
Redshift: Observation and Geometry
H. Karcher (Bonn)

Abstract. The observation of redshift is one of the most dominant experimental facts
in astronomy. In this lecture I want to explain the differential geometric nature of redshift.
Jacobi fields are a principal tool.

Redshift Observation. In this section I use historical language, in particular the
word “distance” is used without relativistic conotation. A light beam from the sun can be
spread with a prism into a rainbow band of coloured light. A more powerful instru-
ment shows a very large number of dark lines in such a spectrum of the sun; these
Fraunhofer lines represent frequencies that are missing (or are at least weakened) in a
continuous band of frequencies. In a laboratory one can obtain a spectrum with few
dark lines if one sends light with a continuous spectrum (e.g. emitted by a very hot ob-
ject) through vapour of one chemical element and then spreads the light with a prism:
The vapour absorbs (and therefore weakens) frequencies that are specific to the element
from which the vapour is made. A vapour which consists of many elements can still be
analyzed via its spectrum: There are enough characteristic frequencies in the absorp-
tion spectrum of each single element that one can identify elements in the vapour by
matching their families of characteristic frequencies to a subset of absorption lines of the
vapour. The Fraunhofer lines therefore tell us what elements are in the outer atmosphere
of the sun. Finer details of the spectrum (such as width and strength of the absorp-
tion lines) show the temperature of the sun’s atmosphere and also the relative propor-
tions of the elements in the atmosphere. We can also obtain the spectra of other stars
and one should imagine that their spectra are so complicated that it is fair to assume:

Two stars with the same spectrum are physically very similar.
This is the crucial hypothesis for distance comparisons: If two stars with the same spec-
trum are observed and one is a quarter as bright as the other, then the brighter one is
half as far away. The nearest fixed stars for which we also have trigonometric distance
measurements support this fundamental hypothesis. – For cosmological observations it is
more important to identify “physically very similar galaxies” or “physically very similar
clusters of galaxies”, but this is more difficult to define than for stars.

We have the following fundamental observational fact: In all the very many cases in
which a spectrum was obtained from some astronomical object one found, without exception,
that all the frequency ratios of the Fraunhofer lines are as expected but the absolute
frequency values are shifted. For nearer objects both higher frequencies (blueshift) and
lower frequencies (redshift) are observed, but for distant objects, remarkably, only redshift
is observed. The simplest explanation interprets this frequency shift as a “Doppler effect”:
if a light source and an observer move towards each other, then the observed frequencies are
higher than the emitted ones, while, if they move away from each other, then the observed
frequencies are lower than the emitted ones (see below for a quantitative statement).

Natural Clocks. Fundamental discussions of relativity theory are concerned with
the comparison of time measurements of different observers. For such discussions one has
to give a meaning to the phrase: “Different observers use the same type of clock.” Suppose
we agree that the frequency of a specified transition of a specified element defines the units
of time. Then we have a very pleasant surprise: The above fundamental fact about the
joint frequency shift of all the Fraunhofer lines from the same astronomical object means
that all the atomic clocks there agree among each other. Transitions of quantummechanical
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systems are also at the heart of radioactive decay: We may, therefore, also take as units
of time the half life time of a specified radioactive material. Such clocks then convey very
strongly the impression that time passes whether we measure it or not, and the amount of
material left is always a record of how much time passed. We cannot as directly as with
the Fraunhofer lines observe that all such half life time clocks (on the same astronomical
object) agree, but since our models of stellar evolution depend heavily on half life times of
various nuclei we do have indirect confirmation. For the discussion of time in relativity it
is essential to realize that time measurements are not artificial conventions: Radioactive
elements naturally decay, thus keeping track of the passing of time; moreover this is in
agreement also with time units specified by transition frequencies. This natural passing
of time is part of our world, everywhere. The time measured by natural clocks is called
proper time.

Doppler redshift and Minkowski metric. Mathematicians are probably inclined
to begin with IR4 together with Minkowski’s bilinear form as “the geometry” of special
relativity. The discussion of redshift allows one to deduce this geometry from fewer as-
sumptions. Assume we have at first one distinguished observer A (representing us) and
another observer B moving with constant velocity v away from A. A uses IR3 × IR to
plot his observations, and the goal is to find the relevant geometry for IR3 × IR. (Then
all observers who move without acceleration will become equivalent.) Observer A calls
{0}× IR his own world line and {(t · v, t) ∈ IR3× IR, v ∈ IR3 constant} the worldline of B.
A has chosen a natural clock so that {0} × IR has a unit of time. The problem is: What
is the unit of time on the worldline of B? We will now show that the units of time on all
the other world lines form a level surface of an indefinite quadratic form, the Minkowski
metric. We look only at the plane spanned by the two world lines of A and B. A sends
two light signals one unit of time apart to follow B. They arrive with the unknown time
difference T · 1 at B. Knowing T would fix the time units on the world line of B. B
returns each of the two light signals immediately. Since A moves away from B with the
same speed as vice versa the relativity principle says that the time difference between the
returned light signals, when they arrive at A, is observed as changed by the same factor
T again, i.e. they arrive with time difference T · T at A. Now A can compute T 2 as a
function of v as follows (see figure):
Observer A uses space units so that the velocity of light (known to be finite) is 1. The
first light signal is emitted and returned while A and B meet; the figure shows only the
light signal which is emitted one unit of time later.
The second light signal, as described by the outgoing light ray L1 : s→ (s, 1 + s), reaches
the worldline of B: t→ (t · v, t) at parameter value t such that s = t · v and 1 + s = t, i.e.
at t = 1/(1− v), s = t− 1 = v/(1− v).
(Note that so far t is an artificial parameter, proportional to proper time, on the world
line of B, it has not yet a specific connection with the physical units of time of the natural
clocks of A or B.)
The returning light ray L2 : s →

(
v

1−v ,
1

1−v

)
+ (−s,+s) reaches the world line of A at

s = v/(1− v), i.e. at the point
(

0, 1+v
1−v

)
. Since this world line has already a time unit we

find for the arrival time at A of the second signal

T 2 = (1 + v)/(1− v).
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Redshift in Special Relativity: T =
(
(1 + v)/(1− v)

)1/2.

The time unit point on the worldline of B is therefore the point

1
T
·
(

v

1− v ,
1

1− v

)
=
(

v√
1− v2

,
1√

1− v2

)
.

In the coordinates of A these unit points lie on the quadratic surface t2 − |x|2 = 1. So
indeed, we arrived at the Minkowski Metric, and we used only the relativity principle and
also that the world lines of light rays are independent of the speed (or the world line) of
the emitter. I repeat, that this Minkowski geometry is physically highly relevant: Let us
choose as units of time the half life time of radium and let us consider the straight world
lines of several chunks of radium flying apart with various constant speeds from (0, 0).
Each of these these worldlines meets the unit time surface t2 − |x|2 = 1 of the Minkowski
geometry at a physically relevant point: exactly one half of each of the radium chunks has
vanished by decay.

If a world line is not a straight line, then, using the Minkowski metric, one may still
parametrize the curve such that each tangent vector is a unit timelike vector. The model
interpretation is then extended as follows: The geometrically distinguished parameter on
the world line gives the time of a natural clock on this world line. This extended interpre-
tation is in excellent agreement with accelerator experiments. Note that this eliminates
vagueness from the “Twin discussions”: The geometry of the world line determines how
much radium decays; if two world lines start from a common point and meet again, but
the distinguished parameter on each gives them a different age, then this different age is
indeed the intended interpretation, namely, smaller age means less radium has decayed. If
one suspects a contradiction to the principle of relativity, then one has not accepted the
geometric nature of natural (or proper) time on a straight or curved world line as part of
the model interpretation in special relativity.

Redshift in Lorentz Manifolds. Let M be a 4-dimensional manifold and g a
Lorentz metric on M . We need some preliminary facts about light cones which we derive
before we come back to the discussion of redshift. The (forward) light cone at p ∈ M
is made up of the (forward) null geodesics starting at p. At conjugate points these light
cones may not be hypersurfaces, but I do not go into such details. Any curve ε→ c(ε) on
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a light cone defines a variation (s, ε) → c(s, ε) of null geodesics s → c(s, ε) connecting p
and c(ε). Hence

∇
∂s

∂

∂s
c(s, ε) = 0, g

(
∂

∂s
c(s, ε),

∂

∂s
c(s, ε)

)
= 0, c(0, ε) = p,

d

ds
g

(
∂

∂ε
c(s, ε),

∂

∂s
c

)
= g

(∇
∂s

∂

∂ε
c(s, ε),

∂

∂s
c(s, ε)

)
= 0,

∂

∂ε
c(0, ε) = 0.

This proves: Since each tangent vector X to a light cone at the point c(s) of a generating
null geodesic c can be represented as X = ∂

∂εc(s, ε) we have

g

(
X,

∂

∂s
c

)
= 0.

Except at conjugate points, this equation defines the tangent hyperplane of the null cone at
c(s) (at s = 0 in the direction ∂

∂sc(0) ). If we extend X to a parallel vectorfield along c(s),
then g(X(s), ∂∂sc(s)) = 0 along c. This says that the tangent hyperplanes to the geodesic
null cone along the null ray c are Levi-Civita parallel. Finally, if c(s, ε) is a variation of null
geodesics not necessarily on the same light cone (i.e. without the assumption c(0, ε) = p
in the above computation), then the Jacobi field ∂

∂εc(s, ε)|ε=0 can be split as u(s) + T (s),
where u(s) is parallel along the null ray c(s, 0) and T (s) is tangent to the light cone along
c(s, 0). (In general u(s) and T (s) are not Jacobi fields and not even unique – they may be
altered by a parallel vector field tangent to the light cone along c.)

Now consider a world line a(t), parametrized by proper time, i.e. g(a′, a′) = −1; we
call a() the world line of a light source. Consider also the family of light cones from a(t).
Light signals from this source are represented by null rays on these light cones. In addition
consider another world line b(τ), g(b′, b′) = −1, called the world line of an observer. In
general the observer world line will meet the light cones of the source transversally and
therefore we have a family of null rays joining the two world lines. Infinitesimally we have
a Jacobi field J along a joining null ray; it is transversal to the light cone: J(0) = a′(t0),
J(1) = λ · b′(τ1). The interpretation of this is: Light signals which leave the source at unit
time intervals of the clock of a( ) arrive at λ times unit time intervals of the clock of b( ). The
convention in physics is to take the ratio of the emitted frequency ωemitted (measured by
a) divided by the observed frequency ωobserved (measured by b) as the observed frequency
shift. This ratio is λ in our Jacobi field description.

Finally we apply the above preliminary facts. Consider a light signal which leaves the
source (which has time unit vector a′) with frequency ωemitted, travels along the affinely
parametrized null ray c(s) and arrives at the observer (time unit vector b′) with frequency
ωobserved. Then, since the scalar product g(J(s), c′(s)) is constant along the joining null
ray, i.e. g(a′, c′) = g(λ · b′, c′), we have derived the
Observed Frequency Shift:

λ =
g(a′, c′)
g(b′, c′)

=
ωemitted
ωobserved

for observers a′, b′ (i.e. g(a′, a′) = −1 = g(b′, b′) ) which are joined by a null ray c with
affine parametrization, i.e ∇∂sc

′ = 0.
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This formula generalizes what we know from special relativity (see Redshift and Minkowski
Metric). The special situation was: a′ = (0, 1), b′ =

(
v/
√

1− v2, 1/
√

1− v2
)
, c′ = (1, 1),

and the quotient of scalar products gives the special relativistic Doppler redshift

g(a′, c′)
g(b′, c′)

=

√
1 + v

1− v

i.e., the redshift which we have already discussed.
Gravitational redshift in the Schwarzschild geometry. Arguably the physi-

cally most important Lorentz manifold was found by Schwarzschild [Sc]. On the manifold
(2m,∞)× S2 × IR he constructed the Ricci flat Lorentz metric:

dr2

1− 2m/r
+ r2 · dσ2 − (1− 2m/r) · dt2.

This geometry models the empty space outside a static and rotationally symmetric star.
We can apply it to describe the gravitational field of the sun and find many correctly
predicted measurable deviations from the Newtonian theory; the most famous effects are
the correct bending of light and the perihelion advance of Mercury. (The treatment in [Be]
does not use almost Newtonian coordinates, it relies on Jacobi fields.) We can also apply
this geometry to model the vicinity of the earth, a neccessity if one wants to operate global
arrays of radio telescopes. – In the region where r/(2m) >> 1 one may compare the motion
of test particles in this geometry with Kepler orbits around a star. These predictions are,
for increasing r, asymptotically the same. Therefore we can use this comparison to interpret
m as the mass of the star and (always for r/(2m) >> 1 !) r as the Newtonian distance
from the star. As r decreases the deviations from the Newtonian predictions increase. On
the submanifold r = 3m we have photons, or null geodesics, circling the sun, an extreme
case of bending of light. The Schwarzschild geometry has time translations as isometries;
let X be the corresponding Killing field. The timelike unit vector field u = X/

√
1− 2m/r

we will call the Killing observer. Schwarzschild’s coordinates are adapted to this Killing
observer and become singular at r = 2m. I like the treatment in [St] which explains how
adaption to a different family of observers leads to coordinates which are valid beyond the
so called horizon at r = 2m. – On the earth, for example, u represents observers who
stand on the surface of the planet, or in some high tower. Consider a light signal that
goes from the bottom to the top of this tower. What is the observed redshift? Since X is
a Killing field, we have g(X(c(s)), c′(s)) = const along the joining null ray and therefore
find for the observed red shift

λ =
g
(
X/
√

1− 2m/remitter , c′
)

g
(
X/
√

1− 2m/robserver , c′
) =

√
1− 2m/robserver
1− 2m/remitter

> 1.

This redshift measurement in a 40 meter tower became possible by using the Mösbauer
effect and in fact was one of its first spectacular applications. The redshift between Killing
observers on the photon sphere r = 3m and at infinity is only

√
3; this redshift goes to

infinity as r approaches 2m, an explanation for calling the Schwarzschild geometry a black
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hole. Note that the above redshift computation also means that we cannot synchronize
natural clocks on the earth: Radioactive material decays faster at the top of a tower than
at the bottom. I repeat that this is a “geometry of world line phenomenon”: If one starts
with two equal chunks of radium, transports one to the top of some tower, leaves it there for
a while and then gets it back for comparison with the one which was stored at the bottom,
then the chunk from the top contains less radium in spite of the fact that the decay of
each defines a natural clock, i.e measures the physically relevant proper time. Or, put in
other words: Radio waves from the stars to the earth have a higher observed frequency at
the bottom of the tower than at the top. This phenomenon is called gravitational redshift.
Obviously it cannot be explained by relative motion. (If we interprete, following Planck,
h · ν as the kinetic energy of a photon and assume that this energy increases as usual as
it looses potential energy while falling towards the earth, then we would predict the same
redshift as above, but we would not predict that radium decays faster higher up in this
potential field.)

Cosmological redshift in Friedmann universes. The standard cosmological mo-
dels are based on the product manifold M+

κ × IR+ with conformally flat (non product)
metrics (where M+

κ denotes a space of constant curvature κ). All the physics is in the con-
formal factor, the simpler product geometry has no physical interpretation; nevertheless,
such a representation is computationally helpful since redshift computations are trivial for
the product geometry. As a preliminary we therefore discuss the change of redshift under
a conformal change of the metric.

Let g̃(X,Y ) = µ2 · g(X,Y ). We have for the Christoffel symbols

Γ(X,Y ) := D̃XY −DXY =
dY µ

µ
·X +

dXµ

µ
· Y − g(X,Y ) grad µ.

Then we get
D

ds
c′ = 0, g(c′, c′) = 0 =⇒ D̃

ds
c′ = Γ(c′, c′) = 2

dc′µ

µ
· c′.

So: g-null geodesics remain g̃-null geodesics, but not with an affine parametrization. We
reparametrize

c̃(s) =c(ψ(s)) , c̃′(s) = c′(ψ(s)) · ψ′(s)
D̃

ds
c̃′(s) =0⇔ ψ′′ + ψ′2 · 2dc′µ

µ
= 0⇐ ψ′(s) =

1
µ2

(c(ψ(s))).

Although the reparametrization is given via the solution of a differential equation we
still get an explicit formula for the change of the redshift since we only need ψ′ as a
function of µ. If u, v are the g-observers, then ũ = u/µ, ṽ = v/µ are the g̃-observers and
c̃′ = c′ · ψ′ = c′/µ2. Thus, if we denote by µemitter the function µ evaluated at the source,
then

λ̃ =
ω̃emitter
ω̃observer

=
g̃(ũ, c̃′)
g̃(ṽ, c̃′)

=
g(u, c′)/µemitter
g(v, c′)/µobserver

=
ωemitter/µemitter
ωobserver/µobserver

=
µobserver
µemitter

· λ.
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For emphasis we repeat: λ is the observed redshift between the observers u, v for the
Lorentz metric g, and λ̃ is the observed redshift for the conformally changed situation, i.e.
g̃ = µ2 · g, ũ = u/µ, ṽ = v/µ. Therefore the above computation proves the
Conformal Redshift Transformation:

λ̃ =
µobserver
µemitter

· λ.

We return to the simplest cosmological models, which are given by Lorentz metrics
on M4 = M3

κ × IR+. The physicists prefer since Friedman [Fr] to write the desired metric
in the form

g = a2(τ) · gκ − dτ2,

while I will get slightly more explicit final formulas by working with the conformal change
of the product metric [Ka]:

g̃ = µ2(t) · (gκ − dt2)
(

with dt =
dτ

a(τ)

)
.

The divergence free Einstein tensor

G = Ric− 1
2

(trace Ric) · id

has the tangent spaces to the factors M3
κ , IR+ as eigenspaces. The eigenvalues for the

simple metric gκ(., .)−dt2 are −κ,−κ,−κ,−3κ. The eigenvalues of the Einstein tensor for
the physically relevant metric g̃ are

λM = µ−2 · (κ− 2
µ′′

µ
+
µ′2

µ2
), λIR = µ−2 · (−3κ− 3

µ′2

µ2
).

Now we use the additional physical assumption that the cosmological “matter” is a dust
(with the galaxies the dust grains). The stress energy tensor T of such a simple matter is
diagonal in the rest frame of the dust with eigenvalues 0, 0, 0, ρ . The Einstein equation
G = 8πT therefore reduce to the ODE λM = 0 for the conformal factor µ. (Vice versa, if a
Lorentz manifold has an Einstein tensor with eigenvalues 0, 0, 0, ρ, then it is a model of a
dust world.) We get an explicit solution in terms of the function sκ defined by s′′κ+κsκ = 0,
sκ(0) = 0, s′κ(0) = 1 (note s′2κ + κ · s2

κ = 1), which, in the case of vanishing cosmological
constant, is:

µ(t) =
s2
κ( t2 )
s2
κ( td2 )

, (td ’time today’ and curvature κ are the model parameters).

The world lines of the dust grains are the geodesics t → (m, t) ∈ Mκ × IR+. The time
like unit vector field (0, 1/µ(t)) ∈ T(m,t)(Mκ × IR+) represents the observers which are at
rest relative to the dust particles. This model is so simple that the orthogonal distribution
of the distinguished family of (dust) observers is integrable; therefore one cannot resist to
call the integral hypersurfaces Mκ × {const} “space” at time t = const .
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At t = 0 this metric becomes singular (“big bang”). If we interpret “today” as t = td,
then κ is the curvature of the space like hypersurface t = td. The main physical property
of the dust, its mass density ρ, is, for this family of models, given by

ρ(t) = 3 · s
4
κ( td2 )
s6
κ( t2 )

= µ−3(t) · ρ(td) , ρ(td) = mass density today.

The simple metric gκ − dt2 has time translation as an isometry, the corresponding Killing
field (0, 1) has constant length and therefore there is no frequency shift between these
Killing observers (λ = 1). In the physically relevant metric µ2(t) · (gκ − dt2) we assume
that light observed today (t = td) is emitted at t = t. By our formula for the conformal
redshift transformation we obtain:

λ̃ =
µ(td)
µ(t)

=
(
ρ(t)
ρ(td)

) 1
3

.

This says that the observed redshift between dust particle observers depends on the ratio
of the mass densities at emission and observation. Note that the redshift goes to infinity
as t → 0. If we choose to interpret ρ(t)−1/3 as a measure of the size of “space” at time
t, then the observed redshift is the quotient of the sizes of “space” at observation and at
emission, i.e. it measures this kind of “expansion” of “space”.

Note that the mass density at a point of a Lorentz manifold is on the one hand a
measurable physical quantity and on the other hand computable from the Ricci tensor of
the modelling Lorentz manifold, while, in contrast to this, the definition of the “spaces” as
t = const for distinguished observers – more precisely as the integral hypersurfaces of the
rest spaces of some distinguished vectorfield of observers – depends on the simplicity of the
model. The orthogonal complements of families of observers are in general not integrable
distributions.
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