then it is clear where on the light cone to place the second
one. (Recall that the ratio of distances in di↵erent space directions depends on the observer
at the light cone vertex.)

2. We represent the base line for the parallax measurement by a small segment in the
simultaneity space of the observer – or, in view of the smallness of available base lines, by a
tangent vector to the manifold orthogonal to the observer’s time unit vector. Observation
of the star means: connect the world line of the star and the points of the base line
by null geodesics c✏(s). Or again, the infinitesimal version is the Jacobi field J(s) =
d
d✏c✏(s) along the null geodesic c(s) from the star, s = S, to the observer s = O. c(S)
represents the star and J(S) is tangential to the stars world line. c(O) represents the
observer and J(O) is tangential to the base line in the simultaneity space of the observer,
hence g(c0(O), J(O)) = 0. From (5.) above we obtain that J(s) is actually tangential to
the light cone, so that J(S) = 0. A parallax measurement determines how the direction
to the star changes along the base line, i.e. one determines D

d✏
d
dsc|✏=0,s=O = D

dsJ(O). In
Special Relativity Jacobi fields are linear (J 00 = 0), therefore J(O), D

dsJ(O) and the already
fixed a�ne parametrization determine the value s = S where J(S) = 0, i.e. the parallax
measurement determines the point on the backwards light cone where we observe the star.
(In retrospect, a change of the a�ne parametrization of the null geodesic changes the value
of S, but not the position of the zero on the light cone.)
What is the result of a parallax measurement of a di↵erent observer O0 at c(O)? Let us
extend the null geodesics from the star, s 7! c✏(s), until they meet the rest space of O0

– in other words: to the extent that di↵erent observers can do this, O and O0 use the
same base line. Of course, the zero of the Jacobi field does not change, so tat O0, even
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though measuring a di↵erent distance, places the star at the same point on the backwards
light cone. The geometric picture is therefore better behaved than the communication of
distances. (We could also have argued: in the quotient geometry along the light cone the
two observers determine the same Jacobi field [J ](s).)

3. In the measurement of the angular size of known objects we use tangential Jacobi fields
along the light cone (of the star or the observer) with J(O = 0) = 0 and J 0(O) being
measured. We compute s = S so that J(S) has the size of the known object. Again. the
point c(S) on the light cone remains the same if we change the a�ne parametrization from
c(s) to cnew(s) := c(�s) : c0new(0) = �c0(0), Snew = S/�, c(S) = cnew(Snew). – Note that
the known object should be orthogonal to the direction (in space) of the connecting light
ray, otherwise J(S) is not tangential to the light cone.

4. I repeat the assumptions for using red shift as a distance measure: (i) The red shift is
a Doppler frequency shift caused by relative velocity that increases linearly with distance.
(ii) For objects for which only red shift measurements (and no independent distance mea-
surements) can be obtained one still assumes the linear increase of velocity with distance.
There is no problem in rephrasing these assumptions in terms of positions on the backwards
light cone instead of in terms of distances.

Distance Measurements in the Presence of Curvature

This situation is dealt with in two ways:
a) One has an explicit model for a planetary or cosmological situation. Then one can

replace the linearity of Jacobi fields (from J 00 = 0) by the known ODE
D
ds( D

ds [J ](s)) + [R]([J ](s), c0(s))c0(s) = 0
to compute the position of S on the light cone.

b) One has no information about the 4-dimensional geometry. Then one interprets the
measurements as in the flat (R = 0) case. But one can argue in which direction the
result di↵ers from the true position of S, if one makes assumptions about the sign of
the eigenvalues of [R].

We postpone a) until we have explicit models. As for b), if the eigenvalues of [R] are
positive the Jacobi field stays below the tangent at O. The parallax distances are therefore
computed larger than they really are with the linear evaluation method. The distances
which are linearly computed from the angle size of known objects are smaller than the real
distances. – If the eigenvalues of [R] are negative, then the Jacobi field stays above its
tangent at O. Therefore the situation is reversed: linearly computed parallax distances are
too large and linearly computed angle size distances are too small.
If the two eigenvalues of [R] have di↵erent sign, then the parallax distance depends on the
angle position (orthogonal to the direction to the star) of the base line and the angle size
distance depends on the angle position of the known object – in particular, a circular disk
is not observed as circular.
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Schwarzschild Geometry
From Planetary Systems to Black Holes

Newtonian celestial mechanics starts with the two-body problem where two masses move
around their center of mass on Kepler orbits. No such solution is known in General Rel-
ativity. What is known, models a heavy central star and infinitesimal planets (they are
so small that they do not influence the geometry). This model is called the Schwarzschild
solution.
One cannot look for such a planetary model without mentioning the Einstein equations.
These connect the geometric model with properties of the matter that exists in this model.
One assumes that one knows the physical properties of the matter so well that one can write
down, at each point in the rest system of the matter, a so called stress energy tensor T . In
the present situation we assume vacuum outside the central star and vacuum is modelled
by T = 0. (We cannot model the inside of the star where matter in complicated motion
is present.) So we dealt with the physics side of the Einstein equations in a trivial way in
this first example.
The other, the geometric side of the Einstein equations is independent of the matter. One
needs the divergence free part of the Ricci tensor, the so called

G := Ric� 1
2
trace (Ric)id .Einstein tensor

trace (G) = trace (Ric)� 4
2
trace (Ric) = �trace (Ric).Note

In addition there is a parameter ⇤, called the Cosmological Constant, in the Einstein equa-
tions. Einstein wrote the equations first with ⇤, later without ⇤. Cosmologists computed
their main models first without ⇤, presently with ⇤. But the data fit of the astronomers
to obtain ⇤ from observations and the opinion of elementary particle physicists about the
size of ⇤ are more orders of magnitude apart than at any other disagreement in the history
of physics. The famous Schwarzschild geometry has ⇤ = 0, but I will keep the parameter
since two pioneer rockets from the seventies which have left the solar system in opposite
directions deviate from their computed paths in an unexplained way. Finally, here are the

8⇡T = G +⇤ · id ,Einstein equations:
T = 0) Ric = ⇤ · id .Vacuum case:

Of course, the vacuum equations do not define anything specific. Further assumptions
go into the Schwarzschild geometry: One wants a stationary and spherically symmetric
geometry. Stationary means: time translation t ! t + const is a Lorentz isometry. Spher-
ically symmetric means: SO(3) acts isometrically on 2-spheres obtained by setting radial
coordinate and time coordinate to constants.

M := (a, b)⇥ S2 ⇥ RAnsatz:
ds2 := d⇢2 + G2(⇢)d�2 � F 2(⇢)dt2,

where d�2 is the standard metric on S2.
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Remark. The physics literature prefers a coordinate r := G(⇢), dr = G0(⇢)d⇢. Our Ansatz
is closer to standard formulas in Di↵erential Geometry, and the switch to the physics co-
ordinates can trivially be made at the end.
Remark. The following determination of the Ricci tensor is done with the intention to ex-
plain as much as possible about this remarkable geometry, not as a computational exercise.

Lemma. Let N be the normal of a totally geodesic hypersurface, then N is an eigenvector
of the Ricci tensor.
Proof. For every tangent vector X of the hypersurface we have DXN = 0. Hence we
have for every pair of tangent vectors X,Y that D2

X,Y N = 0 hence D2
X,Y N � D2

Y,XN =
R(X,Y )N = 0. The curvature tensor symmetries imply g(R(N,Y )Y,X)) = 0, so that
R(N,Y )Y 2 R · N . Finally, the trace-definition of Ricci gives Ric(N) = �NN .

The easiest way to get totally geodesic hypersurfaces is as fixed point sets of isometries.
Our Schwarzschild-Ansatz implies that time reflections are isometries and so are reflections
in great circles of S2. We can therefore apply the previous Lemma to the timelike unit
tangent vectors e4 of the last factor, the t-factor, in M := (a, b)⇥ S2⇥R. Similarly we can
apply the Lemma to all spacelike unit tangent vectors e� of the factor S2. Finally, since
the three factors are pairwise orthogonal, also the unit tangent vectors e1 of (a, b) must be
eigenvectors of Ricci. Therefore we have proved:

The tangent spaces of the three factors of M are eigenspaces of the Ricci tensor of M .

To obtain the eigenvalues we compute some curvature values from the Jacobi equation:
D
ds( D

dsJ(s)) = �R(J, c0)c0(s), for the remaining ones we use the Gauss equation and the
following

Lemma. If one has a family of parallel hypersurfaces (so that the vector field N of unit
normals has geodesic integral curves) then one can compute the shape operator S of these
hypersurfaces from Jacobi fields J along the normal geodesics as follows:

S · J = J 0.
Proof. Let c(t) be a curve in one of the parallel hypersurfaces and ċ(0) = X. Let s 7! c(s, t)
be the family of normal geodesics. Observe N(c(s, t)) = d

dsc(s, t) and Jt(s) := d
dtc(s, t) are

variations of geodesics, hence Jacobi fields along the normal geodesics. Of course J0(0) = X.
By definition of the shape operator we have

S · Jt(s) = S · d

dt
c(s, t) :=

D

dt
N(c(s, t)) =

D

dt
(

d

ds
c(s, t)) =

D

ds
(

d

dt
c(s, t)) =

D

ds
Jt(s).

The hypersurfaces ⇢ = const are such a family of parallel hypersurfaces because the ⇢-
lines are geodesics (either from the form of the metric or by intersection of totally geodesic
subspaces). These hypersurfaces have the product metric
G2(⇢)d�2 � F 2(⇢)dt2

with hypersurface curvature 1/G2 tangential to S2 and hypersurface curvature 0 for the
e� ^ e4-planes. The eigenvalues of the shape operator are obtained with the lemma, where
the needed Jacobi fields are restrictions of Killing fields. These Jacobi fields are obtained
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from variations in 2-dimensional totally geodesic subspaces, which implies J(s)/|J(s)| is a
parallel field. Therefore we do not need Christo↵el symbols to compute (s = ⇢)

D

ds
(
D

ds
J(s)) = |J(s)|00 · J(s)

|J(s)| = �R(J(s), c0(s))c0(s), c0(s) = e1.

|J4(⇢)| = F (⇢), |J�(⇢)| = G(⇢).

R(e4, e1)e1 = �F 00(⇢)
F (⇢)

e4, R(e�, e1)e1 = �G00(⇢)
G(⇢)

e�.

S · e4 =
F 0

F
e4, S · e� =

G0

G
e�.

R(e2, e3)e3 = (
1

G2
� (

G0

G
)2)e2, R(e3, e2)e2 = (

1
G2

� (
G0

G
)2)e3,

R(e4, e�)e� = 0� (
G0

G
)(

F 0

F
)e4, R(e�, e4)e4 = 0� (�F 0

F
)(

G0

G
)e�.

Note that in the Gauss equations, because of g(Sy, y)Sx = �yg(y, y)�xx, it matters which
vectors are timelike and which are spacelike.
From the above curvature tensor data we obtain the eigenvalues of Ricci:

Ric(e1) = �1e1 = (�F 00

F
� 2

G00

G
) · e1,

Ric(e�) = ��e� = (
1

G2
� (

G0

G
)2 � G00

G
� F 0G0

FG
) · e�,

Ric(e4) = �4e4 = (�F 00

F
� 2

F 0G0

FG
) · e4.

⇤ = �1 = �� = �4.Einstein vacuum equations:

The Schwarzschild geometry is obtained by solving this ODE-system.

, F 0

F
=

G00

G0
, (

F

G0
)0 = 0, F

G0
= const.(*1) : �1 = �4

By scaling the t-coordinate we can have const = 1, hence
F = G0.

This leaves only one function to be determined. Setting all three eigenvalues equal and
inserting F = G0 gives a third order ODE for G which we can integrate twice for a first
order ODE for G that contains two parameters, one is the cosmological constant, the other
will be called m for mass of the central star.

() 0 =
F 00

F
+

1
G2

� (
G0

G
)2 =

G000

G0
+

1
G2

� (
G0

G
)2(*2) : �� = (�4 + �1)/2

()
⇣�1

G2
+ (

G0

G
)2 + 2

G00

G

⌘0
= 2

G0

G

✓
G000

G0
+

1
G2

� (
G0

G
)2
◆

= 0.
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If we compare the obtained first integral with ��, we find that the value of this constant
function is �⇤: ��1

G2
+ (

G0

G
)2 + 2

G00

G

�
= �⇤.

We add the third order ODE and multiply by G2G0 to get
�

G000

G0 + 2G00

G

�
G2G0 = �⇤G2G0,

hence another constant function:

�
G2G00 +

⇤
3

G3
�0 = 0.

m :=
�
G2G00 +

⇤
3

G3
�
,Define

m = G2G00 +
⇤
3

G3 =
G

2
(1�G02)� ⇤

6
G3.and observe

So we arrived at the desired first order ODE for G:

G02 = 1� 2m
G
� ⇤

3
G2

Note that this ODE implies the third order ODE and hence all other used identities.

Finally let us make the change to the historic coordinates r := G(⇢), dr = G0(⇢)d⇢ and
recall that the historic Schwarzschild solution has ⇤ = 0. The metric is

ds2 = (1� 2m
r
� ⇤

3
r2)�1dr2 + r2d�2 � (1� 2m

r
� ⇤

3
r2)dt2.

We have computed above the Jacobi part of the curvature tensor in terms of F,G, now we
use the ODE to compute these curvatures in terms of m,⇤. Note (G0/G)(F 0/F ) = G00/G =
m/G3 � ⇤/3, (1 � G02)/G2 = 2m/G3 + ⇤/3 and �F 00/F = �G000/G0 = (1 � G02)/G2 =
2m/G3 + ⇤/3. To obtain in addition to the six values already listed also R(e1, N)N with
N one of the totally geodesic hypersurface normals e4, e� used above, note that we proved
already R(e1, N)Ñ = 0 if N ? Ñ are any two of those normals. This says that R(e1, N)N
is a multiple of e1 and g(R(e1, N)N, e1) is already known. This gives the following list

R(e4, e1)e1 = (2m/G3 +⇤/3)e4, R(e�, e1)e1 = (�m/G3 +⇤/3)e�,

R(e2, e3)e3 = (2m/G3 +⇤/3)e2, R(e3, e2)e2 = (2m/G3 +⇤/3)e3,

R(e4, e�)e� = (�m/G3 +⇤/3)e4, R(e�, e4)e4 = (+m/G3 � ⇤/3)e�,

R(e1, e�)e� = (�m/G3 +⇤/3)e1, R(e1, e4)e4 = �(2m/G3 +⇤/3)e1.

Check signs by computing x 7!
P

i R(x, ei)ei/g(ei, ei) = ⇤x. For m = 0 we get the curva-
ture of the last example in lecture 2, R(X,Y )Z

��
m=0

= (⇤/3)(g(Y,Z)X � g(X,Z)Y ). Even
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the coordinates are almost the same: define a new coordinate ↵ by r =:
q

3
⇤ sin(

q
⇤
3 ↵)

then d↵2 = dr2/(1� ⇤
3 r2) – which is that last example, with curvature ⇤/3.

Light Cone Curvatures

First we show that the trace of the curvature [R] of the quotient geometry on the tangent
spaces of the light cones is zero.
Let ~n1 be tangent to the light ray in question. Extend this to a basis {~e1, ~e2, ~n1, ~n2} such
that each ~ej is a unit vector orthogonal to the other three and such that the ~nj are null
vectors with g(~n1, ~n2) = 1. In such a basis we have:

~X = x1~e1 + x2~e2 + y1~n1 + y2~n2 )
x1 = g( ~X,~e1), x2 = g( ~X,~e2), y1 = g( ~X,~n2), y2 = g( ~X,~n1)

We compute the trace of an endomorphism A by computing the above coe�cients for
~X := A~Y , where ~Y runs through the basis. Then

traceA = g(A~e1, ~e1) + g(A~e2, ~e2) + g(A~n1, ~n2) + g(A~n2, ~n1) hence

ricci( ~X, ~Y ) := trace (~Z 7! R(~Z, ~X)~Y )

= g(R(~e1, ~X)~Y ,~e1) + g(R(~e2, ~X)~Y ,~e2) + g(R(~n1, ~X)~Y , ~n2) + g(R(~n2, ~X)~Y , ~n1).

Since ricci( ~X, ~Y ) = ⇤g( ~X, ~Y ) we have ricci(~n1, ~n1) = 0 and therefore
0 = g(R(~e1, ~n1)~n1, ~e1) + g(R(~e2, ~n1)~n1, ~e2) + 0 + 0

= g([R]([~e1], ~n1)~n1, [~e1]) + g([R]([~e2], ~n1)~n1, [~e2]) = trace [R].

In particular, the eigenvalues of [R] agree up to sign.
The eigenvalues of [R] will depend on ~n1. We put

~n1 = (x⇢, x�, 0, xt) with (x⇢)2 + G(⇢)2(x�)2 � F (⇢)2(xt)2 = 0.

Next we choose two tangent vectors to the light cone through ~n1

~u := (0, 0, x3, 0) ? ~n1, ~v ? ~u, ~n1

Recall that R( ~X, ~Y )~Z = 0 if we insert three orthogonal vectors tangent to the factors of
M = (a, b)⇥ S2 ⇥ R. So we get

R(~e3, ~n1)~n1 = (x⇢)2R(~e3, ~e1)~e1 + G(⇢)2(x�)2R(~e3, ~e2)~e2 + F (⇢)2(xt)2(~e3, ~e4)~e4

=
3m
G

(x�)2 · ~e3

Since we had guessed an eigenvector (~e3), this computation gives the eigenvalue. Note that
the cosmological constant dropped out. The other eigenvalue is the negative of this one.
This result says for example: If the light ray from the source has x� =/ 0 then we see circular
objects at the source not circular. Or in other words, the distance measurement by angular
size of a known object changes if the object is rotated by 90� (around the line of sight).
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Interesting Observers

The case of non-vanishing ⇤ in the Schwarzschild geometry I have not seen discussed by
astronomers. For the comparison with a Newtonian planetary system we will therefore
usually assume ⇤ = 0. We will study this geometry by looking at it from the point of view
of the following observers:
1. The Killing Observers. We set all the spacial coordinates constant and look at
the world lines

�(s) := (⇢0, �0, F (⇢0)�1s) 2 (a, b)⇥ S2 ⇥ R.

As curves these are the integral curves of the Killing field X = (0, 0, 0, 1) whose flow
is coordinate-time-translation. We have reparametrized these curves with proper time:
g(�0(s), �0(s)) = �1. In space such an observer would have to use a rocket to keep the
spacial coordinates constant. If we model the space outside of a star by the Schwarzschild
Geometry, then the observer could simply sit on the surface of the star.
2. Circling Observers. The world lines of these observers have the radial coordinate
constant and the S2-coordinate runs on a great circle.

�(s) = (⇢, �⇢(s), 0, ⌧(⇢) · s), �0(s) = (0, !(⇢), 0, ⌧(⇢)) with
�1 = g(�0(s), �0(s)) = G2(⇢)!(⇢)2 � F 2(⇢)⌧(⇢)2.

If these world lines are geodesics then they model for example (infinitesimally small) planets
circling the Schwarzschild Geometry. Otherwise they need again the help of rockets to stay
on these orbits. An airplane flying with constant speed above a great circle is also such a
circling observer.

We first discuss the Killing observers. Although they are not inertial observers – we will
later compute their acceleration – they have some reason to consider themselves at rest
relative to each other: a) Since each world line is the orbit of a 1-parameter family of
isometries each of them sees the others not changing their angular sizes in time. b) If we
consider a light signal from one such observer to another and back, then the time translation
isometries carry the round trip world lines of these light signals to later round trip world
lines. In other words, the round trip travel times of light signals between Killing observers
don’t change in time. c) If a periodic signal makes this round trip then the signal returns
with the frequency of emission, i.e. no Doppler shift indicates relative motion. Since the
observers are Killing observers we can compute the red shift without explicitly knowing the
null geodesic �(s) between them, because time translation generates their world lines and
the joining null geodesics from the initial situation and the Jacobi field needed for the red
shift computation simply is the restriction of the Killing field X = (0, 0, 0, 1). The scalar
product g(X(�(s)), �0(s)) is constant and the unit tangent vectors of source S and observer
O are u = F�1(S)X(S), v = F�1(O)X(O), therefore

1 + z =
!S

!O
=

g(u, �0)
g(v, �0)

=
F (O)
F (S)

=
G0(O)
G0(S)

.

The red shift on the return trip will cancel the red shift on the outgoing portion !!
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Now we discuss the unexpected consequences of this computation. First, the source ob-
server can tell the receiving observer which frequency the emitted signal has and then the
receiving observer will see a red shift if his radial coordinate is larger and a blue shift
otherwise! Therefore there is no way to interpret this frequency shift as a Doppler shift,
because a Doppler shift is the same for source and receiver. Instead they have to come to
the conclusion that between coordinate time slices t = t0 and t = t1 more time passes on
the world line of that Killing observer that has the larger G(⇢) than on the world line of
the other. Below we compare the Schwarzschild Geometry with Newton’s theory. This will
show that we just gave the relativistic explanation of the Pound and Rebka experiment
described in the first lecture.
This di↵erence of the passing of time has unpleasant consequences for distance measure-
ments: The round trip coordinate travel time of a light signal between Killing observers
with di↵erent ⇢ is the same in both directions. But since the ratio between coordinate time
and proper time is di↵erent for these two observers they find that the light signal travel
time distance is not the same for the two. – In the section on light cone curvatures we
saw that also the distance by angle size of known objects depends on how one performs
the measurement. So we must accept that distance measurements in the Schwarzschild
geometry only give numbers which we agreed to call distances but which no longer behave
as we expect distances to behave. – Killing observers with the same S2-coordinate can be
said to be on the same radius from the star. The curve c(s) = (s, �0, t0) is a geodesic that
is, moreover, orthogonal to all the world lines �s(t) := (s, �0, t0 + t) of the Killing observers
on this radial line. Therefore these observers could justify to consider this radial line as in
their (common) simultaneity space. However, Einstein’s definition via light rays meeting
in the middle does not work: two light signals emitted from two points on such a radial
curve towards each other do not meet in the middle but closer to the interior observer.
Finally, observe that the redshift between Killing observers goes to infinity as the source
approaches a point where F (S) = 0, at G = 2m if ⇤ = 0. Signals that have undergone
infinite red shift can no longer be received. This is the first reason why the deep interior of
the Schwarzschild geometry is called a Black Hole.

Acceleration of World Lines

A world line �(s) that is parametrized by proper time (g(�0(s), �0(s)) = �1) has the accel-
eration D

ds�
0(s) in the rest space of �0(s), and this is the acceleration which an observer on

this world line experiences. We have to compute these accelerations.

On the underlying product manifold M = (a, b) ⇥ S2 ⇥ R we have the product metric
d⇢2 + d�2 � dt2. We can work with its covariant derivative D⇥ without introducing local
coordinates on S2. We denote by �(., .) the di↵erence tensor between the Schwarzschild
covariant derivative D and D⇥:

DXY = D⇥
XY + �(X,Y ).
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Again, � is computed with the (+,+,�) cyclic permutation trick:

TZ(g(X,Y )) = g(DZX,Y ) + g(X,DZY )
= g(D⇥

Z X,Y ) + g(X,D⇥
Z Y ) + (D⇥

Z g)(X,Y ).

With the notation X = (X⇢,X�,Xt), g(X,Y ) = X⇢Y ⇢ + G(⇢)2hX�, Y �i � F (⇢)2XtY t

we have

(D⇥
Z g)(X,Y ) = 2G(TZG)hX�, Y �i � 2F (TZF )Xt · Y t,

TZG = G0(⇢) · Z⇢, TZF = F 0(⇢) · Z⇢

g(�(X,Y ), Z) =
1
2
�
� (D⇥

Z g)(X,Y ) + (D⇥
Xg)(Y,Z) + (D⇥

Y g)(Z,X)
�

Finally, the di↵erence tensor is

�(X,Y ) =

0
@FF 0XtY t �GG0hX�, Y �i

(G0/G)(X⇢Y � + Y ⇢X�)
(F 0/F )(X⇢Y t + Y ⇢Xt)

1
A

The first application is the radial acceleration of the Killing observers. Their world lines
are

�(s) := (⇢0, �0, s/F (⇢0)), �0(s) = (0, 0, 1/F (⇢0)),

D

ds
(�0(s)) =

0
@ 0

0
0

1
A+ �

0
@ 0

0
1/F (⇢0)

,
0
0

1/F (⇢0)

1
A =

0
@ (F 0/F )(⇢0)

0
0

1
A ,

and more explicitly in the Schwarzschild geometry

F 0

F
(⇢) =

G00

G0
(⇢) =

m/G2 � (⇤/3)Gp
1� 2m/G� (⇤/3)G2

(⇢) =

�����
⇤=0

m

G2

1p
1� 2m/G

(⇢).

In the classical Schwarzschild case (⇤ = 0) this says: For G� 2m, i.e. for very large radial
coordinate function G, the acceleration needed to stay at a fixed place is m/G2, resembling
the Newtonian force of a central mass m. We also notice that distinctly before G becomes
zero, namely as G approaches 2m, the radial acceleration of the Killing observer becomes
infinite. This will turn out to be the reason why the classical Schwarzschild geometry seems
to terminate at G = 2m. Clearly the form of the metric is tuned to the Killing observer
and it is no surprise that the classical expression for the metric does not extend beyond
G = 2m. We will see below that also the circling observers support the interpretation of
m as the mass of the central object with G, at least for large values, behaving like a radial
distance.
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The cosmological constant ⇤ is exceedingly small so that the deviation from the classical
Schwarzschild geometry has not led to observed e↵ects in our part of the planetary system.
We can easily see from the formula, that for one very large value of G, for G = 3

p
3m/⇤,

the acceleration vanishes so that the Killing observer can stay in place without a rocket.

Comparison of Radial Functions

In the ⇤ = 0 case we now compare the occurring radial functions. We show that, at least
for large values, they do not di↵er much. One function is the arc length ⇢ on the radial
geodesics ⇢ 7! (⇢, �0, t0), recall, these are tangential to the infinitesimal rest spaces of the
Killing observers. The other radial function r = G(⇢) is preferred in the literature, its
geometric distinction is that it gives the area of the S2-factor as: area = 4⇡r2. When using
r the metric only makes sense for r > 2m, therefore we make the irrelevant normalization
when integrating the ODE for G: G(0) = 2m.

Claim:

r := G(⇢)  R#(⇢) :=
p

4m2 + ⇢21.)

G(⇢) � Rb(⇢) :=
r

4m2 + ⇢2
0.5 + ⇢

1 + ⇢
2.)

So indeed, saying that r is large means the same as saying ⇢ is large, and then r ⇡ ⇢.

Proof.
For 1.) the idea is to prove (R#)0(⇢) �

p
1� 2m/R#(⇢) and to note G(0) = R#(0):

(R#)0(⇢) =
p
⇢2p

4m2 + ⇢2
=

s
1� 2m

R#(⇢)
·
s

1 +
2m

R#(⇢)
�
s

1� 2m
R#(⇢)

.

Similarly for 2.) since the condition at the end is true:

R0b(⇢) =
1

Rb(⇢)

⇣
⇢
0.5 + ⇢

1 + ⇢
+ ⇢2 0.25

(1 + ⇢)2
⌘

=

vuut
1�

R2
b �

⇣
⇢0.5+⇢

1+⇢ + ⇢2 0.25
(1+⇢)2

⌘2

R2
b


s

1� 2m
Rb(⇢)

(= (1 + ⇢)(0.5 + ⇢) �
⇣
0.5 + ⇢+

0.25⇢
1 + ⇢

⌘2
Q.E.D.

Circular Planetary Observers

For the world lines of circling observers we have (with �⇢(.) a great circle in S2)

�(s) = (⇢, �⇢(s), 0, ⌧(⇢) · s), �0(s) = (0, !(⇢), 0, ⌧(⇢)) with
� 1 = g(�0(s), �0(s)) = G2(⇢)!(⇢)2 � F 2(⇢)⌧(⇢)2.
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The world line of an infinitesimal planet is in addition geodesic, i.e.

D

ds
�0(s) =

0
@ 0

0
0

1
A+ �(�0(s), �0(s)) =

0
@FF 0(⇢)⌧(⇢)2 �GG0(⇢)!(⇢)2

0
0

1
A (!)

=

0
@ 0

0
0

1
A

The geodesic condition, using G0 = F , therefore is:
GG00(⇢)⌧(⇢)2 �G(⇢)2!(⇢)2 = 0, G0(⇢)2⌧(⇢)2 �G(⇢)2!(⇢)2 = +1,

⌧(⇢)2 = (G0(⇢)2 �GG00(⇢))�1 = (1� 3m
G

)�1,

!(⇢)2 = ⌧(⇢)2
G00

G
(⇢) =

(m/G3 � ⇤/3)
(1� 3m/G)

�����
⇤=0

=
m

G3
(1� 3m

G
)�1.

We compare these results with Kepler’s third law – presently under the agreement that a
Killing observer signals when orbits are completed (see next lecture):

(Proper Period Time, Planetary Clock)2 =
⇣ 2⇡
!(⇢)

⌘2
=

4⇡2

m
G3
⇣
1� 3m

G

⌘
,

(Coordinate Period Time)2 =
⇣2⇡⌧(⇢)
!(⇢)

⌘2
=

4⇡2

m
G3.

2m: Tunit = 3.3·10�6sec, 1year = 9.46·1012Tunits, Gearth = 1.5·108km =) 2m = 3 km.
Coordinate time is the proper time of the Killing observer at infinity. If one planetary
observer looks at the rotation of other planets then he does not observe the proper time of
the others. The observed periods – as signaled by Killing observers – are the coordinate
time periods corrected by the factor between the observers proper time and the coordinate
time along his world line. Keplers third law, periods2 = factor · orbitradius3 holds in the
Schwarzschild geometry with the function r = G(⇢) as orbit radius. The factor di↵ers by
(1� 3m/GObserver) from the Newtonian case since for the
planetary observer we have:

proper planetary time =
�
coordinate time

�
·
r

1� 3m
G

.

In Special Relativity we compute the relative velocity v between two observers X,Y from
their scalar product (1� v2)�1 = hhX,Y ii2. We compute the orbit speed of a planetary
observer from its scalar product with the Killing observer:

g(�0Killing , �0Planet)
2 = F (⇢)2⌧(⇢)2 =

1� 2m/G� (⇤/3)G2

1� 3m/G
=

1
1� v2

,

and, if ⇤ = 0, we have, asymptotic to the Newtonian case, v2 = (m/G)(1� 2m/G)�1. For
the Killing observer the length of the orbit is: relative velocity ⇥ period time = 2⇡G.
If ⇤ > 0 then this v2 is smaller by ⇡ �(⇤/3)G2.
Note that v approaches the speed of light as the radius G approaches 3m.

We have found enough agreement with the Newtonian results to call the Schwarzschild
geometry a relativistic planetary system and we now look more carefully for non-Newtonian,
for relativistic e↵ects.
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Schwarzschild Geometry II
Falling Particles, Bending of Light, Shapiro Delay, Perihelion Advance,
Spinning Planet, Kruskal Extension, Kerr Comments.

The orbits of particles in a Newtonian planetary system are obtained as follows:
Conservation of angular momentum gives that the orbits are planar. These are described
in polar coordinates by two functions r(t), '(t). We can use conservation of angular mo-
mentum again to eliminate '̇(t) from the kinetic energy. Finally, conservation of energy
gives a first order ODE for r(t) that can be integrated to give the Kepler orbits.
The same strategy works in the Schwarzschild geometry. Conserved quantities are obtained
from Killing fields. We first use the rotational Killing field that is orthogonal to the initial
velocity of the particle and see that that orbit remains orthogonal to this field. In other
words, the orbit can be described as

�(s) = (⇢(s), �(s), ⇡/2, t(s)),
where �(s) traces the equator great circle of S2 (its polar angle is # = ⇡/2).

�0(s) = (⇢0(s), �0(s), 0, t0(s)),
where for s to be proper time we have

�1 = g(�0(s),�0(s)) = ⇢0(s)2 + G(⇢)2�0(s)2 � F (⇢)2t0(s)2.

Next we use the time translation Killing field and the the rotational Killing field tangential
to the S2-component of �0:

g(

 
0
0
0
1

!
, �0(s)) = �F (⇢(s))2t0(s) = const =: �T, F (⇢(s))2t0(s)2 =

T 2

F (⇢(s))2
.

g(

 
0
1
0
0

!
, �0(s)) = G(⇢(s))2�0(s) = const =: ⌦. G(⇢(s))2�0(s)2 =

⌦2

G(⇢(s))2
.

The function G could, for large values, be identified with the “distance” from the center.
Therefore we can view the last identity as conservation of angular momentum. The previous
one relates coordinate time and proper time; if T = 1 and ⇢ is large so that F 2 ⇡ 1 hence
⇢0(s)2 +G(⇢)2�0(s)2 ⇡ 0 then we can say: The particle is at rest at infinity and proper time
equals coordinate time. Finally, from �1 = g(�0(s), �0(s)) we get in the case T = 1:

⇢0(s)2 + G(⇢(s))2�0(s)2 = �1 +
T 2

1� 2m/G
⇡ 2m

G(⇢)
,

which can be viewed as the analogue of Newtonian conservation of energy. Eliminating
�0(s), t0(s) with these conservation laws gives as in the Newtonian case a first order ODE
for ⇢(s):

⇢0(s)2 = �1� ⌦2

G(⇢(s))2
+

T 2

1� 2m/G(⇢(s))
.
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After so much similarity we want to see some di↵erences to the Newtonian case. First we
list the invariants for the already computed circular orbits (G = const):

⌦2 :=
mG

1� 3m/G
,

⌦2

G2
=

m/G

1� 3m/G
,

T 2 :=
(1� 2m/G)2

(1� 3m/G)
,

T 2

F 2
= 1 +

m/G

1� 3m/G
.

We see that the invariants get arbitrarily large as G approaches 3m and these invariants
do not exist in the range 2m < G  3m: there are no particle orbits in this part of the
geometry. We have already computed the speed of the orbiting particle relative to the
Killing observer at the end of the last lecture as v2 = (m/G)/(1 � 2m/G)�1 and as G
approaches 3m this relative velocity approaches 1, the velocity of light. This explains why
particles cannot orbit on radii G  3m.

We now consider the right side, of the ODE for ⇢(s), as function of G:

H(G) := �1� ⌦
2

G2
+

T 2

1� 2m/G
, ⌦2, T 2 fixed.

The particle orbit can only exist where H(G) � 0 and where H(G) = 0 we must have
⇢0 = 0, i.e. a point of minimal or maximal radial coordinate. We see: if T 2 < 1 then the
particle cannot escape to infinity, we have along its orbit G  2m(1�T 2)�1. And if T 2 > 1
and ⇢0(s0) > 0 then ⇢(s) (s � s0) will grow to infinity with ⇢0(1)2 = T 2 � 1. The velocity
relative to the Killing observer at infinity is v2 = 1� 1/T 2.
On most circular orbits we have T 2 < 1. But in the range 4m > G > 3m we have
1 < T 2 < 1. We will show that from any point outside G = 4m we can give particles
initial data such that they fall asymptotically to one of the circles at radius G1 2 (3m, 4m]
– and of course vice versa: arbitrarily small perturbations of such a circular orbit can
make the particle fly to infinity, in fact with velocities relative to the Killing observer at
infinity that are arbitrarily close to the speed of light – in sharp contrast to the Newtonian
situation. How is this done? Let the initial point have radial coordinate G0 and let us aim
for the circular orbit at G1 2 (3m, 4m]. We have to choose orbit invariants that are quite
di↵erent from the invariants ⌦0, T0 of a circling particle at the initial value G0

⌦2
1 :=

mG1
1� 3m/G1

, T 2
1 :=

(1� 2m/G1)2

(1� 3m/G1)
� 1 > T 2

0 .

Recall

0 = �1� ⌦
2
1

G2
1

+
T 2
1

F 2
1

, i.e.: H(G1) = 0.

In fact, H(G) = �1� ⌦2
1/G2 + T 2

1(1� 2m/G)�1 has a double zero at G = G1 since
H 0(G) = 2⌦2

1/G3 � T 2
1(1� 2m/G)�22m/G2

is also zero at G = G1. Finally, H(G)(1 � 2m/G)G3 is a cubic polynomial with highest

64



coe�cient T 2
1�1 and absolut term 2m⌦2

1. Therefore H(G) has no further zero in (3m,1)
and is positive at infinity. Therefore we can indeed prescribe at the radial distance G0 the
orbital invariants of the circular orbit at G1. In the outward direction the orbit leaves the
system, in the inward direction the orbit cannot reach G = G1, because then it would have
to agree with the circular orbit. But ⇢0 cannot change sign before G = G1, so that the
orbit (that started at G0) has to spiral towards the circular orbit. – Indeed, we will later
find exponentially growing. resp. decaying, Jacobi fields corresponding to the described
situation.
The discussion of these exotic orbits is intended to show features that do not exist in a
Newtonian system. If we choose a larger angular momentum invariant than ⌦1 then the
orbit will reach the return point ⇢0 = 0 at a radial value G > G1 and the orbit will come
out again as in the Newtonian case. If we choose the angular momentum invariant less than
⌦1 then ⇢0 = 0 can not occur for G � G1, but because of the term T 2

1(1 � 2m/G)�1 a
return point ⇢0 = 0 may never be reached and the orbit continues into the black hole. By
contrast, in the Newtonian case only strictly radial orbits, ⌦ = 0, do not return out (except
if the star itself is in the way).

What does “once around” mean?
Simultaneity causes a problem that is not immediately apparent because of our Newtonian
training. If a particle circles the star and a Killing observer with the same value of the
radial function G observes the particle there is no problem: The world line of the circling
particle crosses the world line of the waiting Killing observer periodically and the Killing
observer says, the orbiter completes one revolution between neighboring intersection points
and the time length of my Killing world line between these intersections is the observed
period duration. And the Killing observer computes the length of the periodic orbit as 2⇡G
from the relative velocity and the period duration. The orbiting observer could also say:
I have completed one orbit when I meet the Killing observer the next time. However, from
the orbiters point of view the Killing observer races towards him, and certainly, when two
people run in opposite directions around a stadium, they will not say that they completed
one circuit when they meet again. Moreover, when we imagine the orbit full of circling
particles (like the rings of Saturn) then we should consider all their world lines. It seems
also reasonable to agree that the circling particles have completed one revolution if the
world lines of all of them have been met by the Killing observer moving towards them.
(Certainly, if some thing flies past my window, I clock the time until it has met all the
windows world lines.) And, the circling particles measure the distance to close neighbors
in the rest space orthogonal to their world lines. What does the circling observer see?
Recall that we have for the relative velocity v between circling observer and Killing ob-
server v2 = m/G(1� 2m/G)�1, 1� v2 = (1� 3m/G)(1� 2m/G)�1. The world lines of the
rotating particles fill a cylinder. One orthogonal trajectory of these world lines is the best
approximation to a rest space because nearby particles are relative at rest. The length of
the line at rest from one Killing world line once around the cylinder to the same Killing
world line has length 2⇡G

p
1� v2 and the time length, squared, T 2

K , of that Killing world
line segment is T 2

K = 4⇡2(G3/m)(1� 2m/G). At this length the rest line for the rotating
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particles has not met all world lines of these particles. We extend it until it meets the world
line through its initial point again, this larger length is: 2⇡G/

p
1� v2. The time length of

this segment on an rotating particles world line is TR = TK/
p

1� v2. Note that we also
get for the rotating observer: orbit length = relative velocity ⇥ period time =

= v · TR = 2⇡G/
p

1� v2 = 2⇡G(1� 2m/G)1/2(1� 3m/G)�1/2.
This shows that the number of elementary particles that fit next to each other on such a
rotating orbit goes to infinity as G approaches 3m. Note that the numbers v and TR do
not make sense for the rotating particles by themselves, they need a second observer. On
the other hand, the number 2⇡G(1� 2m/G)1/2(1� 3m/G)�1/2 only depends on the world
line of a rotating particle, it is the geometric length in the Schwarzschild geometry of the
curve on the cylinder that is tangential to all the infinitesimal rest spaces of the rotating
particles.
To come back to the beginning of this discussion, why shouldn’t the circling particles agree
that they have completed one revolution when they see the stars at infinity in the same
position? These stars at infinity are assumed at rest relative to the Killing observer at
infinity. Each particle separately can take this definition of a complete revolution. But
then there still is the notion of being at rest relative to infinitesimal neighbors, this notion
defines the distance between neighboring world lines and therefore determines, how many
elementary particles fit onto one circle of Saturn’s rings – and when we want to discuss
the strangeness of indefinite geometries then this number is more important than the un-
doubted convenience of observing the stars at infinity.

Behaviour of Light
The cosmological constant is too small to play a role nearer to the center. Since we un-
derstand the asymptotic Schwarzschild geometry far away from the star in principle from
lecture 2 I would have preferred to leave ⇤ in the following discussion. However, the coor-
dinates which come from the symmetry assumptions of the classical Schwarzschild Ansatz
are not very suitable to study the limit behavior of null geodesics. When ⇤ = 0 then the
Schwarzschild geometry at infinity is Special Relativity with a preferred inertial observer
(the Killing observer). Therefore we can place the stars at the sky of this preferred observer
and discuss the deviation of light. If ⇤ =/ 0 I have not succeeded in describing the stars in
the sky. Therefore the following assumes the classical Schwarzschild geometry, i.e. ⇤ = 0.

The world lines � of light signals are null geodesics, and we use the same Killing fields as
for particles to get conserved quantities ⌦, T .

g(�0(s), �0(s)) = 0, ⇢0
2 + G(⇢)2'02 = F (⇢)2t02,

D

ds
�0(s) = 0,

G(⇢(s))2 · '0(s) = ⌦, G(⇢(s))2'0(s)2 =
⌦2

G(⇢(s))2
,

F (⇢(s))2 · t0(s) = T, F (⇢(s))2t0(s)2 =
T 2

F (⇢(s))2
.

Null geodesics have no preferred a�ne parameter (like arc length) we may assume T = 1.
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The geodesic equation is again reduced to a first order ODE for ⇢(s):

⇢0(s)2 =
1

F (⇢(s))2
� ⌦2

G(⇢(s))2
.

The Photon Sphere. We will find circular orbits of light. As in the Newtonian case we
do not get the velocity on a circular orbit from the constant of the motion. The covariant
derivative is the same as for particles :

D

ds
�0(s) = (0, 0, 0) + �(�0(s), �0(s)) = (0, 0, 0),

or: 0 = FF 0(⇢)t02 �GG0(⇢)'02 =
F 0

F 3
� G0⌦2

G3
.

Now use ⇢0 = 0 hence 1/F 2 = ⌦2/G2 and recall F = G0, G00 = m/G2 to get
m

G
= 1� 2m

G
, finally:

G = 3m, ⌦2 = 27m2.

So indeed, at G = 3m photons can circle the star!

Black Hole again. Light rays towards the star (⇢0(s0) < 0) for which ⌦2 is so small that
⇢0 cannot become zero will fall into the star. Consider

⇢0
2(1� 2m

G
)G3 = G3 � ⌦2(G� 2m) = (G� 3m)2(G + 6m)� (⌦2 � 27m2)(G� 2m).

If ⌦2 = 27m2 then the incoming ray will be asymptotic to the photon sphere.
If ⌦2 > 27m2 then ⇢0 = 0 occurs at some value Gmin > 3m, ⇢0 changes sign and the light
ray leaves the star. — Note ⌦2 = G2

min/(1� 2m/Gmin).
If ⌦2 < 27m2 then ⇢0  �✏ and the ray disappears at G = 2m at a finite value of its a�ne
parameter s.

A similar discussion applies for light rays that start from inside the photon sphere in the
outward direction, G0 2 (2m, 3m], ⇢0 > 0.
If ⌦2 = 27m2 then the ray approaches the photon sphere asymptotically from inside.
If ⌦2 > 27m2 then ⇢0 = 0 occurs at some Gmax 2 (G0, 3m), the ray returns and falls into
the star.
If ⌦2 < 27m2 then ⇢0 > 0 forever and this ray can leave the field of the star.
We compute, in the rest space of the Killing observer, the angle ↵ between the radial
direction and the direction of the asymptotic ray. For the asymptotic ray we have

G2'0
2 =

27m2

G2
and ⇢02 =

1
F 2

�G2'0
2
,

tan2 ↵ :=
G2'02

⇢02
=

1� 2m/G

G2/(27m2)� (1� 2m/G)
�!

G!2m
= 0.hence:

This says: The cone angle around the radial direction decreases from 90� to 0� as the radial
coordinate of the initial point decreases from G = 3m to G = 2m.
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Bending of Light. The Schwarzschild geometry is asymptotically Special Relativity with
the Killing observer at infinity as a distinguished inertial observer. We fix the angular
coordinate so that '(s) = 0 at the point of smallest radial coordinate G = Gmin along the
ray. The di↵erential equation shows that lims!1 ⇢0(s) = 1 and lims!1G(⇢)'0(s) = 0 so
that the ray leaves the star asymptotically in a fixed direction '1. Since the direction to
the nearest point is orthogonal to the ray we have

=: A = 2('1 � ⇡/2) = 2
Z 1

Gmin

d'

dG
dG.Deflection Angle

dG

d⇢
=
r

1� 2m
G

,
d⇢

ds
=

s
1

1� 2m/G
� ⌦

2

G2
,

d'

ds
=
⌦
G2

We insert

✏ :=
2m

Gmin
, y :=

Gmin

G
, dy =

�Gmin

G2
dG,and abbreviate

⌦2 :=
G2

min

1� 2m/Gmin
=

G2
min

1� ✏
1
2
A =

Z
d'� ⇡

2
=
Z 1

0

dyp
1� ✏� y2 + ✏y3

�
Z 1

0

dyp
1� y2

.to obtain

a :=
p

1� y2, b :=
p

1� ✏� y2 + ✏y3,
1
b
� 1

a
=

a2 � b2

ab(a + b)
,

1� y3

1� y2
=

1 + y + y2

1 + y
Next use

1
2
A = ✏

Z 1

0

�
1 + y2/(1 + y)

�
dyp

1� ✏� y2 + ✏y3
⇣
1 +

p
1� ✏� y2 + ✏y3/

p
1� y2

⌘to get

The integral evaluates at ✏ = 0 to 1 — giving d
d✏(

1
2A)|✏=0 = 1 — since by partial integrationZ 1

0

yp
1� y2

· (1� 1
1 + y

)dy = 0 +
Z 1

0

p
1� y2

(1 + y)2
dy = �2

p
1� yp
1 + y

����
1

0

�
Z 1

0

dyp
1� y2

= 2� ⇡

2
.

With this same integration we can actually get upper and lower bounds for the deflection
angle (with the same d

d✏ at 0) from a trivial estimate in the denominator (use 0  y  1
and �1

2 + y2(3
2 � y)  0 for y 2 [0, 1] ):
r

(1� y2)(1� 3
2
✏) 

p
1� ✏� y2 + ✏y3 

p
(1� y2)(1� ✏) =)

4✏p
(1� ✏) · (1 +

p
1� ✏)

 A  4✏q
(1� 3

2✏) · (1 +
q

1� 3
2✏)

.

This deflection of light can be measured with great accuracy for light or radio signals that
pass near the sun. The sun diameter is 1.39·106 km hence ✏ = 4.3·10�6 and A = 2✏ = 1.7700.
The bending of light has become very important in cosmology because one can observe light
from farther away sources such that the rays passed on the way to us very near some other
galaxy and were bent by this galaxy’s mass. The study of this gravitational lensing has
led to conclusions about the deflecting masses: there is more gravitating mass then can be
accounted for by visible matter like stars or dust.
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Shapiro Delay

Consider the observation of a pulsar from the orbiting earth with the pulsar lying in the
plane of the earth orbit. When the radius vector from the sun to the earth is orthogonal to
the direction of the pulsar, the earth is moving directly towards or away from the pulsar,
resulting in maximal (blue and red) Doppler shift of all observed frequencies. When the
direction to the pulsar passes near the sun, then the orbit velocity is almost orthogonal
to the incoming radiation and Doppler shift is minimized. Of course the bending of the
incoming ray around the sun is maximal in this position. We also observe the Shapiro Delay,
a quite surprising phenomenon for Newtonian intuition. Looking back at the Schwarzschild
formulas in an ⇢-t-picture we recall that the light cones get steeper as ⇢ decreases. This
means that the null geodesics bridge more coordinate time when they travel some “distance”
close to the star than farther out. Or in other words, the light ray seems to spend more
time when it passes close to the central region. The e↵ect is important because it is so
unexpected in a Newtonian picture and so easily predicted from the Schwarzschild geometry.
It can also be observed easily with accuracy. We want to apply the previous discussions
to compute its size, but this requires to formulate the problem more precisely. First, the
Schwarzschild traveling time of the light ray until it first meets the earth’ orbit di↵ers
already from the Newtonian computation. Since I do not see how that di↵erence could
be observed I will ignore it and consider only the traveling light signal across the orbit
of the earth. The relativistic prediction is obtained from the ODE of null geodesics, it
gives how much coordinate time passes while the light ray crosses the earth orbit. (The
proper time on the orbiting earth passes slower by a constant factor (1� 3m/G) which is
irrelevant to explain the Shapiro delay.) For the Newtonian prediction we separate space
and time, we compute the arc length of the projection of the null geodesic into the “space”
orthogonal to the Killing observers (such space-slices t = const are most commonly taken
as the “spatial” geometry of the 4-dim Schwarzschild geometry). Division of this arc length
by the velocity of light (=1) gives the Newtonian travel time. We use the same notation
for light rays �(s), �0 = (⇢0, '0, t0) as above. The Killing field is (0, 0, 1) and the component
of �0 orthogonal to it is �0? = (⇢0, '0, 0).

g(�0?, �0
?) = (⇢0)2 + G(⇢)2('0)2 =

1
F 2Z

ds

F
Newtonian travel time:

Z
dt =

Z
t0(s)ds =

Z
ds

F 2
Relativistic travel time:

As in the deflection of light computation we can insert

ds =
ds

d⇢

d⇢

dG
dG,

d⇢

ds
=

r
1

F 2
� ⌦

2

G2
,

dG

d⇢
=
r

1� 2m
G

= F

to obtain more explicit expressions. However, the extra factor F in the denominator of the
relativistic travel time shows clearly how the Shapiro delay comes about.
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Note that the above computation explains the delay without explicitly computing where on
the orbit the rays are received. I find it instructive to also compute the red shift from the
pulsar to the earth. As with the Shapiro delay the red shift is obtained without mentioning
the corresponding points of reception on the earth orbit. Therefore we do not see that the
red shift is a di↵erentiated version of the delay. Actual observation of the pulsar peeks
shows the frequency shift as the varying time distance between the peeks, but it also shows
the integrated delay, because the pulsar signals are emitted at known equidistant time
intervals.

We assume that the pulsar is at rest at infinity. Recall

F 2(⇢)t0(s) = 1, G2(⇢)'0(s) = ⌦ = ±Gmin(1� 2m/Gmin)�1/2, ⇢0(s)2 =
1

F 2
� ⌦

2

G2
.

In particular, each ⌦ contains the information, how close to the sun that light ray passes.
For the tangent vector c0(s) of the circling earth we know:

c0 = (0, !(⇢), 0, ⌧(⇢)), !2 =
m

G3

1
1� 3m/G

, ⌧2 =
1

1� 3m/G

The red shift from the pulsar to the earth is given by Jacobi fields J(s) along the light
rays. As value of each Jacobi field at the source we can take the unit tangent vector at
the world line of the source, namely J(1) = (0, 0, 0, 1). Since this is the value of a Killing
field we have its restriction to the light ray as a Jacobi field K(s) along the light ray with
the correct value at the source. However, we need a Jacobi field whose value at the earth
is a multiple µc0 of the observers time unit vector. Such a Jacobi field J(s) exists since
we assume observation of the source from the earth. Both K and J come from variations
of null geodesics, therefore both can be written as the sum of a parallel field and a field
tangential to the light cone along c. Since both fields agree at the source, their parallel
components agree, so that their di↵erence must be tangential. This determines the factor µ:

g (µ · (0, !, 0, ⌧)� (0, 0, 0, 1), (⇢0(s), '0(s), 0, t0(s))) = 0

µ · (G2!'0 � F 2⌧t0) = �F 2t0 = �1, µ =
1

⌧ � !⌦ .

The frequency shift frequency(source)/frequency(observer) = 1 + z therefore is

1 + z = µ =
1

⌧ � !⌦ =
p

1� 3m/G

1⌥
p

(mG2
min/G3)/(1� 2m/Gmin)

.

As a check, the product of the two values for Gmin = G = GEarth should give the square
of the (blue) shift from infinity to a Killing observer on the earth orbit. Indeed

(⌧ � !⌦)(⌧ + !⌦)
���
Gmin=G

= (1� 2m
G

)�1.

If one uses the above formulas not for the earth but for a planet circling a black hole then
one should observe that the rays get bent more and more times around the center as Gmin

approaches 3m.
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Tidal Forces of Gravity

What can be observed when two particles travel with almost the same initial conditions
next to each other? Both have timelike geodesic worldlines �(s), �✏(s). We can imagine a
family of geodesic world lines between them, di↵erentiate with respect to ✏ and describe the
second particle by a Jacobi field J along �. It is called separation vector field and satisfies
the famous

D

ds

�D

ds
J(s)

�
+ R|�(s)

�
J(s), �0(s)

�
�0(s) = 0,Jacobi equation:

J 00 + R(J, �0)�0 = 0.or shorter:

Observe that we assumed geodesic world lines, which means: the neighboring particles do
not feel any acceleration, no forces acting on them. However, when each one observes its
neighbor they see that their separation vector shows relative acceleration. This relative
acceleration, as the saying goes, is caused by the tidal forces of gravity. They should not be
taken lightly: if such neighbors join each other with a stick then these tidal forces become
very real. The closest Galilean moon of Jupiter is deformed so much by these forces that,
astronomers believe, its volcanic activity is caused by this deformation heating. Our own
moon is cold now, but its inside is not made of solid rock. When the molten material tried
to solidify it was tidal forced into chunks of rock.

The above remarks are general. What can the Jacobi equation do for our understanding
of the Schwarzschild geometry? One has to find a situation where the study of nearby
geodesic world lines leads to observable predictions, preferably di↵erent from Newtonian
predictions. When a single Newtonian planet circles the sun its orbit is a Kepler ellipse. In
particular, the closest point to the sun, the perihelion, is at the same spot in space on every
revolution. This is no longer the case if other planets, like Jupiter, perturb the situation. In
case of Mercury the perihelion advances. But a careful analysis of all classical contributions
explained only 532” per century of the observed 574” per century of Mercury’s perihelion
advance.
How are Jacobi fields related to this situation? A planet with an almost circular orbit
can be described by a Jacobi field along a circular orbit. A relativistic contribution to the
perihelion advance would be the existence of a periodic Jacobi field with larger period
than the rotation period of the circular planet. This is what we will find.

Earlier we wrote the tangent vector of a circling geodesic world line as

�0(s) = (0, !(⇢), 0, ⌧(⇢)) with
� 1 = g(�0(s), �0(s)) = G2(⇢)!(⇢)2 � F 2(⇢)⌧(⇢)2 and

⌧(⇢)2 = (1� 3m
G

)�1, !(⇢)2 =
m

G3
(1� 3m

G
)�1.

The simplest orthonormal basis, namely
e1 = (1, 0, 0, 0), e2 = (0, 1/G, 0, 0), e3 = (0, 0, 1/G, 0), e4 = (0, 0, 0, 1/F ) is adapted to the

71



Killing observer. We can use e1, e3 along �, but the other two need to be adapted to the
world line �

�0 = (
m

G
)1/2(1� 3m

G
)�1/2 · e2 + (1� 2m

G
)1/2(1� 3m

G
)�1/2 · e4

f2 : = (1� 2m
G

)1/2(1� 3m
G

)�1/2 · e2 + (
m

G
)1/2(1� 3m

G
)�1/2 · e4

= (0,
⌧F

G
, 0,

!G

F
)(⇢), g(f2, f2) = F 2⌧2 �G2!2 = +1.

We also recall the Christo↵el symbols (X = (x⇢, x�, xt), Y = (y⇢, y�, yt)):

�(X,Y ) =

0
@FF 0XtY t �GG0hX�, Y �i

(G0/G)(X⇢Y � + Y ⇢X�)
(F 0/F )(X⇢Y t + Y ⇢Xt)

1
A .

As expected we have D
dse3 = �(�0, e3) = 0, We will later see that such a parallel vector

along a geodesic world line describes the axis of a rotating solid body with all its moments
of inertia equal to each other.
We find

D

ds
e1 = �(�0, e1) = (0,

!G0

G
, 0,

⌧F 0

F
) =

r
m

G3
f2 =: !'f2.

Since we di↵erentiate an orthonormal basis we also have
D

ds
f2 = �

r
m

G3
e1 = �!'e1.

The vector field p(s) := e1(s) cos(!'s)� f2(s) sin(!'s) is a parallel field. This is similar to
the Newtonian case where this field returns to its (radial) initial value after one complete
rotation. Here the period is not quite right: It is plausible to let the Killing observer decide
when the planet has completed one revolution (because we watch the perihelion advance
from outside). We have computed how much planetary proper time (measured by s) passes
until the Killing observer signals completion: (2⇡/!')(1�3m/G)1/2. This time is too short
and p is not yet radial. If the planetary observer waits until his rest space method says,
the orbit is complete then too much time passed: (2⇡/!')(1 � 3m/G)�1/2. The di↵erent
definitions of “completed orbit” lead to di↵erent experiments, each with a clear prediction
from Relativity Theory.

We will use repeatedly that R(ei, ej)ek = 0 when i, j, k are pairwise di↵erent. From our
earlier list of curvature values we now find

R(e3, �
0)�0 =

m

G3
(1� 3m

G
)�1e3 =: K3e3 = !2e3,

! = !(⇢) as in �0 = (0, !, 0, ⌧),where

which gives the Jacobi fields

J3(s) = (A cos(!s) + B sin(!s)) · e3(s).

They describe tilted neighboring circular orbits. In this case the period of the Jacobi field
agrees with what the Killing observer calls a closed orbit.
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Again with the list of curvature values we compute

R(e1, �
0)�0 = (� m

G3
� !2)e1 =: K⇢e1.

Since we have two eigenvectors e1, e3 of X 7! R(X, �0)�0 also f2 is an eigenvector, and since
Ric(�0) = 0 the sum of the three eigenvalues is zero. Hence

R(f2, �
0)�0 =

m

G3
f2 =: K'f2.

Do we get interesting Jacobi fields from this information? First some trivial ones: f2 is the
restriction of a Killing field, it describes the neighboring geodesics obtained by adding a
constant to the parameter s. One can also check that

J(s) := e1(s) +
K⇢ � !2

2!
(s� s0)f2(s)

are Jacobi fields. They describe concentric circular orbits of di↵erent radius and since they
have di↵erent orbit velocity the non-radial f2-component is needed.

We have not yet all Jacobi fields in span{e1, f2} and therefore we try the Ansatz

J(s) := �(s)f2(s) + µ(s)e1(s).
(�f2 + µe1)00 + R(�f2 + µe1, �

0)�0 = 0 gives the ODEs:
(�0 + 2!µ)0 = 0, � 2!�0 + µ00 + (K⇢ � !2)µ = 0.

We put the constant function �0 + 2!µ = const in the second equation:

µ00 + (K⇢ + 3K')µ = const · 2!

and since µ = const1 was already discussed for the concentric orbits we are left with

0 = µ00 + (K⇢ + 3K')µ = µ00 + !2(1� 6m
G

)µ.

This ODE first gives the desired perihelion advance since the frequency of these Jacobi
fields is by the factor

q
1� 6m

G ⇡ 1� 3m
GMercury

= 1� 4.5/(5.8 ·107) = 1� 0.77 ·10�7 smaller
than the orbit frequency !, TMercury = 88 days. This says: the relativistic perihelion
advance is in 88 days by 360� · 0.77 ·10�7 = 0.100 (plus 1.2800 classical contribution), or in a
century by 36500/88 · 0.1 = 41.400.
But secondly, this argument works only if G > 6m, for G < 6m there are exponentially
growing and exponentially decaying Jacobi fields. This says that small orbit perturbations
can blow up exponentially: these circular orbits are unstable.

One word about relativistic corrections. The curvature values we have worked with contain
the term m/G3 and various correction factors (1�constm/G). If we ignore these correction
factors our computations give the Newtonian predictions. Therefore the term relativistic
corrections refers to by how much the factors (1� constm/G) change the result.
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Spinning Planets

A solid body is not part of Relativity Theory, because an attempt to accelerate a really solid
and extended object does not agree with the simultaneity discussion of Special Relativity.
Also, I am unaware of rotating “solid” objects where the orbit speeds are comparable to
the velocity of light. Still, for slowly rotating almost solid objects like planets the question
remains whether the Schwarzschild geometry predicts a di↵erent behaviour than Newtonian
theory. By viewing a planet as a test particle with tensor of inertia we treat a classical
object in a relativistic geometry.

We describe how the curvature tensor of space time acts on a rotating solid object with
tensor of inertia ⇥. The center of mass has the world line �(s) (s is proper time) and
the separation vectors X describe the mass points relative to the center. We say that the
object rotates with angular velocity ~! = (!1, !2, !3) if the velocities of all the mass points
are obtained as

X 0
N (s) = ~!(s)⇥XN (s) =

0
@ 0 !3 �!2

�!3 0 !1

!2 �!1 0

1
A(s) · XN (s).

The definitions of the angular momentum and the tensor of inertia are

L :=
X
N

mNXN ⇥X 0
N =

X
N

mNXN ⇥ (~! ⇥XN )Angular Momentum

=
Z

Xm ⇥ (~! ⇥Xm)dm

⇥ : ~! ! L = ⇥(~!) =
Z

Xm ⇥ (~! ⇥Xm)dm.Tensor of Inertia

X ⇥ (~! ⇥X) =

0
@x2

2 + x2
3 �x1x2 �x1x3

�x1x2 x2
1 + x2

3 �x2x3

�x1x3 �x2x3 x2
1 + x2

2

1
A · ~!.Note:

The last matrix (or alternatively h~a,~b⇥~c i = det((~a,~b,~c) ) shows that ⇥ is a symmetric map
and therefore has a basis of eigenvectors {~e1, ~e2, ~e3} in which the above matrix simplifies to

0
@⇥1 0 0

0 ⇥2 0
0 0 ⇥3

1
A =

Z 0@x2
2 + x2

3 0 0
0 x2

1 + x2
3 0

0 0 x2
1 + x2

2

1
A dm

trace⇥ = 2
Z

|Xm|2dm,

Z
x2

jdm =
1
2
trace⇥�⇥j .

The rotational position of the body will always be specified by giving {~e1(s), ~e2(s), ~e3(s)},
the moving body-frame.
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In the absence of exterior moments the angular momentum is constant. In the case of a
nonvanishing curvature tensor we have the time dependent acceleration
X 00(s) = �R(X, �0)�0 =: �R�0(X). A non-vanishing torque (or moment) results:

M(s) = �
X
N

mNXN (s)⇥R�0(XN )(s) = �
Z

Xm(s)⇥R�0(s)(Xm(s)) dm.

The rotational behaviour of the solid body along the world line � is governed by the ODE

D

ds
L(s) = M(s).

Note that this description is not very di↵erent from the classical treatment: Instead of
our symmetric curvature tensor contribution X 7! R�0(X) one has the inhomogeneous
gravitational field grad� of the sun and the torque arises from the di↵erence of the field
at the planet’s center, X = 0, and at the mass points Xm. Since Xm is assumed small the
torque is given by Xm ⇥Hess�(Xm). The Hessian is symmetric and the three eigenvalues
are +m/G3, +m/G3, �2m/G3, the same as for R�0 – except for the relativistic correction
factors (1� const m/G).

The goal is to discuss the above ODE in terms of ⇥ and R�0 , without reference to the
individual mass points. For vanishing curvature we have the following treatment by
Euler. Everything is expressed in the moving body-frame {~e1(s), ~e2(s), ~e3(s)}.

~!(s) =
X

i

!i(s)~ei(s) with
D

ds
~ei = ~!(s)⇥ ~ei(s)

L(s) = ⇥(s) · ~!(s) =
X

i

!i(s)⇥i~ei(s)

D

ds
L(s) =

X
i

!0i(s)⇥i~ei(s) +
X

i

!i(s)⇥i(~! ⇥ ~ei(s))

=
X

i

!0i(s)⇥i~ei(s) + ~!(s)⇥ L(s).

=
X

i

!0i(s)⇥i~ei(s) +
X

i

0
@
0
@!1(s)
!2(s)
!3(s)

1
A⇥

0
@⇥1!1(s)
⇥2!2(s)
⇥3!3(s)

1
A
1
A

i

~ei(s)

Therefore one first has to solve Euler’s first order ODE for the !i(s):

0
@⇥1!1(s)
⇥2!2(s)
⇥3!3(s)

1
A
0

+

0
@!1(s)
!2(s)
!3(s)

1
A⇥

0
@⇥1!1(s)
⇥2!2(s)
⇥3!3(s)

1
A = 0

and then use these !i(s) to integrate D
ds~ei = (

P
i !i(s)~ei(s))⇥ ~ei(s).
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Non-vanishing curvature. If R�0 =/ 0 the system does not reduce to two first order
integrations, the system stays coupled. But otherwise the strategy is the same, except for
the initial obstacle that the torque is still expressed via the action of R�0 on all the mass
points and not via ⇥ and R�0 . Expand the moment integral with respect to the eigen frame
{~e1(s), ~e2(s), ~e3(s)} of ⇥.

M(s) = �
Z

Xm(s)⇥R�0(s)(Xm(s)) dm = �
X
i,j

~ei ⇥R�0(~ej)
Z

xixjdm

= �
X

i

~ei ⇥R�0(~ei)
Z

x2
i dm (mixed terms vanish in eigen basis)

= �
X

i

~ei ⇥R�0(~ei)(
1
2
trace⇥�⇥i) =

X
i

~ei ⇥R�0(~ei)⇥i.

We used here and in the next line that for symmetric Ai,j :
P

i,j ~ei ⇥Ai,j~ej = 0.

M(s) =
X

i

~ei ⇥R�0(⇥(~ei)) =
1
2

X
i

~ei ⇥ [R�0 , ⇥](~ei).

M(s) = 0 if ⇥1 = ⇥2 = ⇥3.In particular:

Here we have obtained the result that the axis of a perfectly symmetric rotating solid body
along a world line � is described by a parallel vector field in the normal bundle of �. In the
physics literature this is called Fermi-Walker transport.
Finally we rewrite the moment as linear combination of the eigenvectors so that the result
can be combined with the computation for zero curvature. Note that the Lorentz metric g
is Riemannian in the normal spaces of �.

M(s) =
1
2

X
i,k

g (~ei ⇥ [R�0 , ⇥](~ei), ~ek) · ~ek =
1
2

X
i,k

det (~ek ⇥ ~ei, [R�0 , ⇥](~ei)) · ~ek

=
X

(i,j,k)=(1,2,3)

g (~ej , [R�0 , ⇥](~ei)) · ~ek (cyclic sum)

=
X

(i,j,k)

(⇥i �⇥j)g (~ej , R�0(~ei)) · ~ek =:
X

(i,j,k)

(⇥i �⇥j)Ri,j~ek

This leaves us with the Euler equations coupled to the curvature0
@⇥1!1(s)
⇥2!2(s)
⇥3!3(s)

1
A
0

+

0
@!1(s)
!2(s)
!3(s)

1
A⇥

0
@⇥1!1(s)
⇥2!2(s)
⇥3!3(s)

1
A =

0
@ (⇥2 �⇥3)R2,3

(⇥3 �⇥1)R3,1

(⇥1 �⇥2)R1,2

1
A ,

but to get the curvature components Ri,j = g(~ei, R�0(~ej)) one has simultaneously to inte-
grate

D

ds
~ei =

 X
i

!i(s)~ei(s)

!
⇥ ~ei(s). Q.E.D.
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The Kruskal Extension: beyond 2m

People were puzzled by the Schwarzschild singularity at G = 2m for over forty years
until Kruskal found an analytic extension of the Schwarzschild geometry. This did not
answer all natural questions since no information from that other part can reach us and
therefore no hypotheses can be checked. Those forty years of puzzlement suggest that
the Kruskal extension is not at all obvious. However I learnt from the book Allgemeine
Relativitätstheorie by Hans Stephani the following beautiful derivation.

We noticed that the classical coordinates for the Schwarzschild geometry are tuned to the
Killing observers and since their world line acceleration becomes infinite at G = 2m these
coordinates cannot work across that limit. So let us look for another family of observers
with the goal of choosing good coordinates for them! Candidates are particles that fall
in radially from infinity, starting with limit velocity zero. The section on falling particles
gives:

F = G0 = (1� 2m
G
� ⇤

3
G2)1/2 (definition of metric)

F 2(⇢(s))t0(s) = T = 1 (being at rest at infinity)
G2(⇢(s))'0(s) = ⌦ = 0, '(s) = const (falling radially)

⇢0(s)2 =
T 2

F 2(⇢)
� 1 =

1
F 2(⇢)

� 1 = (
2m
G

+
⇤
3

G2)(1� 2m
G
� ⇤

3
G2)�1

This leads to two di↵erent expressions for the proper time on these world lines �.

ds1 = F 2(⇢)dt(�0) = (1� 2m
G
� ⇤

3
G2)dt(�0)

ds2 = �(
1

F 2
� 1)�1/2d⇢(�0) = �(1� F 2)�1/2 · dG(�0).

Any convex combination of ds1 and ds2 will still compute proper time on our world lines.
The key is to ask, whether such a combination can be found that is the di↵erential of a
function! One does not even have to solve equations because it is so easy to guess:

ds =
1

F 2
ds1 + (1� 1

F 2
)ds2 = dt(�0) +

p
1� F 2

F 2
dG(�0)

We define two new functions of t and G (use F (x) := (1� 2m
x � ⇤

3 x2)1/2 )

S := t +
Z G

3m

p
1� F 2

F 2
(x) dx so that: ds = dS(�0)

R := S +
Z G

0

dxp
1� F 2(x)

so that: dR = dS +
dGp

1� F 2
, dR(�0) = 0.

Note that R � S is a strictly monoton function of G and therefore can be inverted as
G = G(R � S), explicitly if ⇤ = 0. Then t can be computed from S and G. Therefore
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(G, t) 7! (R,S) is a coordinate change adapted to the inward falling particles. The function
R is not as natural as S, we chose for R a combination of S,G that is constant on our guiding
world lines. This coordinate change is successful, the metric expression does not develop
singularities for positive values of the function G = G(R� S),
We claim:

dG2

1� 2m/G� ⇤
3 G2

+ G2d�2 � (1� 2m
G
� ⇤

3
G2)dt2Schwarzschild:

= (
2m
G

+
⇤
3

G2)dR2 + G2d�2 � dS2.Kruskal:

Note that G : (0,1)! (0,1) is a strictly monoton function of (R� S).
The range of these new coordinates is the half plane�1 < S < R <1.

Proof:

F 2dt2 =

 
�
p

1� F 2

F
· dG + F · dS

!2

(1� F 2)dR2 =
⇣p

1� F 2 · dS + dG
⌘2

F 2dt2 + (1� F 2)dR2 =
1

F 2
dG2 + dS2 + 0 · dGdS

(1� F 2)dR2 � dS2 =
dG2

F 2
� F 2dt2.

Recall F 2 = (1� 2m
G
� ⇤

3
G2) Q.E.D.

Near the boundary of the R-S-halfplane, as (R� S)! 0, the curvature values m/G3 blow
up. Along this boundary of the Kruskal coordinates we have curvature singularities and
therefore no further extension is possible.
In these new coordinates the rotational symmetries are as before. The time translation
is now (R, S) ! (S + c, R + c) which indeed leaves the function G unchanged, the
corresponding Killing field is (1, 0, 1) of timelike length squared 2m

G + ⇤
3 G2�1, as before. At

the two positive values of G where the Schwarzschild form of the metric becomes degenerate,
the Killing field has lightlike values and becomes even spacelike beyond those points. The
geodesic equation of falling particles can be discussed with the same conserved quantities:
let �(s) = (R(s), �(s), S(s)), then we get as before a first order ODE for R(s):

(
2m
G

+
⇤
3

G2)R02 + G2�0
2 � S0

2 = �1, G2�0 = ⌦, (
2m
G

+
⇤
3

G2)R0 � S0 = T,

and R0 = S0 for circular orbits.
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The Kerr Solution: Frame Dragging

A drawback of the Schwarzschild geometry is its spherical symmetry. Models of star gen-
eration suggest that stars should rotate and therefore black holes should also have angular
momentum. In 1963 R. Kerr found a solution with rotational symmetry without solving
a PDE, quite surprisingly his solution is in terms of 1-dimensional simple functions. The
most exciting feature of this solution is that planets whose orbital angular momentum is
parallel respectively anti-parallel to the angular momentum of the star have di↵erent peri-
ods. One says, the rotating star drags space along. This frame dragging was predicted by
Lense and Thirring before 1920.

In spite of the simple functions in terms of which the Kerr solution is written, it is geo-
metrically a complicated space. I believe it gives more insight to study it with the help of
symbolic and numerical computer programs than to do this by hand. With one exception:
people have been particularly interested in planets orbiting the star in its equatorial plane.
This requires only to look at a 3-dimensional totally geodesic subspace of the Kerr geom-
etry (set the polar angle ✓ = ⇡/2), and this restriction is not too much more complicated
than the Schwarzschild geometry. We visualize it by using polar coordinates in a horizontal
plane and take the t-axis vertical. The vertical lines t ! (r0, '0, t) are the orbits of the
isometric time translation and will be called (as in the Schwarzschild case) world lines of
Killing observers. The horizontal planes t = const, with a hole in the middle, are no longer
totally geodesic (time reflection t 7! �t is not a Kerr isometry), nor are they orthogonal
to the Killing world lines. Everything moving on circles around the star has world lines
on the concentric cylinders r = const.. These 2-dimensional cylinders have an r-dependent
flat metric, its intrinsic geodesics are straight lines (rolled onto the cylinder), the time like
ones of these are the world lines of objects that circle the star with constant velocity. The
planetary or photon orbits are also extrinsic geodesics and we want to find these without
computing the Christo↵el symbols. An intrinsic geodesic is an extrinsic geodesic if the
normal variation (r-direction) does not change the length in first order.

The metric of the 3-dim. equator section of the Kerr geometry is:

ds2 =
r2

r2 � 2mr + a2
dr2 + (r2 + a2(1 +

2m
r

))d'2 � 4am

r
d'dt� (1� 2m

r
)dt2,

g(

0
@ 0

x
y

1
A ,

0
@ 0

x
y

1
A) = (r2 + a2(1 +

2m
r

)) · x2 � 8am

r
xy � (1� 2m

r
) · y2 =: fxy(r).

d

dr
fxy(r) =

2m
r2

y2 � 8am

r2
xy � (2r � 2ma2

r2
)x2 (!)

= 0 hence

y

x
= ±2a +

r
r3

m

r
1 +

3ma2

r3
=

r
r3

m
+ 3a2 ± 2a =: q±(r, a)

are the extrinsic geodesic directions on the cylinders. (For surfaces:asymptote directions)
The tangent vectors of planetary world lines at radial coordinate r therefore are:

�0 = (0,±!,±! · q±(r, a))
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For photons one wants to determine ! such that g(�0, �0) = 0, for particles one wants
g(�0, �0) = �1. (Such ! may not exist, e.g. for r3/m = 3a2 one q�(r, a) = 0 and (0,�!, 0)
is space like.) After one has determined !, then the orbit �(s) has completed one revolution
– as observed by the Killing observer – if ! ·s = ±2⇡, the coordinate time for one revolution
(observed by the Killing guy) therefore is

Koordinate Period T+ = 2⇡ · q+(r, a) =/ 2⇡ · q�(r, a) = Koordinate Period T�.

This is the first important result: For the same radial coordinate r the period time depends
on whether the planet circles such that its orbit angular momentum is parallel (+) or anti-
parallel (�) to the spin of the Kerr geometry. The di↵erence is: T+ � T� = 8⇡a.

Next we look for photon orbits, i.e., for given m,a find r such that �0 = ±(0, !, q±(r, a) ·!)
is a null direction. I could not solve this explicitly, but I could find the pair r/m, a/m in
terms of an auxiliary parameter � by writing

r3

m
= (

1
�2
� 3)a2, hence

y

x
= q±(r, a) = a(

1
�
± 2).

Instead of writing ±2 I use � > 0 for orbits with parallel angular momentum and � < 0 for
orbits with anti-parallel angular momentum and always q±(r, a) = a|2+1/�|. Now g(�0, �0)
with �0 = (0,±1, q±(r, a)) is reasonably simple:

g(�0, �0) = 3r2 � a2(3 +
1
�2

+
4
�

)
(!)
= 0.

From this equation and the previous one (the definition of �) we eliminate a2 to obtain
r/m in terms of � and then also a/m in terms of (positive or negative) �:

r

m
= 3

1� 3�2

1 + 3�2 + 4�
,

a

m
=

r

m
|�|
r

3
1 + 3�2 + 4�

.
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At � = 0 we obtain the Schwarzschild case: r = 3m, a = 0. For positive � note that r/m
is monotone decreasing with � and drops below r = 2m (where the present form of the
Kerr metric is no longer defined) already at a = 0.3m,� ⇡ 0.1044. On the other hand, for
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negative � one finds that r/m is a monotone increasing function of a/m (for example at
a/m = 61 we have r/m = 31). The main point is that photons circling parallel to the black
hole’s spin behave very di↵erent from photons circling in the opposite direction. Another
simple consequence is this: since the null directions on the cylinder r = const separate the
space like directions from the time like ones, and since q±(r, a) is monotone increasing in
r there can be no circular particle orbits on radii smaller than the photon orbits. For a
value of a = 0.304 we compare the periods of circular orbits in the following diagram, the
anti-parallel ones take less time (T+ � T� = 8⇡a):

2 3 4 5 6 7 8 9 10 11
0

50
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Particle Orbit Periods at a = 0.30408 parallel and anti-parallel

Orbit Radius

O
rb

it 
Pe

rio
d

Next we wish to look at the di↵erential equation of orbits (of particles or photons) on which
the radial coordinate is not constant.

With the following abbreviations

f11(r) :=
�
1� 2m

r
+

a2

r2

��1
, f22(r) := r2 + a2 +

2ma2

r
,

f23(r) :=
�4ma

r
, f33(r) := �1 +

2m
r

we get the metric in the form
ds2 = f11(r)dr2 + f22(r)d'2 + f23(r)d'dt + f33(r)dt2.

The Killing fields (0, 1, 0) and (0, 0, 1) give two constants ⌦, T of the motion

g((r0, '0, t0), (0, 1, 0) ) = f22(r)'0 + f23(r)t0 =: ⌦,

g((r0, '0, t0), (0, 0, 1) ) = f23(r)'0 + f33(r)t0 =: T.

g((r0, '0, t0), (⇢0, '0, t0) ) = f11(r)r0
2 +⌦'0 + Tt0.
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The matrix
M :=

✓
f22(r) f23(r)
f23(r) f33(r)

◆
, M ·

✓
'0

t0

◆
=
✓
⌦
T

◆

has non-vanishing negative determinant where {r > 2m} and therefore gives the first order
ODE for the radial part r(s) of the orbit:

f11(r)r0
2 + (⌦, T ) · M�1(r) ·

✓
⌦
T

◆
= 0 (for photons), respectively = �1 (for particles).

In this generality this is very similar to the Schwarzschild case. However, the detailed
behavior of the solutions is much more complicated and I only know how to do that numer-
ically. For photons we may assume T = 1 and discuss the solutions in their dependence on
⌦. For su�ciently large |⌦| photons falling in from large values of r will approach the star
but then r0 changes sign and they come out again. For su�ciently small |⌦| the photons
will fall into the black hole. For negative ⌦ one needs considerably larger |⌦| for the
photon not to be captured. For larger values of a, captured photons have orbits which, on
their last stretch before they reach r = 2m, fall in almost radially. For small values of a
one notices a sign change in '0, on the last piece of their orbit captured photons move in
the direction parallel to the spin of the black hole. – For positive ⌦ considerably smaller
values of ⌦ are su�cient for the photon to escape the black hole. But a capture minimum
remains, for example in the case m = 1, T = 1 photons with ⌦ = 1 will be captured,
no matter what the spin a of the black hole is. I omit pictures because the behaviour of
particles is more dramatic than that of photons.
The first three diagrams have small angular momentum of the star, a = 0.2, the first two
have positive (and only slightly di↵erent) orbit angular momentum, the first one shows
capture:
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In the second diagram the particle can leave the gravitational field, but not before going
around three times. This can also happen in the Schwarzschild geometry, but not in a
Newtonian system. – Below we have a negative orbit momentum. Near {r = 2m} the field
of the star forces the particle around into the positive direction, then it is captured.
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In these two diagrams the star has angular momentum a = 1.43. About this size of
the angular momentum is critical in that no particle with positive orbit momentum can be
captured by the star. In the diagram above the particle has small negative orbit momentum,
but is still not captured. The diagram below shows the turning around of particles with
larger negative orbit momentum near {r = 2m} and subsequent capture.
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These two diagrams show orbits near a star with angular momentum a = 4. It is assumed
that black holes cannot have so large an angular momentum, a) because an imploding
star could not have rotated fast enough before its implosion and b) because no angular
momentum can be added to an existing black hole beyond the limit a/m > 1.43, since no
particle with positive orbit momentum can be captured.
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Because the fact, that angular momentum of a Kerr solution cannot be increased by throw-
ing orbiting particles with positive orbital momentum into the black hole, is very important,
we check our numerical computation against the above formulas: On an orbit with ⌦ = 0
we need r0 = 0 to happen just outside {r = 2m}. We consider orbits that are at rest at
infinity, i.e., T = �1. We ask: what is the smallest a so that this happens? The ODE
gives:

0 + T 2f22(r)/det(M)
��
r=2m

= �1 ) 1 =
4a2

f22(2m)
=

4a2

4m2 + 2a2

) a =
p

2 · m.

This is indeed the numerically discovered critical value.

Finally, since our orbit computations can also show the perihelion advance we give one such
example:
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Stress Energy Tensor
Simple Examples and Geometric Consequences, a Schur Theorem

Notational conventions. For the Ricci Tensor I will use di↵erent names for its bilinear ver-
sion: ric(v, w) and its 1-1-Tensor version: Ric(v), and of course: ric(v, w) = g(Ric(v), w).
The divergence free part of the Ricci Tensor is the Einstein Tensor G:

G := Ric� 1
2
(traceRic) · id , traceG = �traceRic.

The Einstein Equation
8⇡T = G +⇤id .

Of course, without further words this means nothing: One could take any Lorentz manifold,
compute (G+⇤id )/(8⇡) and call the result the stress energy of the matter in that universe.
This is not the intended use of the equations. Rather one should have an opinion what
kind of matter is in the universe one intends to model, one should understand this matter
well enough to be able to write down its stress energy tensor and finally look for a Lorentz
manifold such that the Einstein Equation is satisfied. For how much complication should
we be prepared? First, of course, there are the stars. It turned out that for modeling
ordinary stars one does not need General Relativity. And the more exotic stars, imploding
ones for example, require so broad a background in physics that they are out of my reach.
We have seen the Schwarzschild geometry and glimpses of Kerr as models of the outside
of a star. The next larger structures are galaxies and eventually the cosmology. I want
to recall a very successful continuous model of an obviously discrete situation: the kinetic
theory of gases in terms of di↵erentiable functions called volume, pressure and temperature.
A gas consists of molecules of diameter 10�10m and up, and their mean distance is about
a factor 30 larger. Our galaxy has a diameter of about 50.000 light years and the distance
to the Andromeda galaxy is about 20 times that large. It will turn out that a cosmological
model in which the matter is a dust of mass density ⇢ and the dust grains are the galaxies
(in other words: a very oversimplifying assumption) is surprisingly successful. And for the
galaxies themselves, the ratio of distances between stars to star diameters is more like 107

and therefore maybe too large for a continuous approximation. (I have been told that the
shuttle reentry computations in the very thin high atmosphere do not describe the “gas”
by using a very small continuous density, but really deal with individual molecules.) Very
recently I obtained the following reference:
1995 Phys. Rev. Letters 75, 3046 , Neugebauer, G.; Meinel, R.: General Relativistic
Gravitational Field of a Rigidly Rotating Disk of Dust: Solution in Terms of Ultraelliptic
Functions .
I did not have time to see what one can learn from it, the words “rigidly rotating” do
exclude that it is a galactic model. Concerning galaxies. I know that really huge numerical
simulations have been made, but I do not know any details. Therefore, with obvious regret,
I cannot discuss relativistic models of galaxies in these notes.
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The remaining goal therefore is to discuss a family of cosmological models that are filled
with a very simple type of matter. We will not meet complicated stress energy tensors,
but in the same way as the detailed discussion of our first vacuum solution (Schwarzschild)
turned out to be very educational we will gain insight about the interplay between matter
and geometry on a cosmological scale even though we work with the simplest kind of matter
that can be imagined. Before turning to that goal I end this section with definitions and
with some more local arguments.

A matter is called a perfect fluid if it has just two physical properties called pressure p
and mass density ⇢ (p, ⇢ are di↵erentiable functions) and if at every point in the rest system
of the matter (this makes sense only where ⇢ =/ 0) the stress energy 1-1-tensor T has the
rest space as 3-dim eigenspace with eigenvalue p and the time like unit vector U of the rest
frame is an eigenvector with eigenvalue �⇢. Since U is defined everywhere, it is a time like
unit vector field whose integral curves are the world lines of the matter particles. Note that
the infinitesimal rest spaces U? in general are not an integrable distribution. This means
that in general there are no natural space slices. This phenomenon will be obscured by
our examples: additional simplicity assumptions make U? integrable and therefore lead to
natural space slices. I find it important to emphasize that even with all the specifics above
we do not yet have some physically specific perfect fluid. In addition one needs a

matter equation or equation of state: F (p, ⇢) = const, @
@pF =/ 0.

We shall mainly work with the equation p = 0 that specifies a dust.
We shall mention 3p� ⇢ = 0 specifying a perfect fluid called photon gas.
In the absence of a matter equation the following inequalities are required: 0  3p  ⇢.
My knowledge of continuum mechanics is insu�cient for comments about these inequalities.

Next we translate the given information about T , using the Einstein equation, in informa-
tion about Ric:

T · W = (p · W + (⇢+ p)g(U,W ) · UFor arbitrary vectors W holds:
8⇡ · trace (T ) = trace (Ric)� 2trace (Ric)� 4⇤

Ric = 8⇡(T � 1
2
trace (T )id ) + ⇤id

Ric(U) = (⇤� 4⇡(⇢+ 3p)) · U, Ric
��
U?

= (⇤ + 4⇡(⇢� p)) · id
��
U?

.

By looking at the Ricci tensor we can now recognize whether some Lorentz manifold has as
its matter content a perfect fluid. The quadratic examples of lecture 2 do not model such
type of matter.

Recall that, when Einstein wrote down the above field equation, physicists had already
met stress energy tensors of materials and they were convinced that T would be divergence
free for all materials. Therefore Einstein constructed the right side of the equation to be
divergence free. We learn some facts about perfect fluids by computing the divergence of T :

div (T ) :=
X

i

(DeiT ) · ei

g(ei, ei)
=) g(div (T ),W ) =

X
i

g((DeiT ) · W, ei)
g(ei, ei)

g(div (T ),W ) = TW p + (p + ⇢)g(W,DUU) + g(W,U)div ((p + ⇢)U).

88



If we use div (T ) = 0 and apply this computation for W ? U , then we get
DUU = �(grad p)/(p + ⇢), grad = grad Restspace

in particular, in the case of dust, we get geodesic world lines for the dust particles. In
general the acceleration is caused by the pressure gradient (in the rest space).
If we use the computation for W = U in the dust case, we get div (⇢ ·U) = 0, a conservation
of mass result. This shows that quite basic facts about the behavior of the perfect fluid
follow from the Einstein field equation without prior knowledge of these facts from classical
physics.

What is div T = 0 good for?

If in some field theory a vector field V with div (V ) = 0 occurs then Gauß’ theorem implies
that the flow of V carries some conserved quantity around. However, there is no Gauß’
theorem for 1-1-tensors and therefore: why is div T = 0 important? A celebrated fact
from classical mechanics is the observation that symmetry groups, or Killing fields, lead to
conserved quantities. And Killing fields X (characterized by the skew-symmetry of their
covariant di↵erential, DX = �DXtr) are similarly useful in our context:

div T = 0 and DX = �DXtr =) V := T · X satisfies div (V ) = 0.Claim:
DV = (DT ) · X + T · DX,Proof:
div (V ) = trace (DV ),
trace (T · DX) = 0 since T is symmetric and DX is skew,

trace ((DT ) · X) =
X

i

g((DeiT ) · X, ei)
g(ei, ei)

=
X

i

g((DeiT ) · ei,X)
g(ei, ei)

= g(div (T ),X) = 0.

This shows that the divergence free stress energy tensor T together with any Killing field
X leads to a divergence free vector fields V = T · X, i.e. to vector fields V whose flow
transports some conserved quantity. This observation makes div T = 0 important, if there
are Killing fields. Not surprisingly do our simplified models carry Killing fields, but on a
real cosmology with all its individual features there won’t be Killing fields. Is div T = 0
still important? I will argue “yes, and for almost the same reason”.

First recall that in Euclidean space and in Minkowsky’s Special Relativity Killing fields are
explicitly determined by value and derivative at one point:

X(x) = X(p) + DX
��
p
· (x� p).

Secondly, an observing physicist, of course, cannot leave his world line. Moreover we have
by now some experience in viewing physicists as infinitesimal observers who perform their
experiments in the tangent spaces of the Lorentz manifold, along their world line. This
means that for observing conserved quantities they do not really need globally defined
Killing fields, what they need are “almost” Killing fields defined on a tube around their
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world line. Recall that a Killing field satisfies along any geodesic �(i.e. along the world line
of any unaccelerated observer) and for any parallel field v along � the following PDE:

D�0(DvX) + R(X, �0)v = 0.

This says: X and DX is determined along � by its initial value X(�(0)) and its initial
derivative DX

��
�(0)

, just as in the Euclidean/Minkowski case. Of course DX
��
�(0)

needs
to be skew-symmetric, but if this initial constraint is met then DX

��
�(s)

continues to be
skew-symmetric:

d

ds
g(Dv(s)X, v(s)) = �g

⇣
R
�
X(s), �0(s)

�
v(s), v(s)

⌘
= 0.

We can therefore construct as many almost Killing fields X on an infinitesimal tube around
� as we have in Special Relativity and div T = 0 allows us to observe the conserved quanti-
ties of the flows of the fields V := T ·X, so that div T = 0 is really responsible for observable
conserved quantities.

Interplay with Conformal Flatness.

We are interested in conformally flat Lorentz manifolds because then we get solutions of
Maxwell’s equation for free. A (pseudo)-Riemannian metric is (locally) conformally flat i↵
its Weil conformal curvature tensor vanishes. In such a case one can write the full curvature
tensor in terms of the Ricci tensor. In the case of a perfect fluid we saw that the Ricci
tensor does not distinguish any space like directions in the rest spaces of the matter. Taking
the two facts together shows:

A conformally flat perfect fluid is curvature isotropic.
We write more explicitly what we mean by “curvature isotropic with respect to U”, i.e., by
the property that the curvature tensor distinguishes no directions in the rest spaces U? of
the matter. Clearly, such a curvature tensor has to have the following properties:

X,Y,Z ? U =) R(X,Y )Z = k(p)(g(Y,Z)X � g(X,Z)Y ),
R(X,U)U = µ(p) · X,

R(X,Y )U = 0,with the immediate consequences:
R(U,X)Y = �µ(p) · g(X,Y ) · U.

(Note that g(R(U,X)Y,Z) = 0 for all Z ? U and g(R(U,X)Y,U) = g(R(X,U)U, Y ).)
This is enough information about the curvature tensor to check that any curvature isotropic
curvature tensor has its Weyl conformal curvature tensor vanish, so that the manifold is
locally conformally flat. Moreover, we find for the Ricci tensor (of such a curvature tensor):

ric(U,U) = 3µ(p) = ��U = (�⇤+ 4⇡(⇢+ 3p))
ric(U, Y ) = 0
ric(X,Y ) = (2k � µ)g(X,Y ) = �U? = (⇤ + 4⇡(⇢� p)).
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This shows that the eigenspace decomposition is the correct one for a perfect fluid (we
also need to satisfy 0  3p  ⇢), so that, essentially, “conformally flat perfect fluid” and
“curvature isotropic space” describe the same Lorentz manifolds.
Note:

6k � 2⇤ = 16⇡⇢, 4µ� 2k + 2⇤ = 16⇡p, µ + k = 4⇡(p + ⇢).

After introducing the concepts and show immediate relations we come to a real theorem:

Theorem of Schur type. Let M4 be curvature isotropic for a time like unit vector field
U so that M4 models a perfect fluid. We also assume ⇢ > 0, since otherwise one cannot
everywhere define the local rest frame of the matter, namely U,U?. Then:
a) U? is an integrable distribution.
b) The 3-dim integral manifolds have intrinsically constant curvature.
c) A matter equation F (p, ⇢) = 0, @

@pF =/ 0 implies DUU = 0 so that extrinsically
these integral manifolds are parallel hypersurfaces with the matter world lines as the
orthogonal geodesics.

The proof is modeled after Schur’s theorem for Riemannian manifolds that states: If the
sectional curvatures are constant at each point then they are constant. The argument relies
on the 2nd Bianchi identity, we will use

0 = (DUR)(X,Y )Z + (DXR)(Y,U)Z + (DY R)(U,X)Z.

(Other combinations of arguments do not contain additional information.) Our curvature
assumptions are such that the orthogonal splitting TpM = U(p)R�U? is essential. There-
fore we will use the induced covariant derivative D? on the 3-dim bundle U? over M . By
X,Y,Z we will always denote vector fields from that bundle.

D?X := DX + g(DX,U) · U ? U.

D?
ċ X = 0 ) DċX = �g(DċX,U) · U = g(X,DċU) · U.

Clearly, D?-parallel vector fields have constant scalar products. For the evaluation of the
terms in the Bianchi sum we may assume that the vector fields X,Y,Z ? U are D?-parallel
in the direction of the di↵erentiation field. Now compute the Bianchi sum terms:

DU (R(X,Y )Z) = dk(U)(g(Y,Z)X � g(X,Z)Y ) + k(g(Y,Z)DUX � g(X,Z)DUY ).First:

Since DUX,DUY,DUZ are proportional to U we have

R(X,Y )DUZ = 0, R(DUX,Y )Z = �µg(Y,Z)DUX. R(X,DUY )Z = µg(X,Z)DUY

(1) (DUR)(X,Y )Z = dk(U)(g(Y,Z)X � g(X,Z)Y ) ? U

+ (k + µ)(g(Y,Z)DUX � g(X,Z)DUY ) 2 UR

DX(R(U, Y )Z) = �dµ(X)g(Y,Z) · U � µg(Y,Z)DXU.Second:
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Again, the derivatives of the arguments are either parallel or orthogonal to U , hence

R(DXU, Y )Z = k(g(Y,Z)DXU � g(DXU,Z)Y ), R(U,DXY )Z = 0,
R(U, Y )DXZ = �µg(Z,DXU)Y (recall DXZ = g(Z,DXU)U )

(2) (DXR)(Y,U)Z = �(DXR)(U, Y )Z
= dµ(X)g(Y,Z)U 2 UR
+ (k + µ)(g(Y,Z)DXU � g(Z,DXU)Y ) ? U.

And similarly (interchange X and Y and a sign)

(3) (DY R)(U,X)Z = �dµ(Y )g(X,Z)U 2 UR
� (k + µ)(g(X,Z)DY U � g(Z,DY U)X) ? U.

Using the 2nd Bianchi identity in (1)+(2)+(3) gives two equations, one in UR, one in U?:

dµ(X)g(Y,Z)U � dµ(Y )g(X,Z)U = �(k + µ)(g(Y,Z)DUX � g(X,Z)DUY ),In UR
dk(U)(g(Y,Z)X � g(X,Z)Y ) =In U?

= (k + µ) (g(Y,Z)DXU � g(X,Z)DY U + g(DY U,Z)X � g(DXU,Z)Y ) .

If we use unit vectors X ? Y = Z in the first equation we get

dµ(X) = �(k + µ)g(X,DUU),

we computed earlier

div (T ) = 0 =) 8⇡dp(X) = �8⇡(⇢+ p)g(X,DUU) =
= d(2µ� k)(X) = �2(µ + k)g(X,DUU),

and both equations together give

dk(X) = 0 for all X 2 U?

This shows: if ⇢, hence k, are not konstant then the levels of ⇢ are the
integral manifolds of the distribution U?.

We still have to consider the case of constant k since the absence of matter equations makes
still many examples possible. Therefore we need another proof of the integrability of the
distribution U?. We claim, the vector field (k +µ)U has a symmetric covariant di↵erential
and therefore is (locally) the gradient of a function, and since (k +µ) > 0 is implied by our
assumption ⇢ > 0, this proves integrability of U?. To see the claim, first put orthonormal
vectors X,Y,Z in the second part of the above Bianchi equation to obtain

0 = (k + µ)(g(DY U,Z)X � g(DXU,Z)Y ), hence g(DY U,Z) = 0.

This says that for any orthonormal basis in U? the matrix of DU
��
U?

is diagonal, in partic-
ular symmetric. It remains to check, with the above equations, the remaining symmetry:

g(DX((k + µ)U), U) = g(dµ(X)U,U) = (k + µ)g(X,DUU) = g(DU ((k + µ)U),X),

and thus prove the integrability of U? in all cases. We emphasize that this integrability
was deduced from strong assumptions, it is normally false.
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Next we determine the intrinsic curvature of the integral submanifolds of U?. We also
refer to them as space slices. The unit (time like) vector field U is of course normal along
them. The Weingarten map (=shape operator) of the space slices therefore is S := DU
and we proved already that DU is diagonal in any orthonormal basis, i.e., is proportional
to id . We use unit vectors X ? Y = Z in the Bianchi equation involving dk(U). Taking a
scalar product with X we obtain:

�dk(U)
k + µ

· g(Y, Y ) = g(DXU,X) + g(DY U, Y ) = 2 · eigenvalue of S.

We use this in the Gauss equation:

R(X,Y )Z = k(g(Y,Z)X � g(X,Z)Y ) ( assumption about M4)
(Gauss)

= RHyp(X,Y )Z � ((g(SY,Z)SX � g(SX,Z)SY ) · g(U,U)�1

RHyp(X,Y )Z =
✓

k � 1
4
�dk(U)

k + µ

�2◆ · (g(Y,Z)X � g(X,Z)Y ).

This shows that the space slices satisfy the assumptions of the Riemannian Schur theorem
so that the curvature value is indeed constant on each space slice.

Finally we assume a matter equation F (⇢, p) = 0, @
@pF =/ 0. Recall that we proved for

all X ? U that dk(X) = 0. This says that grad ⇢ is proportional to U (including 0).
Di↵erentiation of the matter equation gives that grad p is proportional to grad ⇢ (again
including 0). Therefore we have for all X ? U that 0 = dp(X), hence

0 = dp(X) = �(⇢+ p)g(X,DUU).

The integral curves of U , the world lines of the matter particles, are therefore geodesics with
integrable orthogonal complements U? and these space slices are a family of geodesically
parallel hypersurfaces. Q.E.D.
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Summary of Conformal Changes

ḡ = ��2gGiven
DY Z = DY Z + �(Y,Z)then

�(Y,Z) = �TZ�

�
Y � TY �

�
Z + g(Y,Z)grad�.with

R(X,Y )Z = R(X,Y )Z + (DX�)(Y,Z)� (DY �)(X,Z) + �(X,�(Y,Z))� �(Y,�(X,Z))
gives with the abbreviation B := Dgrad�

R(X,Y )Z = R(X,Y )Z +
1
�

�
g(Y,Z)BX � g(X,Z)BY + (g(BY,Z)X � g(BX,Z)Y

�

� 1
�2

g(grad�, grad�) · (g(Y,Z)X � g(X,Z)Y ).

This gives the new Einstein tensor as

G = �2
⇣
G +

2
�

B +
� 3
�2

g(grad�, grad�)� 2��
�

�
· id
⌘
.

We have done no computations with the Weyl conformal curvature tensor, we list it as a
reference:

C(X,Y )Z = C(X,Y )Z =

= R(X,Y )Z � 1
n� 2

�
ric(Y,Z)X � ric(X,Z)Y + g(Y,Z)Ric(X)� g(X,Z)Ric(Y )

�

+
trace (Ric)

(n� 2)(n� 1)
�
g(Y,Z)X � g(X,Z)Y

�
.
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Cosmological Models
Infinitesimally isotropic dust, red shift - luminosity, mass per red shift

We will not derive the standard cosmological model assuming Schur’s 2nd Bianchi argu-
ments from the previous lecture. But we will derive this family of models from scratch, with
simpler arguments, following the historic route. This approach needs stronger assumptions,
fortunately assumptions that are the conclusions of the Schur theorem. I also prefer to skip
the factor 8⇡ from the Einstein equation, i.e. the functions ⇢, p in this section are the
functions 8⇡⇢, 8⇡p of the last section.
Model assumptions, for Friedman or Robertson-Walker universes:
Matter content.

The matter of the model is a perfect fluid. Mostly we assume the matter equation
for dust, p = 0. To illustrate how the type of matter changes the model we will
also deal with the matter equation for a photon gas, 3p = ⇢.

Symmetry.
Other observers on matter world lines should see the universe as we do, and,
roughly speaking, the observations do not distinguish special rest space directions
(i.e. orthogonal to matter world lines). We turn this into the assumption: the
curvature tensor distinguishes no directions in the rest spaces.

Ansatz.
From these assumptions we concluded that the matter world lines are geodesics
and that the orthogonal distribution is integrable, giving space slices of constant
intrinsic and extrinsic curvature. This foliation also defines a global time function
⌧ and the curvatures as well as ⇢ and p depend on ⌧ .
The underlying manifold therefore is

M4 = M3
 ⇥ (a, b),

with (a, b) to be determined and M3
 a space of constant curvature .

M4 has a warped product metric
ḡ = a2(⌧)g(., .)� d⌧2.

We assume a(⌧ = today) = 1 so that g is the metric of the space slice that cuts our world
line at ⌧ = today. Note that I take  as a continuous curvature parameter and not, as in
part of the literature,  = �1, 0,+1 only.

What do the Einstein equations say about the scaling function a(⌧)?

Let U be the timelike unit tangent field to the matter world lines (⌧ -lines) and let X,Y,Z ?
U be tangential to the space slices. If X is parallel along the ⌧ -lines then J(⌧) := a(⌧)X is
a Jacobi field. This gives

R(X,U)U = �a00

a
X (Jacobi equation for aX),1.

S(X) =
a0

a
X (Shape operator of space slice),2.
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R(X,Y )Z =
1
a2

R(X,Y )Z �
�
ḡ(SY,Z)SX � ḡ(SX,Z)SY

�
ḡ(U,U)�13.

= (


a2
+

a02

a2
)
�
ḡ(Y,Z)X � ḡ(X,Z)Y ), (Gauss eq.

�

Ric(U) =
3a00

a
U Ric(Z) = (

2+ 2a02

a2
+

a00

a
)Z4.

1
2
trace (Ric) =

3a00

a
+ 3

+ a02

a2
5.

(G +⇤) · U = (�3(
+ a02

a2
) + ⇤)U = �⇢UEinstein eq.:

(G +⇤) · Z = (�+ a02

a2
� 2a00

a
+⇤)Z = pZ

⇢ = 3(
+ a02

a2
)� ⇤ � + a02

a2
� 2a00

a
+⇤ = 0Dust:

We simplify the system to a first order ODE by observing a first integral:

1
3
�
⇢(⌧)a(⌧)3

�0 = �aa0
2 + a� ⇤

3
a3
�0 = a2a0

 
2a00

a
+
+ a02

a2
� ⇤

!
= 0

⇢(⌧) · a(⌧)3 = const. = ⇢(today) · 1, ODE: a0
2 =

⇢(today)
a

� +
⇤
3

a2.

This relation between the mass density and the scaling size agrees with our 3-dimensional
intuition. It is also a good result because the mass density is more directly observable than
our Ansatz function a(⌧), the scaling size of the space slices.

We pause briefly for a comparison with the computations in the Schur theorem. There the
curvature function k of the 4-dimensional curvature tensor was used. Equation 3 above
expresses k in terms of  and a, the relation 2(k +µ) = (⇢+ p) is from the previous section
and the Einstein equations for M4 (above) give (⇢+ p) in terms of  and a:

k
(3.)
=



a2
+

a02

a2
and 2(k + µ) = (p + ⇢)

(Einstein)
= 2

+ a02

a2
� 2a00

a

1
4

✓
dk(U)
k + µ

◆2
(2.)
= (

a0

a
)2

(Gauss)
= k � 

a2
= curv(M4)� curv(spaceslice3).

One sees that the final result of the Schur argument agrees with the present more direct
application of the Einstein equations.

We know from the previous lecture that the models under consideration are conformally
flat. It is easier to deal with red shift predictions and application of Maxwell’s equation in a
conformally flat description of the model. It will also turn out that the resulting di↵erential
equations can be integrated one step more in the conformal description than in the above
first approach. Therefore we will start again from the beginning, but for further comparison
with the physics literature we will also come back to this first approach.
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We introduce a new time function t and define what will turn out to be the conformal
factor:

dt :=
d⌧

a(⌧)
and �(t) := a(⌧(t))�1. d⌧ =

dt

�(t)
. Note �(today) = 1.

This transforms the above Ansatz metric in a conformally flat form:

ḡ = a(⌧)2g � d⌧2 = �(t)�2(g � dt2).

From the definition of t, �(t) follows (with d
d⌧ h(⌧) = h0(⌧), d

dth(t) = ḣ(t)):

a0

a
(⌧) = ��̇(t),

a00

a
= ���̈+ �̇2.

These relations su�ce to translate the (Einstein) di↵erential equations for a(⌧) into dif-
ferential equations for �(t). We will use this only as a check and derive the equations
for �(t) from scratch, using this as another illustration how the Einstein equations lead
in the presence of matter equations to a model description in terms of explicit di↵erential
equations.

Curvature tensor, Ricci tensor and Einstein tensor for the product metric g = g � dt2 are
easily obtained (observe that U is globally parallel for g):

R(⇤, ⇤)U = 0, R(X,Y )Z = (g(Y,Z)X � g(X,Z)Y ),

Ric(U) = 0, Ric(X) = 2X,
1
2
trace (Ric) = 3,

G(U) = �3U, G(X) = �X.

For the conformally changed metric ḡ = ��2g we compute the Einstein tensor with the
conformal-change-formula at the end of last lecture.
Note grad g� = ��̇U, Dgrad g� = ��̈g(U, .)U

(G +⇤)(X) =
�
�2(�+ 0� 3�̇2

�2
+

2�̈
�

+⇤
�
X

(!)
= pX

(G +⇤)(U) =
�
�2(�3� 2�̈

�
� 3�̇2

�2
+

2�̈
�

+⇤
�
U

(!)
= �⇢U

This gives the expected di↵erential equations (compare those for a(⌧)):

2��̈� 3�̇2 � �2 +⇤ = 0,
⇢(t) = 3�̇2 + 3�2 � ⇤ = 2�2 + 2��̈.

⇢̇ = 6�̇(�+ �̈) = 3
�̇

�
⇢,Hence:

⇢(t) = ⇢(T ) · �(t)3, Abbreviate T := today henceforth.and:

As in the first description ⇢(t) scales expectedly with �(t)3 so that scaling sizes of space
slices that intersect matter world lines at �(t) can equivalently be expressed in terms of
matter densities, more precisely ⇢(t)1/3, along �.
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So far the two descriptions show the same level of complication, the advantages of the
conformal description begin now. The just established fact that ⇢(t)�(t)�3 is a constant
translates into a first order ODE for � that has the two Einstein equations we started with
as consequences (recall that this statement holds also in the a(⌧)-description):

d

dt
(
1
3
⇢(t)�(t)�3) =

d

dt

�
�̇2��3 + ��1 � ⇤

3
��3

�
= 2�̇�̈��3 � 3�̇3��4 � �̇��2 +⇤�̇��4

= �̇��4
�
2��̈� 3�̇2 � �2 +⇤

�
= 0.

So finally we have reached

The Equation of the Cosmological Model

�̇2 =
⇢(T )

3
· �3 � �2 +

⇤
3

, ⇢(t) = ⇢(T ) · �(t)3,

g =
1
�2

(g � dt2) =
✓
⇢(T )
⇢(t)

◆2/3

· (g � dt2).

For ⇤ =/ 0 this ODE for �(t) is the ODE of an elliptic function while for ⇤ = 0 an
explicit integration in terms of elementary transcendental functions is possible. We therefore
assume in the following ⇤ = 0 whenever reference to the explicit solution is made. We use
abbreviations for sin(

p
 t)/

p
 and similar functions as follows:

s00 + s = 0, s(0) = 0, s0(0) = 1. Note: (s0)2 + s2
 = 1

c00 + c = 0, c(0) = 1, c0(0) = 0. (c0)2 + c2
 = 

c = s0
Claim. In the case ⇤ = 0 we have the following explicit solution of the model ODE:

�(t) := s(
T � t0

2
)2 · s(

t� t0
2

)�2 (Recall T = today).

⇢(T ) = 3s(
T � t0

2
)�2, ⇢(t) = 3s(

T � t0
2

)4 · s(
t� t0

2
)�6.With

Here t0 is the time where the mass density becomes infinite. There is no harm in setting
t0 = 0. To prove the claim compute (�̇)2/�2 +  with the help of (s0)2 + s2

 = 1 and find
it equal to (s(T/2)�2 · �(t), hence ⇢(T )/3 = s(T/2)�2.

As a first observation we have a Big Bang prediction: If we go backwards in time and
reach infinite mass density at t = t0 = 0 then this moment is the Big Bang for the forward
time development of the model. - This statement requires one word of caution: Before
the mass density reaches infinity it becomes so large that the matter presumably can no
longer be treated as a dust. In other words, the model assumptions become invalid before
the Big Bang is reached. At the time when the dust assumption becomes invalid one may
change the matter equation to that of a photon gas and compute somewhat further back
in time until these matter equations become invalid. It is generally believed that one can
keep adjusting the matter equations as one gets arbitrarily close to the Big Bang.
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Clearly, the Big Bang prediction has caused a lot of excitement although the Big Bang is,
strictly speaking, out of observational reach. We come now to a red shift prediction
which is also exciting because it concerns one of the most dominant observational facts
from astronomy.

For the physically unimportant product metric g = g � dt2 we have that the vector field
U is a time like Killing field of constant length. Therefore we have no red shift between
observers represented by the integral curves of U . Under the conformal change to the
physically relevant metric ḡ = 1

�2 g these integral curves become the world lines of the
matter particles of that model. We have computed the red shift caused by a conformal
change and found:

1 + z =
!Source

!Observer
=

�(t)
�(T )

=
a(⌧ = today)

a(⌧(t))
=

s(T/2)2

s(t/2)2
=
✓
⇢(t)
⇢(T )

◆1/3

.

This has an immediate interpretation: The red shift of light received from ‘distant’ galaxies
tells us how much denser the universe was at time t of emission than at time T = today of
reception. (In particular, the red shift from the Big Bang is infinite, which certainly adds
to the observational di�culties.)
The historical and much more common interpretation is di↵erent:
if one interprets ⌧(today)� ⌧(t) = �⌧ as the travel time of the light from the space slice at
emission to us then this di↵erence can also be called “distance” between the emitting star
and us. The first order Taylor formula gives (recall a(today) = 1)

z ⇡ �a

a
⇡ a0

a
�⌧.

This says that the red shift increases linearly with the “distance”. Finally, the simplest
interpretation of red shift is the Doppler shift caused by relative motion. In other words:
the relative velocity between us and the galaxies increases with their distance! This is the
expansion of the universe observation.

Whichever interpretation of the red shift prediction one prefers: the model has clearly made
contact with observational facts.

We interrupt the discussion of the model to look at another matter equation, at a photon
gas, ⇢ = 3p. If we insert this into the above eigenvalue computations for the Einstein
tensor in the conformally flat description we get

⇢(t)
3

= 2��̈� 3�̇2 � �2 +⇤,(1)

⇢(t) = 3�̇2 + 3�2 � ⇤,(2)
4
3
⇢ = 2��̈+ 2�2.(1) + (2)

0 =
d

dt

 
�̇2

�4
+



�2
� ⇤

3�4

!
=

d

dt

⇢(t)
3�(t)4

,((1)� (2)/3)�̇/�5
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⇢̇ = 6�̇(�+ �̈) = 4
�̇

�
⇢.Di↵erentiating (2)

⇢(t) = ⇢(T ) · �(t)4.Finally:

Again we end up with a first order ODE for the scaling function �(t), but a di↵erent power
dependence, ⇢(t) ⇠ �(t)4, than for dust. Vice versa, this power law for ⇢ and the first order
ODE for �(t) imply the two Einstein equations.

For comparison with the literature we need to discuss the model parameters. One parameter
is the cosmological constant ⇤, but I do not know how to discuss its connection with
observations. Our Ansatz had todays space slice curvature  as one model parameter, and
the integration gave a second parameter, either the age T of the universe or equivalently
the matter density today, ⇢(T ). None of these parameters is used in the literature. The
expanding universe discussion suggests why the Hubble function(⌧) = a0(⌧)/a(⌧) = ��̇(t)
was defined. Its value today is the Hubble Constant H. It is one of the most prominent
astronomical constants and it is one of the usual model parameters. We have:

H2 := �̇(T )
2 (ODE)

= �+
⇢(T ) + ⇤

3

���
⇤=0

=
✓

ṡ

s
(T/2)

◆2

= �+
1

s2
(T/2)

.

Clearly one can introduce H instead of any of the other parameters to specify the model in
the family. The second model parameter in the physics literature also comes from sympathy
for Taylor approximations. The parameter is called acceleration parameter q and defined
via a00|today (recall a00/a = ���̈+ �̇2 and 2��̈ = 3�̇2 + �2 � ⇤ = ⇢(t)� 2�(t)2):

q := �a00

a

��
today

· 1
H2

=
�̈

�

✓
�

�̇

◆2

� 1 =
1

2�̇2
(�̇2 + �2 � ⇤) =

1
6H2

(⇢(T )� 2⇤),

(2q � 1)H2 = � ⇤.

With these equations one can choose, in terms of which parameters one wants the model
to be specified. To me, H and ⇢(T ) seem closest to direct observations.

Some Comments
Of course one asks how model parameters could be determined experimentally, for example
what is the sign of the curvature , how large is ⇤? Note that the above two predictions, as
impressive as they are, are qualitative, the predictions are the same for a large set of model
parameters. One task therefore is, to find quantitative model predictions, see below.
One should not forget that the assumptions to derive this family of models were really
strong: since we can see galaxies and empty space between them a mass density that is
constant on space slices, is a rather drastic simplification. This is also true on a larger
scale: clusters of galaxies and regions that are underpopulated are being observed. This
is unfortunate since there is no relaxed version of Schur’s theorem: if the assumptions are
almost satisfied then the conclusions are almost true. Of course nobody expects from any
theory to predict where clusters of galaxies would show up. But in the same way as earth’
gravity and weather conditions might allow to say something about height, steepness and
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abundance of mountain ranges, one could hope to derive statistical properties of galaxy
distribution – from much more complicated models than the presented family.

Quantitative model predictions

The following discussion makes use of the explicit model obtained for ⇤ = 0. After one has
seen what kind of predictions can be made, one can compute numerically similar predictions
also for ⇤ =/ 0. The red shift prediction that we derived above

1 + z =
!Source

!Observer
=

�(t)
�(T )

=
s(T/2)2

s(t/2)2
=
✓
⇢(t)
⇢(T )

◆1/3

.

is not a quantitative prediction as long as we do not know the time t of emission. We want
to combine it with a distance measurement to get a quantitative model prediction. We
will compute a luminosity prediction for emission at time t and eliminate t from the two
formulas to get a red shift - luminosity prediction. We begin the discussion with the
Faraday form for a dipole field in Special Relativity, written in polar coordinates:

F1 = cos(!(r � t)) · sin# · (dt� dr) ^ d#.

The first Maxwell equation is satisfied exactly, dF1 = 0, while the second Maxwell equation
is only asymptotically satisfied since the above dipole term is only the leading term of the
exact solution: d*F1 ⇠ 1/r2, We started the description of the cosmological model with
the conformally flat metric g = g � dt2, in polar coordinates:

ds2 = dr2 + s(r)2(d#2 + sin2 # d'2)� dt2.

For this metric we compute d*F1 ⇠ 1/s2
(r). Therefore we interpret F1 still as an

asymptotic solution. (For  > 0 there is no asymptotic behaviour as r !1 and we should
really use the exact solution.) In the same way as in Special Relativity the intensity of the
outgoing radiation drops o↵ as

(area of distance sphere)�1 =
1

4⇡s(r)2
.

Since the velocity of light is 1 we have r = T � t.

Next we have to make the conformal change to the physically relevant metric g = �(t)�2g.
We normalized the description so that �(T ) = 1 and therefore �(t) = 1 + z. We have

g(ej , ej) = 1 ) g(�ej , �ej) = 1 ) ēj = �ej ,

Ej = F (ej , e4), Ej = F (ēj , ē4) ) Ej = �2Ej .

This allows to compare the energy densities of any solution to the Maxwell equations when
looked at in the metric g resp. in the metric ḡ;

(energy density for)(ḡ) = �(t)4(energy density for)(g).
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Thus we have obtained another observable quantity as a function of emission time t:

Observed Luminosity for g

Lḡ = const · s(T � t)�2(1 + z)�4.

The const depends on the telescope used. Also, my knowledge in electrodynamics is not
quite su�cient to guarantee that the energy density of the solution, computed for each
frequency, is the correct physical quantity that determines the brightness of the observed
source. For example, frequency bands are stretched by the red shift, but this simply changes
the power of (1 + z).
At this point one can already plot a red shift – luminosity diagram since both red shift
and luminosity are explicit functions of the time parameter t. It is however instructive to
eliminate t from this formula and replace it by a function of z to get, completely explicitly,
luminosity as a function of red shift (where of course the function also depends on the two
model parameters). The following formulas are used for the elimination:

Main formula to replace t by z:
�(t) = 1 + z or s(t/2)2 = s(T/2)2(1 + z)�1.

s00 + s = 0, c = s0, c2
 + s2

 = 1.Recall:
s(T � t) = s(T )c(t)� c(T )s(t),Functional relations:

s(t) = 2 · s(t/2)c(t/2) = 2 · s(t/2)
�
1� s(t/2)2

�1/2
,

c(t) = 1� 2s(t/2)2 = 2c(t/2)2 � 1.

s(T/2)2 =
3

⇢(T )
,

1
2q

= 1� 3
⇢(T )

= c(T/2)2,Model parameters:

H2 =
⇢(T )

3
�  =

✓
c(T/2)
s(T/2)

◆2

=
⇢(T )
6q

, (see discussion above).

With these we work on the luminosity formula:

s(T � t) = s(T )(1� 2s(t/2)2)� c(T )2s(t/2)c(t/2)

= s(T )(1� 2
1 + z

s(T/2)2)� c(T )
2s(T/2)p

1 + z

✓
1� s(T/2)2

1 + z

◆1/2

,

t is eliminated, next organize the model parameters to obtain a simple expresion:

=
2s(T/2)

1 + z

⇣
c(T/2)(z + c(T ))� c(T )

�
z + c(T/2)2

�1/2
⌘

=
2s(T/2)

1 + z

⇣
c(T/2)z � (2c(T/2)2 � 1)

⇣�
z + c(T/2)2

�1/2 � c(T/2)
⌘⌘

=
2s(T/2)
c(T/2)

z

1 + z

✓
1
2q
� (

2
2q
� 1)

⇣�
1 + 2qz

�1/2 + 1
⌘�1

◆
=
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=
2s(T/2)
c(T/2)

z

1 + z

�
� 1 +

p
1 + 2qz

�
1
2q + 1

p
1 + 2qz + 1

=
2
H

z

1 + z

�
z + 1 +

p
1 + 2qz

�
(
p

1 + 2qz + 1)2
.

So, finally we have expressed s(T � t) in terms of H, q and z:

s(T � t) =
1
H

z

1 + z

✓
1 +

(1� q)z
1 + qz +

p
1 + 2qz

◆

For small  and z, we recognize Hubble’s law, distance · H = z. The formula is more
explicit (and also dependent on the other model parameter q) and in this sense superior
to the earlier Taylor argument. But in the present conformal description T � t is not the
proper time between the space slices of emission and reception, so one needs (at least for
larger T � t) one more integration using d⌧ = dt/�(t). – From an earlier discussion we
know that “distances” are not measured directly, but are, mostly, computed from observed
luminosity comparisons. We plug the expression for s(T � t) into the luminosity formula
and get a relation between two observable quantities (recall that the derivation is not for
frequency bands, but for each frequency):

Fully nonlinear red shift - luminosity relation

Lg = const · s(T � t)�2(1 + z)�4

= const · H2

z2
(1 + z)�2

✓
1 +

(1� q)z
1 + qz +

p
1 + 2qz

◆�2

.

const := Lg · distance2, from Hubble’s law for small z.

So we have derived a fully nonlinear red shift – luminosity relation for our 2-parameter
family of models. Here H2 can be determined from small values of z (just large enough so
that the individual motions of the galaxies cause no significant errors), therefore H2 is now
(after the 1987 supernova) known with reasonable accuracy. For q it is not so good, since
for small values of z the derived formula does not depend much on q and for large values
of z the observed luminosities have large errors.

Mass between z and z + dz

The space slices {t = const} of our models are orthogonal to the world lines of the dust
particles and we also know div (⇢U) = 0. This implies the following: if we take a ball in
such a space slice, consider the world lines through all its points and follow them to another
space slice, then we get again a ball and the mass that is contained in these two balls is the
same. If we observe galaxies whose light has some precise red shift z⇤ then this light was
emitted at some time t⇤ from a sphere in the space slice {t = t⇤}. The g-area A⇤ of this
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sphere is A⇤ = �(t⇤)�24⇡2s(T � t⇤)2. If we observe all galaxies with red shift between z⇤
and z⇤+dz then this light was emitted from a shell of a thickness d (to be computed below
from dz) around that sphere, i.e., it comes from a volume of size A⇤ ·d(dz). Therefore we see
in that red shift range radiating mass of size M⇤ = ⇢(t⇤)A⇤ · d(dz). We can also count the
number of galaxies in the red shift range [z⇤, z⇤ + dz]. Either we have already determined
the model parameters H, q then the computed total mass and the counted number gives us
the average mass of a galaxy at time t⇤. Or else, we have some opinion about the average
mass of a galaxy, then we can fit the model parameter q so that the computed total mass
M⇤(q) and the counted number of galaxies agrees with the assumed average mass. (Of
course we do not need to count in the whole sky, we can select some fixed spatial angle ⌦
instead of 4⇡2.) In either case, the computation of mass per red shift range is an important
model prediction. (We write dM for M⇤ and we omit all the stars.)

Since the velocity of light is 1, we have for the thickness of the spherical shell:

d = d⌧ =
dt

�(t)
, with 1 + z = �(t) therefore dz = �̇(t)dt and

d(dz) =
dz

�(t)�̇(t)
, (thickness of the shell).

With ⇢(t) = ⇢(T )�(t)3 this gives:

dM =
4⇡2s(T � t)2

�(t)2
· ⇢(T )�(t)3 · dz

�(t)�̇(t)
.

As in the red shift – luminosity relation we have to eliminate t for z and organize the
model parameters. �(t) = 1 + z is the basis of the elimination and s(T � t) was already
done. (Recall that for the non-realistic metric g = g� dt2 the time between emission and
observation is T � t. This is not true for the realistic metric g = ��2g, but note that we do
not need the correct time di↵erence, we only need the conformal factor.) Therefore only
d
dt�/� remains:

 
�̇(t)
�(t)

!2

=
✓
�s0(t/2)
s(t/2)

◆2

=
1

s(t/2)2
�  =

1 + z

s(T/2)2
� 

=
⇢(T )

3

✓
z + 1� 3

⇢(T )

◆
=
⇢(T )

3
z + H2

= H2(1 + 2qz), where
⇢(T )

3
= 2qH2 was used.

Now insert all the auxiliary computations into the expression for dM :

dM =
4⇡2

H2

✓
z

1 + z

◆2✓
1 +

(1� q)z
1 + qz +

p
1 + 2qz

◆2

· ⇢(T )
1 + z

· dz

H
p

1 + 2qz

After one more simplification - use ⇢(T ) = 6qH2 - we obtain the promised
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Mass per red shift relation

dM =
24⇡2

H

z2dz

(1 + z)3
qp

1 + 2qz

✓
1 +

(1� q)z
1 + qz +

p
1 + 2qz

◆2

.

Recall that H is known with good accuracy and observe that this relation varies much
more with q than the previous one so that one does not have to rely on large values of z
to see the q-dependence in the model prediction. I expect that, for smaller z, astronomers
have reasonable estimates for the average mass of a galaxy so that our result can be used
to determine q (as the second model parameter) from galaxy counts in the red shift range
[z, z + dz].

Problems with Gravitational Waves

The basic questions are: what do we expect a gravitational wave to be? and what obser-
vational e↵ects do we expect such a wave to have?

In the well understood electromagnetic case we have the electric and magnetic fields, rep-
resented by the Faraday 2-form F , we have a pair of first order di↵erential equations for F
(Maxwell’s) and any such field (wave or not) leads to a covariant acceleration of the world
lines � of charged particles, given by the Lorentz force: D

ds�
0 = (e/m) bF (�0).

In the gravitational case we need intuition building analogies. Consider first the solar
system. We compared the eigenvalues of the Hessian of the Newtonian potential with
the eigenvalues of the curvature along a planetary world line �, i.e. the eigenvalues of
R( . , �0)�0. Up to relativistic correction factors like (1 � 2m/r) they turned out to be the
same: �2m/r3,m/r3,m/r3. Therefore one has to view the Hessian and the curvature as
corresponding objects. This leads one to view the Newtonian gravitational field and the
Schwarzschild Christo↵el symbols as analogous objects and, one more anti-derivative up,
the Newtonian potential and the Schwarzschild metric are viewed as analogous.
The same conclusion is reached in the following weak field situation:
Consider a metric g = (1 � 2�(x, y, z))(dx2 + dy2 + dz2) � (1 + 2�(x, y, z))dt2. Here the
spatial part of the geodesic equation takes the form: (x00(s), y00(s), z00(s)) ⇡ �grad� · t0(s)2.
Now the assumption “weak field” means that t0(s)2 ⇡ 1. One can summarize this by say-
ing: The relativistic equation of motion, i.e. the geodesic equation, equals – in the special
coordinates in which the metric is written – the Newtonian equation of motion, so that
again the Christo↵el symbols are found to be the relativistic rendering of the Newtonian
forces, of grad�. (These weak field computations are a bit strange: The assumptions are
so restrictive that no relativistic e↵ects are dealt with. I do not remember seeing the stress
energy tensor discussed. Its leading spatial part is the Hessian of �, which looks more like
non-isotropic elastic material than having to do with gravity. The sole purpose seems to be
to embed a Newtonian situation into a relativistic setting so that in one special coordinate
system one has �00 = �grad� and proper time pretty equal to coordinate time.)
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These analogies led to the following widely accepted definition of the notion of “gravi-
tational wave”: Consider the Einstein equations as a second order PDE for the metric.
Linearize the Einstein equations along the flat Minkowski metric of Special Relativity and
consider this linearized equation as the gravitational wave equation. Notice that one ob-
tains uninteresting solutions as follows: Pull back the metric by a group of di↵eomorphisms
and linearize this family. On the one hand one obtains a solution of the linearized Einstein
equations, on the other hand, a pull back of the metric only changes the description of
the geometry, not the geometry itself. Such solutions are called coordinate waves and are
eliminated by a gauge procedure. Next we derive (for an arbitrary background metric g)
the Linearized Einstein Equations:

h(Y,Z) :=
d

d✏
g✏(Y,Z)) Linearization of the metric, g0 = g

D✏
Y Z = DY Z + �✏(Y,Z) Di↵erence tensor of covariant derivatives

�(Y,Z) :=
d

d✏
�✏(Y,Z) Linearization of the Christo↵el symbols

Relations between Dh and �:
(DXh)(Y,Z) = g(�(X,Y ), Z) + g(Y, �(X,Z))

g(�(Y,Z),X) =
1
2
�
� (DXh)(Y,Z) + (DY h)(Z,X) + (DZh)(X,Y )

�

g((DX�)(Y,Z),W ) =
1
2
�
� (D2

X,W h)(Y,Z) + (D2
X,Y h)(Z,W ) + (D2

X,Zh)(W,Y )
�

Linearized curvature tensor linR and linearized Ricci tensor linric:

linR(X,Y )Z :=
d

d✏
R✏(X,Y )Z = (DX�)(Y,Z)� (DY �)(X,Z)

linric(Y,Z) = trace (X 7! linR(X,Y )Z)
= trace (X 7! (DX�)(Y,Z)� (DY �)(X,Z))

=
X

i

�
g((Dei�)(Y,Z), ei)� g((DY �)(ei, Z), ei)

�
/g(ei, ei)

We are after the equation away from sources, analogous to the homogenous Maxwell equa-
tion d*F = 0. This means that the linearized stress energy tensor is zero and therefore
the linearized Einstein tensor, linG, is equal to the linearized Ricci tensor. To keep the
formula more readable we do not insert for D� its expression in terms of D2h, although we
want the result to be understood as a second order equation for h:

Linearized Einstein equation, insert D2h for D�

0 = trace (X 7! (DX�)(Y,Z)� (DY �)(X,Z))

In the literature this equation is, in the case of a flat background metric g, discussed as the
equation describing gravitational waves. A gravitational wave then “is” the symmetric
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2-tensor field h.

As an example of such a linearization we consider the family of Schwarzschild metrics

gm = (1� 2m/r)�1dr2 + r2d�2 � (1� 2m/r)dt2

Clearly g0 is the flat metric of Special Relativity. We compute the linearization:

g0 + m · d

dm
gm

��
m=0

= (1 + 2m/r)dr2 + r2d�2 � (1� 2m/r)dt2.

Noting that �m/r is the Newtonian potential we take from this result the suggestion
for the weak field Ansatz above. The Schwarzschild linearization is a su�ciently good
approximation to compute the deflection of light near the sun, but the linearization does not
give the correct value of the perihelion advance since the “relativistic correction factors” (1�
const ·m/r) do not come out right. If one could find a similar solution on the Schwarzschild
geometry itsself such that the singularity has a world line like a planet, then one would be
a step closer to a relativistic description of a 2-body problem.

Maybe it is useful to have seen coordinate waves. Let X be a vector field and  ✏ be
its flow, so that d

d✏ ✏(p) = X(p) and D
d✏(TU ✏) = DUX. Linearize the family of pull back

metrics g✏(V,W ) := g(T ✏V, T ✏W ) so that

h(V,W ) :=
d

d✏
g✏(V,W ) = g(DV X,W ) + g(V,DW X)

(DUh)(V,W ) = g(D2
U,V X,W ) + g(V,D2

U,W X)
= g(�(U, V ),W ) + g(V,D�(U,W )).

(D2
U,V X + R(X,U)V ) � (D2

V,UX + R(X,V )U) = 0By the symmetry
g(R(X,U)V,W ) + g(V,R(X,U)W ) = 0and
�(U, V ) = D2

U,V X + R(X,U)V.we get
This implies for the linearized curvature of h:

linR(U, V )W = (DU�)(V,W )� (DV �)(U,W )
= �DR(U,V )W X + (DXR)(U, V )W
+ R(DUX,V )W + R(U,DV X)W + R(U, V )DW X.

In the textbook situation of a flat background metric g the coordinate waves cannot have
curvature either. In the general case I do not think that one can easily recognize whether
h is a coordinate wave since along two di↵erent timelike geodesics the curvature of g will
in general be di↵erent and therefore linR =/ 0.

Next we discuss what observational e↵ects a gravitational wave might have. One may
compute predictions in two di↵erent geometries, but there is no way in which an experiment
could be made that measures a di↵erence of what happens in one geometry (one universe)
and in a second geometry. As long as one has only one observer on a single world line, this
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world line is a geodesic; as long as one does not consider another (nearby or not) world line
there is no observable di↵erence between di↵erent geometries.
As soon as we observe two nearby world lines we can observe the relative acceleration,
the second covariant derivative of the separation vector. It satisfies the Jacobi equation
D
ds( D

ds J) + R(J, �0)�0 = 0. All gravitational wave detectors whose design descriptions I
have understood are capable of measuring such relative accelerations. What can one hope
to measure? The curvature of the Friedmann universes discussed above is too small to
be measured via the acceleration of separation vectors any time soon. But the Friedmann
universes are highly simplified models, in the real world supernova explosions do occur,
heavy stars, maybe even heavier black holes, rotate around each other. This will be reflected
in the curvature tensor, also along our own world line. The expectation therefore is that
the relevant curvature in the above Jacobi equation is not the exceedingly small Friedmann
curvature, but are much larger time dependent curvature fluctuations. As soon as the
instruments become sensitive enough, such fluctuations will become measurable. From
that moment on will the discussion, whether such fluctuations are described by the above
or any other wave equation, be influenced by observations - certainly Maxwell’s equations
were only formulated after very careful and surprising experiments.
Summary:

Electromagnetic waves (covariantly) accelerate charged particles.
Gravitational waves (covariantly) accelerate separation vectors of particle pairs.
On rest spaces �0? of observers � a gravitational wave acts as a symmetric 2-tensor
x 7! R(x, �0)�0. Its trace is ric(�0, �0) (the trace of the linearized curvature is 0).

Finally I discuss the problems that I have with the linearized Einstein equations.

1.) Gregor Weingart proved that those equations, when considered on a non-flat back-
ground, do not have enough solutions. But for a wave equation one should be able to pose
initial value problems. For some PDEs, for example the equation for Killing vector fields,
DX + DXtranspose = 0, it is well known that a complicated curvature tensor restricts or
even prevents solutions. The linearized Einstein equation is not among the well known
cases and I cannot sketch Gregor’s proof either. But the following suggests that one should
want to see a proof before one believes that the linearized Einstein equation on a non-flat
background behaves just like a wave equation. It is convenient, to represent h by a sym-
metric endomorphism field H as h(Y,Z) = g(H · Y,Z). First we have the usual relation of
the second derivative of a tensor field with the curvature:

(D2
U,V h�D2

V,Uh)(Y,Z) = �h(R(U, V )Y,Z)� h(Y,R(U, V )Z) = g(
⇥
R(U, V ),H

⇤
Y,Z).

On the other hand we have the relation with the linearized curvature:

(D2
U,V h�D2

V,Uh)(Y,Z)
= g((DU�)(V, Y ), Z) + g(Y, (DU�)(V,Z))� g((DV �)(U, Y ), Z)� g(Y, (DV �)(U,Z))
= g(linR(U, V )Y,Z) + g(Y, linR(U, V )Z).⇥

R(U, V ),H
⇤

= linR(U, V ) + linR(U, V )transpose.Hence
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This result says that for su�ciently general curvature R(U, V ) the trace free part of H
is algebraically determined by the linearized curvature linR of H. Now the linearized
curvature is restricted by the linearized Einstein equation, trace (x 7! linR(x, V )W ) = 0.
Therefore also the values of H are restricted. This does not happen for a flat background
metric g and is therefore not part of the gravitational wave discussion, but it is clearly an
unwanted feature of a “wave” equation.

2.) The above discussion about observations explained that fluctuations such as the in-
tuitively expected waves should make themselves felt as relative acceleration between two
world lines. From a di↵erential geometric point of view it is very strange that an agreement
was reached saying that the forces caused by gravitational waves should be described by
the Christo↵el symbols. These Christo↵el symbols by themselves do not have an invariant
meaning, and for the same reason, the second coordinate derivatives of the world lines
have no invariant meaning, in particular they are not accelerations of world lines. Recall
that the forces of electromagnetism, the forces of this experimentally tested theory, cause
a covariant acceleration of the world lines of the charges.

3.) It is easy to misinterpret this discussion. I am definitely not saying: “How can they try
to measure things that do not exist?” For example the computation of perihelion advance
in the Schwarzschild geometry predicts an acceleration of separation vectors (caused by
curvature) that turned out to be measurable. Similarly, with su�ciently sensitive apparatus
we will be able to measure relative accelerations that are not caused by anything in the
solar system, simply because the curvature tensor along the world lines of observers is
not determined by the solar system. However, this does not imply that we can separate,
say, supernova caused fluctuations in such a way from a simpler background geometry g
that we can describe these fluctuations as solutions of some linear PDE, either as solutions
of the linearized Einstein equations or of other suggested equations, on the background
geometry g.
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