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2 - 11 Torus Knot of
constant curvature.

See also:
About Spherical Curves

Definition via Differential Equations. Space Curves
that 3DXM can exhibit are mostly given in terms of
explicit formulas or explicit geometric constructions.
The differential geometric treatment of curves starts
from such examples and defines geometric properties,
i.e., properties which do not change when the curve
is transformed by an isometry (= distance preserving
map, also called a rigid motion) of Euclidean space
R3. The most important such properties are the cur-
vature function κ and the torsion function τ . Once
they have been defined one proves the Fundamental
Theorem of Space Curves, which states that for any
given continuous functions κ, τ there is a space curve
with these curvature and torsion functions, and, that
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this curve is uniquely determined up to a rigid motion.

To define curvature, observe that at each point of a
parametrized space curve c(t) there is a parametrized
circle γ(t) with

c(t0) = γ(t0), ċ(t0) = γ̇(t0), c̈(t0) = γ̈(t0).
This circle – which may degenerate to a straight line –
is called the osculating circle at t0, its radius is called
curvature radius at t0 and the inverse of the radius is
called the curvature at t0, κ(t0). The computation of
curvature is simpler if the curve is parametrized by
arc length, i.e. if the length of all tangent vectors is
one, |ċ(t)| = 1. One gets κ(t) = |c̈(t)|. Check this
for the circle c(t) := r · (cos(t/r), sin(t/r)). The most
common way to proceed is to assume that κ(t) > 0.
This allows one to define the Frenet basis along the
curve:

e1(t) := ċ(t),
e2(t) := c̈(t)/κ(t),
e3(t) := e1(t)× e2(t).

The Frenet basis defines three curves t 7→ ej(t) on the
unit sphere. To emphasize the fact that ej(t) are to
be considered as vectors, not as points, one calls the
length of their derivative, |ėj(t)|, angular velocity or
rotation speed and not just velocity. For example, the



formula c̈(t) = κ(t)e2(t) says that κ(t) is the rotation
speed of ċ(t). Next, we get from ė1(t) ∼ e2(t) that
the derivative of e3(t) is proportional to e2(t). This
proportionality factor, the rotation speed of e3(t), is
called the torsion function τ(t) of the curve c(t). In
formulas: τ(t) := 〈ė3(t), e2(t)〉.

Now one changes the point of view and considers the
two functions κ, τ as given. This turns the equations
that were originally definitions of κ and τ into differ-
ential equations, the famous

Frenet-Serret Equations:
ė1(t) = κ(t) · e2(t),
ė2(t) = −κ(t) · e1(t)− τ(t) · e3(t),
ė3(t) = τ(t) · e2(t),

or, with ~ω(t) := −τ(t) · e1(t) + κ(t) · e3(t),
ėj(t) = ~ω(t)× ej(t).

Finally ċ(t) = e1(t).
For given continuous functions κ, τ these differential
equations have — for given orthonormal initial values
— unique orthonormal solutions {e1(t), e2(t), e3(t)}.
The curve c(t) :=

∫ t
e1(s)ds is then parametrized by

arc length and has the given curvature functions κ, τ .



The simplest curves in the plane, straight lines and cir-
cles, have constant curvature. One may wonder what
constant curvature curves look like in R3. In 3DXM
we illustrate the use of the Frenet-Serret equations
by showing the following family of constant curvature
curves:

κ(t) := aa,

τ(t) := bb + cc · sin(t)+ dd · sin(2t)+ ee · sin(3t).
The function τ is, if bb = 0, skew symmetric at its
zeros at 0 and π. This implies that the solution curves
are symmetric with respect to the normal planes at
these points. From this it follows that we can get
closed nonplanar curves of constant curvature easily:
the only requirement is that the angle of the normal
planes at c(0) and c(π) has to be a rational multiple
of π. Every bb = 0 one-parameter family of examples
in 3DXM therefore contains many closed examples —
select in the Animation Menu the default morph.

In the less symmetric case bb =/ 0 (but dd = 0) the
function τ is even at the maxima and the minima,
at t = π/2, t = 3π/2, and this implies that 180◦

rotation around e2 at these points is also a symme-
try of solution curves. This can be used to find more



closed curves by solving 2-parameter problems as fol-
lows: For every value of aa, bb use cc to make the
distance between the normals 0. Now change aa or bb
slowly (continuing to use cc for keeping the distance
between the normals 0) and observe how the angle be-
tween the symmetry normals varies. If this angle hits
a value 2k/n · π then n copies of the computed piece
fit together to a smoothly closed curve.
If one has selected ’Constant Curvature’ in the Menu
’Space Curves’ then there is in the Action Menu an en-
try ’Other Closed Curves’. It opens a submenu where
one can select first bb = 0 examples which are also hit
by the default morph. Then there are bb =/ 0 embed-
ded examples, some of them knotted. Moreover, the
11-2-knot has nonvanishing torsion and strongly re-
sembles a torus knot. This is no coincidence since one
can find constant curvature curves on tori by solving a
second order ODE, and it is again a 2-parameter prob-
lem to close these up. – The example ’like 6 helices’
looks in another way as one would imagine constant
curvature curves: made up of left winding and right
winding pieces of helices.
Do not miss to select ’Show Osculating Circles & Evo-
lute’. The constant radius of the osculating circles



shows the constant curvature and the rotating motion
of the radius shows size and sign of the torsion.

In 3DXM one can choose in the Action Menu ’Par-
allel Frame’.This frame is designed to rotate as little
as possible along the curve, in R3. This property is
more obvious when one looks at the torus knots than
at the constant curvature curves. For further details
see curves of constant torsion. The main advantage of
these parallel frames is that they neither make it nec-
cessary to assume more than continuity of the second
derivative c̈, nor that κ > 0 everywhere, even straight
lines are not exceptional curves if one works with these
frames. Their differential equation is also simple:

Frenet-Serret Equations for Parallel Frames:
ė1(t) := a(t) · e2(t) + b(t) · e3(t),
ė2(t) := −a(t) · e1(t),
ė3(t) := −b(t) · e1(t).

With an antiderivative T (t) of the torsion τ(t) = T ′(t)
we can of course write the twodimensional curvature
vector (a(t), b(t)) in terms of κ(t), τ(t), namely:

(a(t), b(t)) := κ(t)
(
cos(T (t)), sin(T (t))

)
.


