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Abstract: We use ODEs and symmetry arguments to con-
struct closed constant curvature space curves, first on cylin-
ders, next on tori, at last with the Frenet-Serret equations.

While I was still teaching I only knew closed constant curvature space curves
which were pieced together from circle segments and helix segments. But
smooth examples are easily accessible.

1. Examples on Cylinders
First roll the plane isometrically onto a cylinder of radius R:

F :
µ

x

y

∂
7→




x

R cos(y/R)
R sin(y/R)



 .

In the plane we describe a curve by its rotation angle against the x-axis,
α(s) =

R s
0 ∑g(σ)dσ, where ∑g is the curvature of the plane curve, or its geodesic

curvature when rolled onto the cylinder:

c0(s) :=
µ

cos(α(s))
sin(α(s))

∂
, c(s) :=

Z s

0
c0(σ)dσ.

The cylinder has normal curvature 0 in the x-direction and 1/R in the y-
direction. The space curvature ∑ of F ◦ c is therefore given by

∑2 = sin4(α(s))/R2 + ∑2
g(s) = sin4(α(s))/R2 + (α0(s))2.

This is a first order ODE for α(s), if we want ∑ = const.

This first order ODE is Lipschitz, if we look for curves with ∑ > 1/R:

α0(s) = +
q

∑2 − sin4(α(s))/R2 > 0.

The solution curves are, in the plane, convex curves. They reach α = π/2 in
finite time. They are closed because the normals at α = 0 and at α = π/2
are lines of reflectional symmetry (of the plane curve).
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For ∑ ≤ 1/R the ODE has some resemblence to the ODE f 0 =
p

1− f2

of the sine function: it is not a Lipschitz ODE, with non-uniqueness along
the constant solution α(s) = arcsin(

√
∑ · R). As with the sine-ODE we can

differentiate the square of the ODE, cancel 2α0(s) and obtain a second order
Lipschitz ODE:

α00(s) = −2 sin3(α(s)) cos(α(s))/R2.

If we choose ∑ < 1/R, then the second order ODE forces α0(s) to change sign
when α(s) reaches αmax given by sin2(αmax) = ∑ · R < 1. The solution curves
oscillate around a parallel to the x-axis and look a bit like sin-curves.
If we choose ∑ = 1/R, then αmax = π/2. We see that the circles α(s) := π/2
are solutions of the second order ODE. By uniqueness, no solution which
starts with α(0) < π/2 can reach π/2 in finite time, it has to converge to π/2
asymptotically. The corresponding curve F ◦ c therefore spirals towards one
of the circle-latitudes of the cylinder!

Convex curve in the plane,
rolled onto a cylinder to a
constant curvature space curve.

Periodic curve on cylinder, a
constant curvature space curve.
Geodesic curvature changes
sign when crossing the drawn
line.

2. Examples on Tori

The idea is the same as on the cylinder and works for many surfaces of revo-
lution which also have a symmetry plane orthogonal to the rotation axis. A
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curve on the surface has constant space curvature ∑ if its geodesic curvature
∑g and its normal curvature ∑n satisfy ∑2 = ∑2

g + ∑2
n. Since the normal cur-

vature depends only on the tangent of the curve there is again the easy case
where we choose ∑2 > max∑2

n and compute ∑g(c0(s)) = +
p

∑2 − ∑n(c0)2 to
get a second order ODE for the curve:

c00(s) = ∑n(c0(s)) · N(c(s)) + ∑g(c0(s)) · (c0(s)×N(c(s)).

We start the integration on the equator, direction vertically up. Because the
geodesic curvature is bounded away from zero, the curve will turn until it
meets some meridian orthogonally. Reflection in the plane of this meridian
and reflection in the equator plane complete the initial quarter arc to a closed
curve. On the torus one can start at the inner or the outer equator.

Constant curvature space curve, symmetric to the equator
plane. The geodesic curvature is ∑g ≥ 0.

With more effort we can find constant curvature space curves which oscillate
around the equator. The geodesic curvature therefore needs to change sign,
when the curve crosses the equator. That means, we need to choose as the
space curvature the normal curvature of the torus in the direction c0 at the
point where it crosses the equator. Therefore the integration of the ODE
starts on the equator, the initial direction c0(0) is a free parameter, the space
curvature is computed as ∑ = abs(∑n(c0(0))).
Up from the equator the normal curvature decrease and therefore the geodesic
curvature increases. Again the angle of the curve against the meridians in-
creases until it meets some meridian orthogonally. Reflection in the meridian
plane continues the curve back to the equator and 180 degree rotation around
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the torus normal gives the next half-wave. In general these curves do not close.
One needs to adjust eiither c0(0) or the size of the torus until an even number
of the initial half waves fits just once around. The curve closes smoothly,
because the final tangent has the same angle with the equator as the initial
tangent.

Constant curvature space curve, oscillating around the outer
equator. The geodesic curvature changes sign where the curve
crosses the equator.

3. Examples via the Frenet Equations
A closed space curve of constant curvature ∑(s) = ∑ must have a periodic
torsion function, for example

τ(s) = c · sin(s) + d · sin(2s) + e · sin(3s).

The Frenet-Serret Equations:

e01 = ∑(s) · e2(s)
e02 = −∑(s) · e1(s)− τ(s) · e3(s)
e03 = τ(s) · e2(s)

c0(s) = e1(s)

then determine the space curve c uniquely from c(0), e1(0), e2(0), e3(0).
We employ symmetries to find closed curves.
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3.1 Reflection Symmetry in Normal Planes
A normal plane at c(s1) is a symmetry plane, iff the torsion function is

skew symmetric w.r.t s1 : τ(s1 − s) = −τ(s1 + s).
With our choice of τ the symmetry planes occur at s = n·π, n ∈ Z. Reflections
in two neighboring symmetry planes generate all other symmetry planes so
that the symmetry planes all intersect in one line. If the angle between two
neighboring symmetry planes is a rational multiple of π, then the curve will
be closed. In other words: in almost any 1-parameter family of curves there
will be closed ones. Many of them will have selfintersections. The embedded
ones look somewhat similar to those examples above which oscillate around
the torus equator.

Constant curvature space curves with τ(s) = c·sin(s). Angle between
neighboring normal symmetry planes: 90◦(left) and 36◦(right).
Anaglyph 3D-images can be viewed at:

virtualmathmuseum.org/SpaceCurves/constant curvature/constant curvature.html.

3.2 180◦-Rotation Symmetry around Principal Curvature Normals

We choose
τ(s) = b + c · sin(s) + e · sin(3s).

Then τ(s) is symmetric w.r.t. s1 = π/2 + n · π, n ∈ Z, that is:
τ(s1 − s) = τ(s1 + s). This implies that the curve c is symmetric w.r.t. 180◦

rotation around the principal curvature normal e2(s1). Clearly, if two such
neighboring symmetry normals intersect, then all of them intersect in the
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same point. And if in addition the angle between two neighbors is a rational
multiple of π, then the solution c of the Frenet-Serret equations is a closed
space curve of constant curvature. To find such curves, a 2-parameter problem
has to be solved.
Next an observation comes in which reduces the problem to applications of
the intermediate value theorem: The distance between neighboring symmetry
normals depends in a surprisingly regular way on the constant coefficient b
of the Fourier polynomial τ(s). This can be used - for any choice of the
other parameters c, e - to adjust b such that the symmetry normals all pass
through one point. Here ”surprisingly regular” means that this adjustment of
b causes no numerical difficulties. With this adjustment of b always assumed,
we consider the angle between neighboring symmetry lines as a function of
the other parameters c, e. Again, in non constant 1-parameter families of
solution curves there will be closed ones. Moreover, since one only rarely hits
a local extremum of the angle function, one can find solution curves with
nicely chosen angles such as π/2,π/3, 2π/3,π/4,π/5... etc.
Since these curves are not constructed on well known surfaces, it is not so
easy to see their shape in space from a printed image. We refer again to the
anaglyph 3D-images at:
virtualmathmuseum.org/SpaceCurves/constant curvature/constant curvature.html.

A 5-2-knot and a 11-2-knot of constant curvature, with τ(s) > 0 for the
second one. The principal normals at the outer most points are the symmetry
normals. They meet the curve again at the inner most points.
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Top and side view of a more complicated space curve of constant curvature.
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