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. . 1. INTRODUCTION
FiXme Fatal: Write

introduction

K 0(category of representations) ~ representation of something else
U

{class of irreducible objects} gives a canonical basis.
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2. BGG CATEGORY O

2.1. Flag variety and Borel-Weil Theorem. Let G be a simply-connected reductive
algebraic group over an algebraically closed field of char 0. Denote its Lie algebra by g. It is
known that there is a 1-1 correspondence between representations of G and representations
of g. Choose a Borel subgroup B and a Cartan subgroup 1" contained in B. The flag variety
B ~ G/B is the maximal projective homogenous space. The Weyl group is denoted by W.
The set A = Hom(7T,C*) is called the lattice of integral weights and the subset

A" ={XeA| ()N ") >0 for all simple coroots a"}
is the set of positive weights. There is a 1-1 correspondence (see [Spr, Section 8.5.7]).

A «— {G - equivariant line bundles on B}
A= 0O(N)

Example 2.1.1. For G = SLy we have B =P! and A = Z. In this case n € Z corresponds to
the twisting sheaf Opi(n).

The following theorem provides a geometric description of finite dimensional irreducible
representations. It follows from the classification in terms of highest weights that all finite
dimensional representations of g arise this way. This classification will be recalled later.

Theorem 2.1.2 (Borel-Weil). Let A € A. If A € A™ then T'(B,O()\)) is an irreducible
highest weight representation of G with highest weight \. If A ¢ A* then T'(B,O()\)) = 0.

Sketch of proof. Since G acts on B = G/B we get that V := T'(B,O()\)) is an algebraic
representation of G. The representation V' can be decomposed into irreducibles as

V=W,
where V), denotes the irreducible highest weight representation of G with highest weight
Ai. Recall that B = T'N, where N is the unipotent elements of B. This correspond to a
decomposition of the Lie algebras b = t®n. Since T acts semisimply the N-invariant part
of V splits into 1-dimensional representations with 7" acting by a character \;

N i
Vo~ @CKZ .
Recall that the action of NV on B has a unique open orbit By. This orbit is dense in B so
the restriction map is injective

I'(B,0(A)) = I'(Bo, O(N))
Since By is a free N-orbit there exists a non-zero N-section for O(\) on By. Hence,
dim VY < dimT'(By, O(\))Y = 1.
There is a unique T fixed point in By so T acts on T'(Bg, O(A))”N by the character A. Only
the highest weight space in each V), is N-invariant so dim V/\]:] = 1. Thus, dimV" =1
implies that V =V and dim V? = 0 implies that V = 0.

We will now determine which case we are in. Consider the up to scaling unique N-
invariant section in I'(Bp, O(\)). This is a rational section of O(\) on B. The invariance
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V™ is nonzero if and only if this section comes from a regular section in T'(B,O()\)). To
check that this is the case we need to calculate the divisor and see that it is positive. Write
B, := BuB/B c G/B = B. Since N c B each By, lies in an N-orbit. In fact By = By, where
wp is the longest element in W. Consider the Bruhat decomposition

B=1] Bu

weW
Recall that dim(B,,) = ¢(w). We look for w for which B,, has codimension 1.
dim(By) = dim(B) -1 < £(w) = £(wg) — 1
< l(w twg) =1
< w lwg = Sq simple reflection
Thus, the codimension 1 components B\ By are By, =: D,.

Claim 2.1.3. If o is a non-zero N-invariant section of O(A) then (o) = ¥ (a¥, \)D,

By the claim the divisor is effective if and only if A € A*. Hence, V™ # 0 if and only if
AeA”. O

2.2. Weyl character formula. Let € t* and let V' be a representation. We define the
weight space of V' to be

Vipl={veV |z(v) = p(x)v Yret}
The character of V is defined as
Xy = Zdim(V[,u])e“ € Z[A]
o

Ezxercise 2.2.1. Show that y, determines Tr(g,V) for g € G.

Let p denote half the sum of all positive roots. The characters of the irreducible repre-
sentations are given by the Weyl character formula.

Theorem 2.2.2 (Weyl character formula). For A\ e A*
Swew (=1 e O0)
" Zuar(-DAWe )

Note that the denominator can be rewritten as e” [T, pos. root(1 —€7%)

Xv,

Example 2.2.3. For g = sls the irreducible representation V;, corresponding to n € Z = A is
spanned by vectors 2™, " 1y, ...y" with corresponding weights n,n-2,...,-n. Thus, V,, ~
Clz,y]n, where the n indicates that we only consider degree n homogenous polynomials.
Hence, the character is

_.n n—-2 -n
Xy, =2 +2° “+...z

ontl Zf(n+1)
z—-2z1 7
where z := e.
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2.3. Verma modules, and their simple quotients. Let A € t* and let Cy denote the
1-dimensional representation of b = t® n on which ¢ € t acts by t(v) = A(t)v and n(v) =0
for n e n. The Verma module is defined as

Ay = Indg(c,\ = L{(g) ®4(b) C.
Note that for any g module M we have
Hom(Ay, M) ={ve M |n(v)=0,t(v) =X(t)v Ynen,tet}

Write g=b®n_=n@ten_. By the PBW theorem A) is freely generated as a module over
n_ by a vector vy.

Un)=Ay,  z-z(vy)
By PBW we also have
U(n_) ~ Sym(n_)
Consider the decomposition of Ay into weight spaces
Ax =D A1)
By definition t acts on Ay[u] by w-Id. Thus,
Ax[p] = Sym(n-) [ - A]

and its dimension is equal to the number of ways to write A — i as a sum of positive roots.
If A e A" we have a morphism Ay — V), given by x(vy) =0 Va € U, where v}, is a highest
weight vector in V.

Lemma 2.3.1. For any A€ A, Ay has a unique irreducible quotient L.

Proof. Irreducible quotients correspond to maximal proper submodules. Let N be such a
maximal proper submodule. We can write it as N = &, N[u] c Ay. That N ¢ Ay implies
that N[A] = 0 since otherwise we would have vy € N and then N = Ay. Let Ny, No be two
maximal proper submodules. Then Nj + Nj is also a submodule. Since N1[A] = No[A] =0
the sum is still a proper submodule. Thus we must have N7 = Na. O

We know that L) has finite dimensional weight components. We want to compute
dim L[] for all p.

2.4. Dual Verma modules. Since A) is infinite dimensional we only have
D Axu]" < (AN)”
o

as a g-submodule. We define the dual Verma module to be

V@A), AL = Indd (C.y)
o

Remark 2.4.1. The reason for using the negative Borel and changing the sign of the weight
will be clear once we have defined category O.
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The action of n on Ay is free, so the action of n on V) is cofree. Notice that V [\] ~ C.
Choose a morphism

p:Vy—>C with ¢ # 0 and ¢, [, = 0 for p = A.
The pairing
Un)xVrx=>C,  (z,v) » d(z(v))

is non-degenerate, so the graded dual V) is isomorphic to U(n)* as a n module.
Claim 2.4.2. V-0 = O(By). For A € A we have V) =T'(By, O()N)).

For A € A there is a unique (up to scaling) N-invariant nowhere-vanishing section for
O(N)|B,. Thus, O(N)|s, can be trivialized.
IO, = Ols,
In particular,
L'(Bo, O(A)) =~ I'(Bo, O).
The isomorphism is invariant with respect to the N-action but not with respect to the
g-action.
Since G acts on B we get a map g - Vect(B). Restricting to the open set By we get
g = Vect(By). Vect(By) acts on O(By) by the Lie derivative so we get a g-action on O(Bp).
For & € Vect(By) one can use f) to get a new Lie derivative on O(\)
fi'Lieg f = Lieg +ex(€),

where £,(€) is a linear function acting by multiplication. Thus, the isomorphism gives an
action of g on O(By) depending on .

ay g~ End(O(By)), x — Lie; +e)(x).
Notice that ey,,, = €) + €, so we can extend {€)} to any A € t* by linearity.
Claim 2.4.3. The module O(By) with g-action given by « is isomorphic to V.

Sketch of proof. Since N acts freely on By we have N ~ By. Let x¢ be the unique T fixed
point in By. We want to check that the pairing

ON)xUm) > C,  (f,8) = &)z

is non-degenerate. Here the action of U(n) on O(N) is the extension of the Lie derivative
from n to all of U(n) using the PBW filtration on U (n). Let my, be the maximal ideal of
functions vanishing at zg. The induced pairing

O(N)[myz, xU)=" > C,  (£,€) = &(f)lao;

is non-degenerate. Notice that a T-action is equivalent to a weight grading. The map is
clearly T-invariant so we get

UM)S" = (O(N)[miz,)" 5.
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Taking the limit we obtain
Un) > lim (O(Bo)/my,)*,  and U(g)r =~ O(Bo)Z,.

n—00

Hence, U(n) is the graded dual of O(By). The right hand side of the first isomorphism
is called distributions at xg and is denoted by Dist;,. The exponential map gives an
isomorphism N ~n. Since n is just a vector space it is isomorphic to some A™ with a torus
action with "positive" weights. For A™ we have

O(A™) > graded dual of Dist, .
This proves the claim. O

This also proves claim 2.4.2. In particular, for A € A" we have maps

ResB
Ay > Ly =T(B,0())) —" T(By,O(\)) = V.

2.5. Application of Verma-Harish Chandra isomorphisms. There exists some canon-
ical morphisms between Verma modules.

Claim 2.5.1. Let A € A and let «" be a simple coroot with (A, ") = n € Zsy. Then there
exists a morphism A (y)_o = A

Sketch of proof. Note that s4(A)—a=A—(n+1)a. Let v be the generator of Ay and write
fa (resp. eq) for the generator in n_ (resp. n) corresponding to . Set

I ._ pen+l

a U

Then v’ is a non-zero vector with weight A—(n+1)a = so(A) —a. Since [eg, fo] =0 for § # a
the fact that egv = 0 implies that egv’ = 0. That eqv’ = 0 follows from sl representation
theory. Thus, v = v’ induces the desired morphism. ]

Theorem 2.5.2 (Harish-Chandra isomorphism). There is an isomorphism

Z(U(g)) 2{PecO{") | P(sa(X) —a) =P(\) Y simple roots a}.
Sketch of proof. Since End(A)y) = C the center Z(U(g)) acts on each Ay by scalars. Since
z € Z(U(g)) commutes with the Cartan it has zero degree with respect to the natural
grading on U(g) by weights. This shows that z can be written as z = z + 2’, where z; € U(t)
and 2z’ € U(g)n. Hence, the scalar by which z acts on Ay depends polynomially on A,

let P,(\) denote the corresponding polynomial. The existence of a nonzero morphism
As (\)-a = Ay for (X +p, &) € Zs shows that for such A

(1) Pz(sa()\)_a):Pz()‘)

Since the set of such A is Zariski dense in t, (1) holds as an identity of polynomials. Recall
that p is the half sum of all the positive roots. Observe that s,(p) = p— a. Hence,

$a(A) —a =sa(A) +8a(p) —p=3sa(A+p)—p.
We define a new action of W called the dot action by
w-A:=w(A+p) - p.
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Equality (1) shows that the polynomial P, is invariant with respect to this action for all
z€ Z(U(g)). Thus, we have defined a map

ZU()) » o)V »gym®)V, 2o P,

Here the superscript (W,-) means taking invariants with respect to the dot action of W.
To prove that it is an isomorphism we look at the associate graded. By PBW we have

er(Z(U(g))) = er(U(9)®) = er(U(g))®
~ Sym(g)“ = Sym(t)"
The last isomorphism is the Chevalley isomorphism. O
2.6. BGG category O: definition. We want to understand the characters of the Ly by

relating them to the Ay. To do this we study a category containing these objects: the
Bernstein-Gelfand-Gelfand category O.

Definition 2.6.1 (BGG category O). The BGG category O is the full subcategory in
g-mod where the modules satisfy the following axioms

(1) t acts diagonalizably.

(2) n acts locally nilpotently.

(3) The module is finitely generated as a g-module.

Note that (1) is equivalent to saying that any module M € O splits up into a direct sum

of its weight spaces
M= M[v]

Axiom (2) means that for any x € M there exists an n such that

e1--en(x) =0, Ve, eU(n).
Observe that Ay, V) € O and that for every module in O every quotient is also in O. In
particular, Ly € O.

2.7. First properties of category O: finiteness results and (generalized) central
character decomposition.

Lemma 2.7.1. (1) Every M € O has a finite filtration such that each gr; M is a quotient
i a Verma module.
(2) Z(U(g)) acts on M € O locally finitely so there is a decomposition

0= @ Oxa
x:ZU(g))-C

where Oy := {M € O | ker(x)"M =0 for some n}.
Notice that a homomorphism £ : Z(U(g)) — C corresponds to a map
pt = Spec(C) — Spec(Z(U(g))

By the Harish-Chandra isomorphism Spec(Z(U(g)) = Spec(O(t*)W) = t*//W. Hence, we
can consider the direct sum to be over t*//W.
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Proof. (1) It follows from the definition that the set
{v| M[v]+0}
has a maximal element with respect to the partial ordering
A<pu < p—Ais asum of positive roots.

Let A be a maximal element. Then for all v € M[A] we have eqv € M[\+ a] = 0. Thus,
every element in M[A] defines a map Ay — M. Set

M, := coker(Ay - M)
Repeating the same procedure for M; and continuing we get a sequence
M:Mo—»Ml—»MQ_»”’,

where M; is the cokernel of a map Ay, - M;_1. We get a corresponding increasing chain
of submodules N; := ker(M — M;). Since M is Noetherian it must stabilize so M,, = 0 for
some n. Thus, we have a filtration

M=N,>N,_12---2N;20.

By construction the subquotient N;/N;_1 = Im(N; - M;_1) = Im(Ax, - M;_1) is a quotient
of a Verma module. This proves part (1)
Using part (1), in order to prove part (2) it suffices to check that

K'(0)= @ K°(Oy).
Aet* [ /W

Let A € t* and set A := X mod W € t*//W =~ Spec(Z(U(g))). Notice that A, € Oy for all
w € W. Hence,

E%(05) = ([Aua]).
Part (2) now follows from part (1). O

Remark 2.7.2. If X is regular, i.e. Staby.y(\) = {e}, then this is a basis and so
K°05) =AY, [Aya] <A

Lemma 2.7.3. 1) Every M € O has finite length. The simple module Ly appears once in
the Jordan-Hélder series JH(A)). If some L, appears twice then p < X and p=w -\ for
some weW.

2) K°(O) is freely generated by the classes of Verma modules.

Proof. 1) We know from the previous lemma that

(i) M has finite dimensional weight spaces.
(ii) Assuming without loss of generality that M € Oy then M has a filtration by subquo-
tients of A,.) and the number of times A, enters is < dim M [w - A].
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It remains to show that Ay has finite length. Consider the orbit u € W - . We have
ker = A, - L,.

Since ker € Oy it should have a filtration by subquotients of A, with v € W -y and v < p.
If 4w e W -\ is minimal with respect to < then no such v exists so the filtration is empty
meaning that ker = 0 and A, ~ L,,. Otherwise, by induction ker has a finite filtration by
subquotients. Hence, A, has the finite filtration by subquotients

A, o ker o (finite filtration for ker).
2) Part 1 shows that

[Ax] = [LaA] + ). mx Ly, for some integers my ..
H<A
Moreover my , = 0 unless A, p are in the same orbit of W. Since [L,] freely generate the
Grothendieck group and an upper triangular matrix with ones on the diagonal is invertible,
we get statement (2). O

The Kazhdan-Lusztig problem reduces to relating the bases {[A,.2]} and {[L)]} in
K 0((’);\). This is equivalent to computing the Jordan-Holder series for Ajy.

3. HIGHEST WEIGHT CATEGORIES

The category Oy is an example of a highest weight abelian category (alternative terms:
quasi-hereditary, or cellular category). Let k be a field.

Definition 3.0.1 (Highest weight abelian category). A k-linear abelian category A is a
highest weight category if it satisfies the following axioms
(1) A is of finite type, i.e. every object has finite length.
(2) There exists only finitely many irreducible objects and End(L) = k for every irre-
ducible object L.
(3) The set I of isomorphism classes of irreducible objects is equipped with a partial
order.
(4) For every irreducible object L; we have

A; = Li > Vi,

where L; is the unique irreducible quotient of A; and also the unique irreducible
subobject in V;. We call A; a standard object and V; a costandard object.
(5) ker(A; - L;) and coker(L; — V;) both lie in the subcategory
-A<z' Z=<Lj |j < ’L>
={M € A| The Jordan-Holder series of M contain only these L;}

(6) Ext"(A4,V;) =0 for all 7,j with n > 0.
(7) Hom(A;,Lj) =0 for i £ j and Hom(A;, L;) = k.
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Remark 3.0.2. Replacing an order by a stronger order not changing the rest of the data
turns a highest weight category into a highest weight category. So we can always replace
the given partial order by a stronger complete order. Then ¢ becomes >. We will sometimes
write > (respectively <) instead of £ (respectively #) as we may in view of the above.

We will also use the notation Ag; := (L; | j < i). The following remark will be used
repeatedly.

Remark 3.0.3. If Ext"(N,L) = 0 for all simple L € A, then Ext"(N,M) = 0 for any
M e Agg. Same for A . This is proved by induction in the length on M using the long
exact sequence for Ext’s.

Corollary 3.0.4. We have Ext"(A;,L;) = 0 and Ext"(L;,V;) = 0 for all j <4 (or rather
i¢7)and n>0, as well as for j <i (or rather i £ j) and n = 0.
Proof. We use induction in j. When j is minimal then A.; = 0 and so ker(A; — Lj) =
coker(L; - V;) = 0. Hence,
A~ L; ~V,.

Thus, for j minimal the claim is a special case of Axioms 6 and 7. For a given j we use the
short exact sequences

0—ker; - A; — L; -0,

0—Lj—V;— coker >0

and the corresponding long exact sequences of Ext’s, then Axiom 5 together with Remark
3.0.3 yield the claim. O

Remark 3.0.5. We have Hom®*(A;,V;) =0 for j #4. If i £ j then this follows from the first
vanishing in Corollary 3.0.4 and previous Remark. Otherwise it follows from the second
vanishing in Corollary 3.0.4.

Theorem 3.0.6. (1) A; is a projective cover of L; in Ag;.

(2) V; is an injective hull of L; in A<;.

Thus A;,V,; are uniquely defined once the partial order is given.
Proof. (1) Axiom 7 says that Hom(A;, L;) = 0 for i £ j and Hom(A,, L;) = k. By Corollary
3.0.4 we have Ext'(A;,L;) = 0 for j < i (notice that Ext}4<i(M,N) = Ext4 (M, N) for
M,N e A.; since A; is a Serre subcategory). This implies that Ext!(A;, M) = 0 for all
M e A, so A; is a projective cover of L; in A¢;. The proof of (2) is similar, using the

second half of corollary 3.0.4. U
Corollary 3.0.7. (1) Ext%(Ai,;Aj) =0 when i > j.
k n=0

(2) Exty (A, A) =

0 otherwise

Proof. Since Aj € A¢; part (1) and vanishing of higher Ext in (2) follows from Corollary
3.0.4 and Remark 3.0.3. Consider the long exact sequence

0 —» Hom(A;, ker;) —» Hom(A;, A;) - Hom(A;, L;) - Ext' (A, ker;) = 0
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Since ker; € A.;, we see that Hom(A;, ker;) = 0 so Hom(A;,A;) = Hom(A;, L) = k. O

Definition 3.0.8 (Exceptional collection). (see [BK]) A partially order set of objects
{X;}ier in a triangulated category C is an exceptional collection if

(1) Hom(X;, X;[n]) =0 when i £ j.

k n=0
2) H X, X; = )
(2) Hom( [(n]) {0 otherwise

For an exceptional collection A; a dual collection is a set of objects V; where Ext*(A;,V;) =
kb (k‘s”' sitting in degree 0 and 0’s elsewhere). The dual collection V; exists and it is an
exceptional collection with the opposite partial order.

Ezample 3.0.9. Let C = D*(Coh(P™)). Then we have an exceptional collection Ay, ..., A,
with
Ai = O]Pm (Z)
It has a dual collection
Vo= Q(i)[i] = Q' e 0)[i] = NT*P" ® O(i)[i],
where [ ] is homological shift. Note that in this case Ext™(A;,A;) =0 for m # 0.

Example 3.0.10. Let X be a C algebraic variety which has a decomposition

X = I_[sz
i
where each X is locally closed, X; ~ C™ and
X =1]X;.
j<i

Let j; : X; & X be the inclusion. Define
Ai=ja(C),  Vi:=Rji(C)
Set ¥ = {X;}. Let Sh(X) denote the category of sheaves on X. Define the full subcategory
Shy(X) := {M € Sh(X) | Ext<°(A;, M) = 0 = Ext**(M, V;) Vi}.

Consider its derived category D%(X) c D’(Sh(X)). Then the A; is an exceptional collec-
tion in D%(X) and the V; is its dual.

Proposition 3.0.11. Let A be a highest weight category A with an exceptional collection
A; in C = D*(A) and a dual collection V;. Then A can be recovered from D*(A), A; and

V; as
A={MeD"(A)|Ext<°(A;, M) =0 =Ext(M, v;) Vi},

where Ext'(X,Y) := Hom(X,Y[i]).
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Proof. If B ¢ A then H'(B) # 0 for some i # 0. If H(B) # 0 for some i < 0 choose i to be
the minimal one for which M := H(B) # 0. Consider M[~i] as a complex with M sitting
in degree -1 and 0’s elsewhere. Then the identity map in degree —i gives a non-zero map
M{[-i] — B. Since M must contain some irreducible L; we have maps A; - L; < M. This
gives a non-zero map
Aj [—Z] - B.

Hence, we have found a non-zero element in Hom(A;, B[i]) = Ext‘(A;, B) and so B is not
contained in the right hand side. If H*(B) # 0 for some i > 0 then we can make a similar
argument with maps B - M[-i] > V. O

Remark 3.0.12. If A; is an exceptional collection then A;[d;] is also one for all d; € Z with
dual collection V;[d;].

Theorem 3.0.13 (Beilinson, Bernstein, Deligne). Start with (X, %) as in the last example.
Set d; := dim(X;). The exceptional collection in Shx(X)

A; = jy(Cld;])
comes from a highest weight subcategory
A := {perverse sheaves constructible with respect to X}.
We have D%(X) ~ D°(A).

Definition 3.0.14. A standard filtration on an object is a filtration with grp ~ A;, . A
costandard filtration is a filtration with gry ~ V;, .

The following theorem will be useful in proving that category Oy is a highest weight
category.

Theorem 3.0.15. (c¢f. [BGS, 8§3.2], |[CPS|) Replace the Ext vanishing condition in the
axioms by

Eth(Ai,Vj) =0 Vi,5,n=1,2.
This still implies that A is a highest weight category.

For the proof we will mostly follow [BGS, §3.2|. In the process we will get some useful
properties of highest weight categories. First we will prove the following.

Proposition 3.0.16. Assume the Ext condition only for n=1,2.
(1) An object Q € A has a standard filtration iff

Ext'(Q,v;)=0 Vi

(2) L; has a projective cover P;, which has a standard filtration where A; appear once
and all other subquotients of this filtration are A; with j > i.

Py ——L;

AN

A;



14 ROMAN BEZRUKAVNIKOV AND TINA KANSTRUP

Proof of (1). "=": Given a standard filtration 0 c Nj c --- ¢ N,,_1 ¢ N,, ¢  we have short
exact sequences
0—>Nl_1—>Nl—>AjZ—>O
This gives the long exact sequence
RN Eth(Aji, Vi) = Eth(NZ', Vi) =~ Eth(Nifl, Vi) — EXt2(Aji, Vi) = -
Since Ext!'(Aj;, Vi) = 0 = Ext*(Aj,, Vi) we get Ext'(N;-1, Vi) = Ext'(NV;, Vi.). By axiom
Extl(Ajl, V) = 0 so using induction we get
Ext'(Q, Vi) =0.

"<=": Pick a minimal ¢ for which Hom(Q, L;) # 0, i.e. Hom(@Q, L;) =0 for all j < ¢. For
7 <t consider the short exact sequence

0—L; -V, coker; -0
This gives the long exact sequence
- — Hom(Q, coker;) - Ext' (Q, L;) - Ext’(Q, V;) - -

Since coker; € A.; the choice of i gives Hom(Q), coker;) = 0. By assumption Ext!(Q,V j)=0
so BExt!(Q, L;) =0 for all j <i. Consider the short exact sequence
0—ker; - A; - L; - 0.

Since ker; € A.; we have Ext!(Q, ker;) = 0. Consider the long exact sequence corresponding
to the first short exact sequence

Hom(Q, ker;) - Hom(Q, A;) - Hom(Q, L;) - Ext' (Q, ker;)

All irreducible subquotients of ker; are of the form Lj with j’ < ¢ so a non-zero element in
Hom(Q), ker;) would produce a non-zero element in Hom(Q), L;/) which would be a contra-
diction. Thus, Hom(@Q, A;) ~ Hom(Q, L;) and we can lift the map

Q——=1L;
A;
We claim that the map from @ to A; is onto. Indeed, assume that im(Q) ¢ A; then by
axiom 4 the map A; - L; would factor as
A; > Ai/im(Q) > L;.

But then @@ — L; would be the zero map and by assumption it is not. Hence, we obtain a
short exact sequence
From this we get

- Ext'(Q, V) - Ext' (Q', v;) » Ext* (A, V)
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By assumption Ext'(Q,V;) = 0 = Ext*(A;,V;) so Ext!'(Q’,v;) = 0. Thus, Q' satisfies the
assumption of the proposition so by induction it has a standard filtration

0cQiccQuecq
Then @ has the standard filtration 0 c Qy c - c Q,, c Q' c Q. O

Before proving part (2) we prove the following lemma (still only assuming Ext vanishing
for d=1,2).

Lemma 3.0.17. (a) Ext'(A, B) is finite dimensional for all A, B € A.
(b) Extd(A;,L;) =0 ifitj, d=1,2.

Proof. (a) It is enough to check when A and B are irreducible. Assume that we have a
short exact sequence

0-B -B-C-0
this gives a long exact sequence

.- > Hom(A,C) - Ext'(A, B') - Ext'(4,B) - -

Now, Hom is always finite dimensional so if Extl(A,B) is finite dimensional this implies
that Ext!(A, B') is also finite dimensional. A similar argument shows that if Ext'(A, B)
is finite dimensional then so is Ext'(A’, B) if A - A’. By axiom Ext'(A;,v;) = 0. In
particular it is finite dimensional. Since L; < V; this implies that Extl(Ai,Lj) is finite
dimensional. We also have A; - L; so we get that Ext!(L;, L;) is finite dimensional.

(b) Assume that it is true for j’ < j. Consider the short exact sequence

0—L;j -V, —coker; -0
and the corresponding long exact sequence for d =1,2
Ext? (A, coker;) - Ext®(A;, L) - Ext?(A;, V) = 0.

Since coker; € A<; by induction we get Ext'(A;, coker;) =0. If i ¢ j then Hom(A;, Lj») =0
for all j/ < j so Hom(A;, coker;) = 0. Thus, Ext"?(A;, L;) = 0. O

Proof of part (2) in proposition 3.0.16. Recall that Ay = (L;,, ..., L;, ) where the list is or-
dered such that iy < 7; implies that £ < j. Since there are only finitely many irreducibles

AicAyc-cA,=A

Notice that to prove that Q € A is projective it is enough to prove that Ext!(Q,M) =0
for all irreducibles M € Acj. By the proof of Corollary 3.0.4 we have Ext'(A;, L;) = 0 for
all j <iand n>0so A, is projective in A1 (the Corollary relies on the strong form of
the axioms and makes conclusion about vanishing of Ext™ for all n; we now only assume
such vanishing for n = 1,2, then the same argument shows vanishing of Ext!). In particular,
every L;, has the cover A;, which is projective in Ac4_1. We construct a projective cover
with a standard filtration of each irreducible in A;, by induction in k. L.e. starting from a
cover which is projective in A<;_1 we want to construct a cover of which is also projective in
Acj. Since L;, is minimal A;, ~ L;, ~ V;,. In particular, Extl(Lil,Lil) o Extl(Ail, Vi) =0
so L;, is projective in A;j. This gives the base of the induction.
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Assume that the statement is known for k£ —1. Let L := L;, with d <k and assume that
P is a cover of L which is projective in Ac_1. Write V = Ext'(P,A;,)* and let P be the
universal extension

(2) 0-Ve®A;, »P—P-0.

To prove that P is the projective cover of L in Ay we need to check that
(i) Hom(P,L) = k.
(ii) Hom(P,L") =0, when L' # L.

(iii) Ext'(P, M) =0 for all irreducible M € A

Consider the long exact sequence
0 - Hom(P, L") - Hom(P, L") - Hom(V ® A; , L)

Since Hom(A;,, L") = 0 for L' € A, 1 we get Hom(V®A;,, L') = 0. Hence, Hom(P, L") ~
Hom(P, L"). This proves the conditions on Hom except if L’ = L;, . In that case Hom(P, L;, ) =
0. P is defined as the universal extension so

Hom(V ® A;,, L;, ) > Ext'(P, L;,).

)

Thus, the long exact sequence for L' = L;,
0 = Hom(P, L;, ) - Hom(P, L;, ) » Hom(V ® A;,, L;, ) > Ext' (P, L;,)

shows that Hom(P, L;, ) = 0.
The only thing left to check is the Ext! vanishing. We start with the case M € Ag_1.
By the definition of P and part (b) of the lemma

0= Ext'(P, M) - Ext'(P,M) - Ext' (V& A;,, M) =0
so Ext!(P, M) = 0. The last case to check is M = L;,. Notice that

Hom(V ® A, L;, ) ~ V* @ Hom(A;,, Li, ) =~ V* = Ext' (P, Ay,).

i
Plugging this into the long exact sequence coming from (2)

Hom(A;, ® V,A;,) > Ext'(P,A;,) — Ext' (P, A;,) = Ext'(A;, ® V,A,) =0
we get Ext!(P,A;,) = 0. Consider
0 - ker;, - A;, = L, =0

ker;, € Aci—1 so Extl(IS,kerik) =0. Hence, Extl(P,Lik) =0.
Notice that V @ A;, ~ A?]jmv. Let

OcPc--cP,cP
be a standard filtration of P. Then P has a standard filtration given by

0c Ay, cc AfmVLc AdmV c AdimVig py e c AV g pc P m
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Proof of theorem 3.0.15. We proved that the map P; — L; factors through A; so there is a
short exact sequence
0—-ker—> P, —-A; >0

The projective P; has a standard filtration where A; occurs once and all the rest are A;
with j <. Hence, we can apply descending induction in i to get Extd(ker, V;)=0ford>0.
Since P; is projective Ext?(P;, V;) =0 ford>0so

00—~ EXtd(AZ’, V]) 5 EXtd+1(Ai, V]) -0 ford>0.
This finishes the proof since Ext'(A;, V;) = 0. O

Corollary 3.0.18. Let A be a highest weight category. Then there exists a finite dimensional
algebra A such that
A~A- mOdf.d. .

Proof. By proposion 3.0.16 A has a set of projective generators {P;}. Set
A := End(o;P;)
Then the functor F : A - A —mods 4, given by M — Hom(®;P;, M) is an equivalence of

categories. ]

4. O;\ AS A HIGHEST WEIGHT CATEGORY.

Theorem 4.0.1. Let ) € t* and set X := A\ mod W. The category O is a highest weight
category with the standard partial order on the weights

vV<p & pu-v= Zpositive T001S
By theorem 3.0.15 the only thing to check is
Ext%x(Au, V,)=0 d=1,2.

Lemma 4.0.2. Let A be a full subcategory of B closed under extensions and subquotients.
Then for all M,N € A

(1) Extl (M, N) ~ Extg(M,N).
(2) Ext} (M, N) maps injectively to Ext(M, N).

Proof. Part (1) is clear. For part (2) notice that given an element in Ext% (M, N) there
exists a M € A with M — M and h + 0 in Ext%(M,N) (for example, if A has enough
projectives a possible choice of M is a projective cover of M).

Using the short exact sequence

0—>ker > M—M-—0

We get long exact sequences
Extl (M, N) — Ext!y (ker, N) — Ext% (M, N) — Ext% (M, N)
14 2

Exth(M,N) — Extg(ker, N) — Ext%(M, N) — Ext%(M, N)
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Since h + 0 it comes from an element in Ext% (M, N) so we get an injective map Ext? (M, N) -
Ext3(M,N). O

Proof of theorem 4.0.1. By the lemma it is enough to check
1,2
Ext_ (Ay, V) =0,

—mod’

where g—mod’ is the category of g modules with diagonalizable t action. Define the universal
Verma module

A = indd(k) = U(g) ®y(n) k-
For M ¢ g—mod’
Hom(A, M) ~{ve M |n(v) =0 Ynel(n)}
=@ {veM|n(v)=0,z2(v) =v(z)v Vnel(n),z et}

vet*

~ P Hom(A,, M).

vet*

It follows that the same is true for higher derived functors, i.e.

Ext(A, M) = @ Ext(A,, M)

vet*

for M € g —mod’. The functor Ind? is left adjoint to Res} and it sends projectives to
projectives so

EXté—mod(Aa M) = Ethl—modUﬁ Resﬂ(M)) = Hi(na Resﬁ(M))
In the case M =V, and i >0 we have
EXté—mod(Av VV) = Hi(nv VV)
= H'(n,O(N))
- (&™) =0

So Exté_mod(A)\, Vy) =0 for ¢ = 1,2. This finishes the proof that Oy is a highest weight

category. O

In proposition 3.0.16 we proved that P; has a standard filtration. Let [A; : P;] be the
multiplicity A; in the filtration. The multiplicity of L; in the Jordan-Hélder series of V; is
denoted by [L; : V;].

Proposition 4.0.3 (BGG reciprocity). For a highest weight category A
[Li:V;]=[4A;: F]
Sketch of proof. The idea is to prove that [L; : V;] and [A; : P;] are both equal to
dim Hom(P;, V). By axiom Ext'(A;,V;) =0 so
dimHom(P;, v;) = Y dimHom(A;,,V;),

where the sum is over all Vermas that occur in the standard filtration of P;. O
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Recall the duality on category O
M* = (@ M[v]Y)
14

where the " indicates a twist of the g action by the automorphism of g which sends n, to
n_, and fix t. For this duality

!/
)

N=Va,  Ly=Ly.
so in category Oy we have [L;: Aj] =[L;: Vj]
Remark 4.0.4. Recall the Cartan matrix
cij = [Li, Pj].
In category O we have the formula

[L;: PJ] = Zk:[Ak : Pj][Ll tAg]

Set myj; = [Lz : A]] = [A] : -Pz] Then
C=M"M for C:=(cij), M :=(mij).

Our goal is to describe the m;; = dimHom(P;, A;). The strategy is to equip this vector
space with a Z grading to get a polynomial

QZ](q7 q_l) = Z qS dim HomS(Piv A])7

Qij(1) = mi;.

Up to a normalization this is the Kazhdan-Lusztig polynomials. By corollary 3.0.18 there
exist a finite dimensional algebra A such that Oy = A-mody 4. We will construct such an
algebra and define a grading on it.

4.1. Irreducible Verma and its projective cover. Restrict to the case A € A. Let Apin
denote the minimal element in W - A.

A1 = AInin = Lmin ~ Vmin-

Proposition 4.1.1. For all i, A; € O5 contains Ay. This is the only irreducible submodule.

For a commutative ring R and an R-module M the set-theoretic support of M is defined
as

suppr(M) = {p € Spec(R) | My # 0}.
The support is a closed subset of Spec(R). One can also define a more refined notion of

support, the scheme-theoretic support, as the closed subscheme corresponding to the ideal
Ann(M) (annihilator of M).



20 ROMAN BEZRUKAVNIKOV AND TINA KANSTRUP

Definition 4.1.2 (Gelfand-Kirillov dimension). Let M be a finitely generated g-module.
Using the PBW filtration on U(g) pick a compatible filtration on M such that gr(M) €
Coh(g*) is finitely generated as a gr(U(g)) = Sym(g)-module. It is a fact that the set-
theoretic (as opposed to scheme-theoretic) support is independent of the choice of filtration.
The Gelfand-Kirillov dimension of M is defined to be

GK dim(M) := dim suppsym(n)(gr(M)).

Proposition 4.1.3. (a) For every non-zero submodule M c Aj.

GK dim(M) = GK dim(A)) = dimn.
(b) For all peW -\ with g # Amin

GK dim(L,) < dimn

Proof. (a) Choosing the obvious filtration on Ay we have gr(Ay) ~ Sym(g/b) =~ Ok..

supp(gr(Ay)) = supp(Qp:) = b* = n.
Let M c A, have the induced filtration

0#gr(M) cOp

Sym(n) is a free n-module so the submodule gr(M) is torsion free. Therefore gr(M) has
full support

supp(gr(M)) = supp(gr(Ay)) = b*.
(b) Let L, be irreducible with e W - A and g # Amin. Then L, is not isomorphic to A,

0= keru (S Au - L.
0 # gr(ker,) < gr(A,) - gr(Ly).

Let f e gr(ker,). Then gr(L,)s =0 so supp(gr(L,)) € V(f) where V(f) is the set of prime
ideals containing f. For f # 0 this is a proper closed subset so it has codimension > 1.

GK dim(L,) <dimV(f) < dimn. O

Proof of proposition 4.1.1. A, has a Jordan-Holder series so in particular it contains some
irreducible submodule L. Then GK dim(L) = dimn. The only possible irreducible submod-
ules are L, with € W - X but all of them except Ly, =~ A has too small GK dimension.
Hence, A; is the unique irreducible submodule. ]

Corollary 4.1.4. We have [A, : P;] =1 for all 4. When X is regular we also have [L1: P] =
|[W| and dim End(P;) = |W|.

Proof. By BGG reciprocity
[Ap:P]=[Li:Vu]=[L1: Ay Vi

We just proved that L appears as the first term in JH(A,). We need to check that it only
occurs once. Consider the short exact sequence from the start of JH(A,,)

0— Ly - A, - coker -0
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The remaining simple quotients in JH(A,) are the simple quotients in JH(coker). The
same argument as in the proof of proposition 4.1.3 shows that

G K dim coker < dimn.

Thus, since GK dim coker < GK dim L; the module L; cannot appear in JH(coker).
We have the formula

[L1 : Pl] = Z[Ak : Pl][Ll : Ak] = Zl,
k k

where the sum is over all Verma module which appear in the standard filtration of Pj.
By proposition 3.0.16 each Verma appears once in this filtration. If A is regular then
dimEnd(Py) = [Ly: P1] = |W|. O

Ezxercise 4.1.5. Let M be an object in category O with integral central character.
dy :=dim @ M[v].

—U<A

Show that if A is deep in A", i.e. (A, ;) >>0, and X in a fixed coset of the root lattice then
dy is a polynomial in A of degree GK dim.

The category Oy with A € A contains the minimal irreducible L; := Ly _. (By proposition
4.1.3 this irreducible has maximal GK dimension). Let = be its projective cover.

Ly~ Ay, 2V
Set Wy := Stabyy.()\). The projective cover Z has a filtration with

gI‘(E) = @ FAVSY

’LUGW/W)\

=
) o« P ==
min min

Hence,

dimEnd(Z) =dimHom(Z,E) = )  dimHom(E,A,.)

weW/W,\
= > [Li:Apa] = [W/W,
wEW/W)\
= rank K°(O5).

Theorem 4.1.6. Let A be regular. Then
End(Z) = Sym(0)/(Sym()").
Here the + indicates polynomials without constant term.
A proof of this theorem will be given later. A map
Sym(t)/(Sym(8)}) — End(E)

can be constructed in the following way. Let mjy be the maximal ideal of functions vanishing
at A. There is an isomorphism of completions

Z; = 11310(t*)W/m§ ~ lim O(t") /m} = O(t")5.
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Here Z ~ O(t*)(W,-) acts on all of O and Z[m% acts on Oy for any n. After a change of
coordinates

Zs =~ O(t7)5 = O(t") =~ Sym(t)g.
Z surjects onto each of the terms Z /mg—f in the inverse limit and each term in Sym(t),
surjects onto Sym(t)/(Sym(t)""). Hence, we obtain a map ¢ : Z - Sym(t)/(Sym(t)"V).
We claim (and will prove later) that the action of Z on = factors through ¢.

Z End(E)

X /
Sym(t)/(Sym(t)}")

5. TRANSLATION FUNCTORS

Translation functors provide a way of moving between blocks with different central char-
acter.

Lemma 5.0.1. Let V =V, be a finite dimensional representation with highest weight jui.
Then Ay ®V has a standard filtration with

gr(A)\ ® V) = @A/\+y ® V[V]

Proof. By the tensor identity we have
AV = Indg((CA) ®V ~ Indg(CA ® V|b).

Here V|, is V considered as a b-module. When an element of by acts on an element in
a weight space one only gets terms sitting in higher weight spaces. Thus, the direct sum
of the C-span of a vector sitting in one weight space with all higher weight spaces is a
b-submodule of M. In particular, V|, has a filtration with gr(Vl]s) = @,V [v]. The functor
Indf(C,®-) is exact so applying it to each term in the filtration on V|, produces a filtration
on A, ® V with

gri(AA ® V) = Indg((C)\Hj ® V[I/D = @AMW ® V[l/]

This finishes the proof. ([l

Corollary 5.0.2. Let M be a g-module on which the center acts by generalized central
character A\. Then the center acts on V' ® M by the generalized central characters A + v for
which V[v] 0.

Remark 5.0.3. For M in category O one can see this directly as follows. When M = A this
follows from the previous lemma. Hence, it is true for any M with a standard filtration.
In particular, it is true for projectives in O. Since category O has enough projectives by
proposition 3.0.16 it is true for all M in O.

The proof of the corollary uses the following lemma.

Lemma 5.0.4. The is an inclusion Uy = Endy (V).
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Proof of lemma. To prove that the map is injective it is enough to check it for the associated
graded

gr(Us) = O(g")/0(a")<.
It is known that O(g*)/O(g*)¥ =~ O(N) where N is the nilpotent cone. Recall that
V=~ O(By) ~O(N). Consider the differential operators on N
Diff(N) ~O(N) @ U(n) c Endg(O(N)) ~ Endg(Vy),

where elements in O(N) act by multiplication and elements in U(n) act by derivation. It
is also known that

gr(Diff(N)) ~ O(T*By).
Notice that
T"(Bo) c T"(B) ={(b,z) e Bxg" | x|, = 0}.
The projection T*B — N given by (b,z) — z is surjective and when restricted to By its
image is dense. Thus, we have an inclusion

gr(Uy) = O(N) = O(T"By) = gr(Diff(Bo)).
This inclusion shows that we have an injective map
Us, = Diff(By) < Endg (V).
This finishes the proof. ([l
Proof of Corollary. 1t is enough to prove this for
M =U(g) ®z C5 = U;.

By the lemma it suffices to show this for Endg(Vy). The result is known for V) and
Endg(V,) is an infinite product of copies of V) so this finishes the proof. O

Definition 5.0.5 (Translation functor). Let A, u be integral weights with (A + p, ) > 0
and (4 + p, ) > 0 for all simple coroots o). Let V' be the module with extreme weight
p=A, ie. V=V, for aw for which w(u - M) is positive. The translation functor is
defined as

T-sy : g-mod; — g-mody, M- (MeV);.
Here g—modi denotes the subcategory of g-modules with generalized central character X

and the functor (-) ; takes the summand on which the center acts by generalized central
character f.

Lemma 5.0.6. The functor T\, is exact.

Proof. The functors - ® V' and —® V™ are adjoint and V)" ~ V_y so Ty, is left and right
adjoint to T),_.». In particular, T\, is exact. ]

Definition 5.0.7. Let A\, € A™ be positive integral weights. Write A | u if Staby (\)
Stabyy (1). The weights A and p are on the same face if Stabyy () = Staby (u).
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Proposition 5.0.8. (a) Assume that X\ | u then
Trop(Apr) = Aoy

(b) When X and pu are on the same face the functor Tx_,, is an equivalence.
(c) If My L Ao L Az or Az | Ao L A1 then

Tagong © Tagong = Thyoas-
We only prove the proposition for translation functors restricted to category O.
Proof. (a) By lemma 5.0.1
gr(A\®V) = EVBAMV ® V[v].
We need to check that only one term has central character i and that the weight space is
1-dimensional. Assume first that (A — u, 1) > 0. Then we have (see [Hum, Lemma 7.5|)
A+ {weights of V}nW - pu={u}.

Thus, only one representative for fi occurs in the sum. The center only acts by generalized
central character on the term for which A+ v = u. Since v = — A is an extremal weight in
V we have dim V[ — A] = 1. This shows that

Toon(Ay) = Ay

Replace A and pu by w- X and w- u. This does not change V since A — p is still an extremal
weight. Hence,

Do (Apr) = Aoy
(b) By (a) T, induces an isomorphism.

K°(05) > K°(Op).
To finish the proof we need the following lemma.

Lemma 5.0.9. Let A and B be abelian categories of finite type with a pair of biadjoint
functors

F:A-B,
G:B- A

Assume that they are exact and induces isomorphisms on K°. Then F and G are equiva-
lences of categories.

Proof of lemma. Since F induces an isomorphism on K° we have F'(M) # 0 for M # 0. The
functor F' does not kill morphisms so the map

GF(M)->M

induced by idp(ps) by adjunction is injective (see [Gait, Lemma 4.27]). Since [GF(M)]
[M] it must be an isomorphism.

O
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By the lemma T, : O5 — O is an equivalence of categories when A,y are on the same
face and (A —p, ) > 0. Hence, it is also true when (A —p, ) <0.
A proof of (c¢) will be given in section 5.2.1. O

Proposition 5.0.10. For \ integral Py =T_, y\(A_,).

Proof. By adjunction
Hom(T_,-\(A_,), M) =Hom(A_,, T\-._,(M)).

Since Th__, is exact and A_, is projective in O_,, the functor in the right hand side is
exact. Hence, T_,,y(A_,) is projective in O). It remains to show that

Hom(T_,-\(A-)),L,) = kO Amin
By adjunction we have
Hom(T_,-\(A_)),L,) = Hom(A_,, Th~_,(Ly)).
Thus, it is enough to show that for L irreducible

0 if L#+1,

Ty (L) =
ro-o(L) {A_p:L_p if =L,

Notice that
GK dimT).,(L) < GKdim(L® V) = GK dim(L).
The only nonzero irreducible module in O_, is A_, so every nonzero object in this category

has GK dimension dimn. By proposition 4.1.3 we have GK dim(L) < dimn for L # L;.
Thus, Th-_,(L) =0 for L # Ly. By proposition 5.0.8

Thp(L1) = Thoo (A1) = Ay = Ly,
This finishes the proof. O

5.1. Extended translation functors. Recall that Z(U(g)) =~ O(t")" = Sym(t)"V. De-
fine .
U = U ®gy,(1yw Sym(t).

For X € t* let Zy denote the maximal ideal of functions in Sym(t)"" which vanish at .
Let I3 be the preimage of Z5 under the map t* - t*//WW. Define the completions

u;\ =U BSym(t)W hln (Sym(t)/[f)
Notice that
Z/{i —mod>o>U - modi,
U5 —mod >U —mod; .
In the case where A is regular, i.e. Staby/(A) = {e}, we have

U- mod;\ ~ U - modi.
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In fact, Z;{;\ ~ L{/s\. In the most singular case
U,~U, ®Symwé Sym(t)g.

Theorem 5.1.1 (Beilinson, Gir}zburg): If the face of p is in the closure of the face of A
then the T, lifts to a functor Ty, : U —mod; -~ U —mody called the extended translation
functor which satisfies the following

(a) The following diagram is commutative

- Ty ~
U—mod;\ #;U—modﬂ

L Res L Res
Tx

U—modj\ —W>Z/{—modﬁ

(b) The functor T,y is fully faithful.

The construction of the functors T)\_,M, proof of the Theorem and further properties of
these functors will appear in section 5.3.

Proof of theorem 4.1.6. Assume that A is regular. Then the theorem implies that
2= P =T pa(Ay) =Ty (Indff(A,))
Using this we get
End(Z) ~ End(Ind%(A_,))
~ Endgy o (Ind ", (C))

ym(t)}
= Sym(t) /(Sym(0)}Y).
This finishes the proof. O
5.2. Harish-Chandra modules.

Definition 5.2.1 (Harish-Chandra modules). Consider the diagonal embedding G - GxG
and observe that g&g = Lie(GxG). A Harish-Chandra module is a (g®g)-module for which
the diagonal action extends to an action of G. The category of Harish-Chandra modules is
denoted by H.Ch.- mod and also by (g @ g, G)-mod.

Forgetting the second g action

(9®9,G) - mod > { g-modules M with an algebraic G action s.t. }

g(x(v))=Ad(g)(x)(g(v)) VgeG,zegveM
Example 5.2.2. Consider U as a g ® g module with the action
(g@g)xz’{_)uv (l’,y,U)Hl'U—’LLy.
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Let V be any finite dimensional g-module. Then i/ ® V' is a Harish-Chandra-module with
the action
(gog)x(URV)->URYV, (z,y,u®v) » TU®V— Uy ® v+ u ® Yu.
Any bimodule B gives rise to a functor
U —mod - U — mod, M~ B®y M.

In the case where B =V @ U this is just a tensor product of g modules M » V ® M. Let
B be a Borel.

(g, B) - mod := g — modules M with an algebraic B action s.t.
v T sx(v)=Ad(g)(x)(8(v) Vg€ B,zegueM

The natural restriction functor

Resg
H.Ch. - mod — (g, B) - mod
has a right adjoint
Colnd : (g, B) - mod — H.Ch. — mod

which commutes with forgetting the second g action. Notice that an algebraic B-module
M defines a G-equivariant quasi-coherent sheaf Fj; on B = G/B. The coinduction functor
is taking global sections

Colnd(M) =T(Fu).

Define Ay(-A) € (g, B)-mod to be Ay as a g-module with a b-action defined by tensoring
the ordinary b action by (-\). This b-action integrates to a B-action for which the highest
weight vector is B-invariant. This makes the action compatible with the torus action so
with this choice of B-action the map

U > Ax(-))
is a map of (g, B)-modules.
Lemma 5.2.3. There is an isomorphism Us — Colnd(Ay(-))).

Proof. It is enough to equip both sides with a filtration such that the map on the associated
graded is an isomorphism. Recall that gr(is) ~ O(N). For the sheaf

gr(Fa,) = Sym(g/b) x" G
=~ O((g/b)" <" @)
=O0{(z,b) egxB|xzerad(b)})
Ezercise 5.2.4. Show that O((g/b)* xB G) ~ O(T*B).
Note that (g/b)* ~ b* ~ n (the isomorphism g* ~ g coming from the Killing form) so
gr(Ay) = Sym(g/b).
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Since H(T*B,0) =0 in this case the global sections functor is exact and so it commutes
with taking associate graded

gr(L(Fa,)) ~T(gr(Fa,))
Consider the projection T*B - N given by (b, z) — x. It is known that the induced map
gr(Us) = O(N) > T(O(T*B)) = gr(Colnd(A,))
is an isomorphism. O

Remark 5.2.5. Fix A € A*. Let H.Ch- mod; ; denote the full subcategory of H.Ch-mod for

which the right action of g factors through X and the left action factors through a power of
A. Consider the functor

Cy: 05— H.Ch. —mod;w-\7 M  Colnd(M(-))),

where (=) indicates that the B-module structure is the one coming from g twisted by

—A. The functor is an equivalence of Abelian categories (This follows from the localization
theorem using B\G/B = (G/B x G|/ B)/G).

Proposition 5.2.6. (1) For M with diagonalizable action
Colnd(Th~ . (M)(-p)) = Th~,(Colnd(M (1)),

where the (=) indicates that the natural g action is twisted by —\.
(2) For M €Uy — mod

Do (M) = T (Un) @iy M.
Proof. Exercise. O
Assume that A | p. Then
Do (Us) = Tonsy(Un) Oy, Uy = T, (Colnd(Ax(-N)))
= Colnd(Th- . (Ax)(—p)) = Colnd(A,(-1))
~ Uﬂ
Since T, is determined by Ty, (Uy) this also proves part (c) of proposition 5.0.8 in
the case A\1 | A2 | A3 as

T/\2—>>\3T)\1—>)\2 (u)q) = u>\3 ()‘3 - )‘1) = T>\1—>>\3 (uh )

The case Az | A2 | A1 follows by taking the adjoint functors.
Combining the proposition with lemma 5.2.3 we get that for A, 4 on the same face

Ty ATy (Us) = T ATy (Colnd (AN (=)
~ Colnd(T-a T (A(=N)))
~ Colnd(Ax(-)N))
~ Us.

This proves that T, T\, ~ Id.
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5.3. Construction of extended translation functors. To define extended translation
functors T/\»,u consider the module ¢ ® V', where V =V, is a finite dimensional g module
with highest weight p. It is a Harish-Chandra bimodule with the left g-action being the
action on the first coordinate and the right action being the diagonal action.

Lemma 5.3.1. The scheme S = suppgzez (U ® V') is the image of the subscheme

S:= U {0 lp-r=v}

v,V [v]#0
under the map (t*)? — (t*//W)2.

U

Proof. The second g-action is integrable so

Endge(U® V) = (Endy(U ® V)¢ = (U ® End(V))® cU ® End(V).
Hence, Endgee(U ® V') is a torsion free module over the left copy of Z so nothing vanishes
when we localize.

Claim 5.3.2. Endgeq(U ® V) is finite over Z.

Proof of claim. Passing to the associated graded Sym(t)" acts on

gr((U ® End(V))“) = (Sym(g) ® End(V))“ = Maps(g, End(V))“.
The projection
g—>g/G=t/W
has a section. Denote its image by S. Then restriction to S provides a map from
Maps(g, End(V))% to Maps(S, End(V)).
Now, S c g™ and Adg(S) = g’®. It is clear that for o € Maps(g, End(V))% the
restriction o|g determines o (s). We have G(S) = g™ which is Zariski dense in g so

Maps(g, End(V))¢ < Maps(S, End(V)).
Since Maps(.S, End(V)) is finite over O(t/W) we see that Maps(g, End(V))¢ is also finite.
g

Thus, U ® V' has full support with respect to the first action. Now consider the action
of the second copy of Z. It is enough to check that if A is generic then Uy ® V' as a module
over the second copy of Z is supported on

O+ v | Vv]#0}
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The set of integral weights is Zariski dense so we may assume that A is integral. Since
Uy = Colnd(Ax(=])) it is enough to check this for Ay ® V. This was proved in corollary
5.0.2. 0

Recall that V ®U is a Harish-Chandra bimodule for any finite dimensional representation
V.

Velu:=(Vel)eps) O5)
is a U ® U-bimodule. Suppose A, ;e AT with A | p. A calculation shows that
(Vel); = (VeU); - ®ow /stann)), O g

As before let V' be the module with extremal weight ©—A. Use this to define the extended
translation functor.

T)ﬁu:lfl—mod;\el;l—modﬂ, M~ ((VeUu)e; M),

where the subscript [ indicates taking the direct summand with this generalized central
character. From the definition we get the commutative diagram from part (a) of theorem
5.1.1

T)\“‘ ~
U - modj\ —U - InOdl)
LRes Res
Al
U —modi —“>Z/{—modﬁ

In particular, Tu \ is exact. Taking left adjoints we get the diagram

T, ~
U—mod;\ <“—ML{—m0dﬂ

TInd {Ind
T,

Uu- modi <H—Mu - modﬁ
For X regular Ind and Res are equivalences of categories. The last part of theorem 5.1.1 is

to prove that 7T \—p is fully faithful. Recall the following lemma from Morita theory

Lemma 5.3.3. Let F': A-mod - B —mod be an exact functor coming from tensoring
with a bimodule M which is projective over A. Assume that B > Enda(M). Then the left
adjoint is faithful.

Proof of part (b) of theorem 5.1.1. By the lemma it is enough to show that
Z;{ﬂ ~ Endgi (T)\ﬁu(aj\))

Recall the universal Verma A := Ind%(C) ~ Ind}(Sym(t)). View it as a (g, B)-module in a
natural way. We proved that

U ~ CoInd(A)
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Define A;\ =A ®sym(t) Sym(t)5. With this definition

U, ~ Colnd(Ay)
Assume that X | p. By Nakayama’s lemma 7)., (Ay) = A, implies that

Fr(By) = A,
Using this we get

j}ﬁu(a;\) ~ TA%H(CoInd(Aﬁ))

= Colnd(Th- . (A5) (1= N))

~ CoInd(Ap (- A)).
Thus, the proof is reduced to showing

Uy ~ Endgi(COInd(Aﬁ(M -A)).
This would follow if we can show
U = Endy;Colnd(A(p - A)) = Endy(T(B, Fx,,_y))-

For this it is enough to prove the isomorphism for the associate graded. The sheaf has a
filtration with

gr(Fa(u-ny) 2 0(8) @ O(p - A),
where
g:=(g/n)" xBG=~{(x,b) egxB|xeb}.
We have
grl'(B, Fx(un)) LB gr(Fx(,-n)))

~D(B,p1+(O( = A)))

~['(g,0(p = A)).
Consider the maps

~ P2
g——9

L X—»x mod [b,b]
p1

B t

where p; and py are the projection maps. By the Harish-Chandra isomorphism g*//G ~
t*//W. The maps are compatible with this isomorphism so there is a map

5 > 0" xew
This map is generically an isomorphism.
Lemma 5.3.4. Let A be a filtered ring and M a filtered A-module then
gr(Enda(M)) c Endg,(4)(grM).
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Remark 5.3.5. We will only apply this lemma to M which is finitely generated with a
separated and exhaustive filtration.

Lemma 5.3.6. Let L be a line bundle on g and let M be a nonzero submodule of T'(g, L).
Then End(M) = O(g x¢w t).

Applying the lemmas to M := ng(viA(u—,\)) cT'(g,0(pn—A)). We get
gr(Endyy(D(B, F5, 1)) € Endy, gy (82(D(B, Fx ) = Ol g V.
Observe that )
O(g" xpjyw ') = Sym(g) ®gym(yyw Sym(t) = gr(f).
Since U = I'(B, Fx) there is an inclusion
U — End(T(B,Fx))-

The composition of maps

gr(U) = gr(Endy (T(B, F3))) = O(g xyyw t) = gr(U)

is an isomorphism so all maps are isomorphisms. In particular, gr(i/) ~ gr(End;(T'(B, F)))
which is what we wanted. O

Proposition 5.3.7. For \ reqular T, is left adjoint to T,\_,M,

Notice that this implies that the right adjoint TA—w is left exact. Since it is defined as
a tensor product it is also right exact. In fact, we already know this exactness from the
commutative diagram in theorem 5.1.1(a).

In the proof of the proposition we will need the following fact.

Proposition 5.3.8. Let A, B be rings and F' a right exact functor
F:A-mod - B-mod.

Then F' is equivalent to the functor M — F'(A) ® 4 M.

From the above proposition we get

Txﬁu ~ T)ﬁu(?;lj\) ®p, ~
T = Tn(Up) ®, -

Proof of proposition 5.3.7. Using the above observation it is enough to show that

Tyux(Ug) = Homy (T (Us ), U5)
as Z:{i - L?ﬂ bimodules. Recall that for A regular Z;l;\ ~ Z/{i

Ty ~
Z/lj\—mod#;b{ﬂ—mod

Res
T)\ -

Uﬁ —mod
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We already know that T}, is right adjoint to T, so

Tu—>)\ (uﬁ) = Homuj (T)\—>,u (ui)vuj\)

= Homy; (Th-,u(U5),Us)

Since Res T}H A =T\ we have

Tuq)\(dﬂ) o HOmZ;{;\ (T)\QM(ZJS\),ZJ{;\)
as Uz — U bimodules. On both sides the action of Sym(t) comes from
so they are also isomorphic as Z;lﬂ - Z;l;\ bimodules. O
Corollary 5.3.9. T,\_)MTM_,,\ ~1d for A | p.
Proposition 5.3.10. Let B be a ring and P «o finitely generated projective B module. Then

Endg(P) ~ P®p Hompg(P, B)

Proof. See [Cohn, Lemma 4.5.3]. O

Proof of corollary 5.3.9. It is enough to show that TA%HTHH)\(Z;@) ~ Z;lﬂ. By proposition
5.3.7 we have

Do Tyor (Up) = Taou(Uy) ®3, T (Up)
> TA—W(Z]S\) ®0, Homl;{X (T,\QM(Z;{X),Z;{X).
Now, L?;\ is projective so TA_W (Z/Nl/\) is also projective and the proposition above states that
T (Us) ®, Homy, (Too (U3, U5) = Endy (Toopn(U3))
As part of the proof of theorem 5.1.1 part (b) we proved that
1;{,; ~ EndaX (T)HM(Z:{X))
This proves the result. U

Definition 5.3.11. An exact functor F' : A — B is called a Serre factorization if B =~
A/ ker F', where A/ ker F' is the Serre quotient category.

Lemma 5.3.12. Let F': A~ B be an exact functor and G : B — A its left adjoint. Assume
that F o G ~1dg. Then F': A/ ker A~ B, i.e. F is a Serre factorization.
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Proof. We need to show that F' is essentially surjective and that it is an isomorphism on
Hom’s. The first part follows from F o G ~ Id. Since F is exact, F' is also exact; since
F does not kill nonzero objects, we see that F is injective on Hom’s. To prove that F is
surjective on Hom’s it is enough to show that for all M, N € A/ker A with representatives
M, N € A and any morphism z : F(M) — F(N) there exists a morphism 3 : M — N such
that F(y) = . Consider the adjunction arrow GF(M) — M. The condition FG ~ Idg
implies that ker, coker € ker(F") so it becomes an isomorphism in A/ker A. Thus, we get
the following diagram and so a choice of y

Gron S ary .

14 2

M N
This finishes the proof. O

In particular, we have the following corollary

Corollary 5.3.13. For A\ | p the functor
T)\_,M U - modj\ >U- mod
is a Serre factorization.

Define @“ to be the preimage of O, under the restriction map U - mod; — U — modg.
Then
T)\ﬁu : O)\ g OM
is also a Serre factorization for A | p.
Corollary 5.3.14. Assume that A is regular. Then
Do Tyor (M) ~ M ®7 Sym(t) ~ M ®, Sym(t)g-

Proof. 1f X is regular then A | p for any g and

~ Res
U - modj\ <_E U - modj\
Ind

are equivalences of categories. Hence,
T\-, ~ Res, OTA_,M,
Ty = TM_,)\ olnd, .
By the corollary
ThouTy-x ~Resy OTA—W o ~“_,)\ olInd,
~ Res, oInd,, .

This proves the result. O
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5.4. Example: g =sly. Recall that End(P;) ~ Sym(t)/Sym(t)" and
Ay @ (Sym(B)/Sym()™) = A @oge ), O )

It follows that O_, ~ Sym(t)/Sym(t)? -~ mod.
If A is an Abelian category with irreducible objects L1,..., L, and projective covers
P,...,P,. Then

A~ End(eP;)°P? - mod and A/(L1,...,L,) ~End(P;)°"" —mod.

We now calculate all projectives in category O for g = sls.
The weight A\ = 0 is regular and the W = Yg-orbit is {0,-2}. Thus, the irreducible
modules in Oy are Ly and L_s ~ A_5. Consider the short exact sequence

0 - kerg > Ag —» Lo — 0.
Since ker € (L_3) and [L_2,A¢] =1 by corollary 4.1.4 the above short exact sequence is
0—>L.o—>Ag—>Ly—0.

By proposition 3.0.16 P_o has a standard filtration in which A_o appears once and any
other A; in the filtration has j > —=2. The only possibility in this case is Ag and since
[Ag, P1] =1 by corollary 4.1.4 we get the short exact sequence

0->Ag—>Po—->A_5—-0.

Putting these two exact sequences together we get a Jordan Hélder filtration Lo c Ay c P
with quotients L_o, Ly, L_o. This is written as

grP o=\ Lo

Notice that Py = Ag
Hom(P-2, Py) = k = Hom(FPp, P-2)
End(P-5) = Sym(t)/Sym(t);" = k[t]/t*.
For A = —p = -1 the only irreducible is L_; so O_; ~Vect and as noted above
O_1 ~ k[t]/t* = mod.
The image of k[t]/t? under this equivalence is Ay )
Recall that P.g ~ T 1,0(A_1) ~T-1.0(A_1). We claim that T_1.¢(A_1) = Vp.
To check this, consider the exact sequence
RI/(E) > k() > k>0,
from which we get: . .
A1—->A_1->A_1-0.
Applying T_1_,9 we obtain
Po—>Po->T1.0(A1)-0
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The first map is nilpotent so it factors through the submodule L_o. Thus, its image is L_o
and its cokernel is P_y/L_o9 ~ V. Here the last isomorphism follows from the short exact
sequence

0->Ag—>Po—>L o5—-0

by duality.
5.5. Wall-crossing functors. Our goal is to describe Oy =~ O, for A regular integral. One
tool for doing this is Wall-crossing functors for each simple root a.

Fix a simple root a. Choose p such that

(u+p,a’)y=0
(u+p,B8Y)>0 for ¥ # o simple coroot.

If (oY, \) € 2Z then a possible choice of u is

{a,A)
2

This choice correspond to orthogonal projection to the wall.

w=A- Q

Define the wall-crossing functor
Ry =Ty 2Ty
Note the R, does not depend on the choice of u because of the composition rule
Tyroa Do = Ty A Ty T pr Ty = Ty X Tr o
If )’ is another regular integral weight then there is an equivalence of categories
Ty :g-— modf\ Sg- mod;/ .
and the wall-crossing functor fit into the commutative diagram.

—mod: —— g—mod-
g AT Y Y

RQL LRQ

—mod: ——> g —mod -
9 A Tyl g N
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5.5.1. Effect of Ro on extended translation to —p. We still assume that A is regular in-
tegral so that Oy =~ Oy. Set A := Sym(t)/Sym(t)" and let A% denote the subalgebra
Sym(t)®/Sym(t)". There is an action

So G A-mod, M A®psa M =Ind %4, (M| 50).
Lemma 5.5.1. The action of S, corresponds to the action of R, under T,\_,_p

Trop

R, O 05 =5"0_,~A-mod O 8,
More generally,
R, C g- modf\ T:p Z;{_p -mod_; O X,
where Y, (M) = Sym(t) ®gym(tysa M.
Proof. Using the composition rule we can write
Ty = Ty Tron
By corollary 5.3.14 we have T\, T}, ~ ResoInd so
Ty Tpsa (M) = Sym(t) ®gym(iysa M.
Using this we get
TA—»—pRa(M) = Tu*—pTA*#T#*ATAQM(M)

~ Tu—»—p(sym(t) ®Sym({)5a TA—»u(M))

- - -
= Ty (SYm(8) Bsymeyen Do (M)

~ > Sym(t
~ Sym(t) ®Sym(t)5€¥ TH—>—pT)\—>M(M)|S§;m§{;Sa

~ Sym(t
= Sym(t) @sym(tysa Ths—p(M NSimEt%Sa

~ SQT)\Q,F,(M).
Which is what we wanted. O

5.5.2. Effect of R, on A and V. Let X\ be a positive integral weight and let n € W - \.
Let sqon denote the right action of W, i.e. sq(w-A) = wsy - A where - is the usual action.
Geometrically, s, maps 7 to the reflection of n in the face of its chamber of type a.

a /.'L
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Lemma 5.5.2. There is a short exact sequence
0—-A,, = Ro(Ay) = A, =0,

where {n.,n-} = {n,san} with n. >n-. Le. if (a¥,n+p) >0 then n, =n and n- = sun.
Otherwise, 1y = sqn and N- = 1.

Proof. Since A is regular A\ | p so
Trop(Ay) = Ay
forn=w-Xand n' =w-pu.

o\

Consider Ro(Ay) = Thopu(Ayy). Without loss of generality we may assume that A = p + o
so the highest weight of V is a root conjugate to «. In this case ny =7 +a and n- =1’ - a.
By lemma 5.0.1 A,y ® V' has a filtration with terms of the form

Ay ® V[v]
Claim 5.5.3. The only weights of the form 7’ +v with V[v] #0in W-X are ' +a and n' - a.
Proof of claim. It is enough to show that
{p+weights of VInW -A={u+a,pu-a}.

A nonzero weight of V is a root 3 with (3)? < (a)?.
Ifg>0and f#athen p+B¢tpu+a=Asopu+BeW-\
If <0 and 8 # —« then

(u+B)? = p” +2(u, B) + (B)°
<+ (B)* < p + (@)’
=\
Thus, u+B8¢W -\ ]

Since dimV[a] = 1 = dim V[-«] the standard filtration of R,(A,) only have A,, and
A;_. The lowest one is the submodule so we get the short exact sequence. ([l

Remark 5.5.4. Dualizing the short exact sequence we get

0V, = Ra(Vy) >V, —0.
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Notice also that
End(Ra(A,)) = End(Ind% A,)
= Endy e (K[t]/1* © Ay)
= k[t]/t2.
Corollary 5.5.5. Sy := [Ra] — 1 induces an action of W on K°(0y).

Proof. From the short exact sequence we get

[Ra]([An]) = [Ay ]+ [An ] = [Ap] + [Aspn]-
Thus,
([Ra] - D([Ag]) = [Asaan].

The composition of such R, satisfy Weyl group relations. ([l
5.5.3. Translation to —p.
Lemma 5.5.6. For \ positive integral T_p_,,\(A_p) = V-
Proof. Recall that T_,,\(L_,) ~ P; =t Z and P} has a standard filtration with
gr(P1) =P Apr-

Since A_, ~ L_, is self-dual and T_ ,_,\ commutes with duality we get that = is also self-dual.
Hence, = has a costandard filtration with

gr(2) =D V-
In particular, there is a surjection = - V. Recall that A4 = Sym(t)/Sym(t)". Consider
the exact sequence

t®At®£>th—>k—>0
We have f/_p = L_,® A so tensoring with L_, we obtain
I A A
Notice that
= o T_p_,)\(L_p) ~ T_p_,)\(L_p).
Since 1., is right exact applying it to the exact sequence we get
t®= > =2 T ,.\(L-,) > 0.

There exists a map 7_,.,(L-,) - V. The space Hom(Z,V,) is l-dimensional and a
module over End(Z). The subspace t ¢ End(Z) acts nilpotently so it acts by 0 on the
1-dimensional module. Therefore, the surjection = - V factors as

t®E —Z=—T ,,\(L_,) —0

|

Va
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Hence, we get a surjection
ker(Z = Ay) - ker(T_,ox(L-p) = Vy).

Here ker(T_p_)A(L_p) — V) maps to 0 under T)_,_, but

. £0
TropTpor(Lep) = Lp = Th (V)

For any vV, the only irreducible quotient is Ly = L. and Th._,(L1) =~ L_, # 0 so any
quotient of V,, which gets sent to zero under T)_,_, must be zero itself. The same holds for
any non-zero quotient of V. Hence, it holds for any module with a costandard filtration.

Notice that ker(Z - V,) has a costandard filtration so in particular we get

ker(T_p_,A(L,p) - V)\) =0.
This finishes the proof. (|

5.6. Intertwining functors. In thissection A is always regular. Recall that Ry =T}, 2T\~ -
These functors are biadjoint so there are adjunction maps Id - R, and R, — Id.

Definition 5.6.1 (Intertwining functors). The intertwining functor (also called shuffling
functor) is the functor

O, : DY (0,) - D*(0y), M ~ Cone(M — Ry (M)).
Remark 5.6.2. This comes from an exact functor on the category of complexes.
We also define the functor
O, :DY(0,) - D*(0)), M ~ Cone(Ry(M) - M)[-1].
Lemma 5.6.3. In the following all the actions are the right W action.
On Ay Ay y if SaXA> A
O : Ay A,  otherwise.

Viewing the first functor as a functor D=° - D<C and the second functor as a functor
DZO _)Dzo

Oq(M) = (M - Ry(M)), with M in degree -1 and Ry (M) in degree 0.
O, (M) =(Ro(M) > M), with Ry (M) in degree 0 and M in degree 1.
Proof. Consider the short exact sequence from lemma 5.5.2
0= A,, - Ro(A)) = A, —0.
In the first case n, =7 and 7- = s,n and in the second case 1, = s,n and 7n- = 7.

Exercise 5.6.4. (i) In case 1 the second map R, (A,) = A, is the adjunction map.
(ii) In case 2 the first map A, - R.(A,) is the adjunction map.
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In the derived category the exact sequence corresponds to an exact triangle. The cone
of a map is the term completing the exact triangle so by the exercise in case 1

@a(A’n) = Asam

and in case 2
@;(An) AV
Which is what we wanted. O

Corollary 5.6.5. The O s satisfy braid group relations so they define an action of the braid
group on D?(0,). Moreover,

Oq 00, ~1d~ 0! 00,.
Proof. The main step is to prove the following claim.

Claim 5.6.6. A functor coming from a complex of Harish-Chandra bimodules is determined
by the image of (extended) Verma modules.

Proof. The functor is of the form
F(X)=M e} X, for some Harish-Chandra bimodule M.
For M eg- modi there exists a n € N such that IgM =0s0 M ®y Uj\ ~ M.

(M of; Us) & X =~ M & (Us ® X) =~ M & X.
Thus, M ~ F(U;). Observe that F' commutes with the derived functor

ColInd : D*((g, B) - mod) - D°((g, &) - mod)
For A regular we have previously shown that

CoInd(Ax(-))) ~ U
Colnd(A;(-))) = Us.

Hence, F' is determined by F(A;\(—)\)). The module A;\ is characterized by
A;\ ®O(t)6 k= Aj.
This proves the claim. U

By the claim it is enough to check that
0.0, (A,) Ay ~0,0,(A,) for some neW -\

The same is true for the braid relations. Both statements follow from lemma 5.6.3. O
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5.6.1. Group actions on categories.

Definition 5.6.7 (Group action on a category). A weak action of a group I" on a category C
is a collection of functors { F },r satisfying that for all v1, 72 € I' there exists isomorphisms.

(SR DMEED D DO
¢o:Id = F

An action is called strong if we fix the isomorphism for all 1,72 in such a way that for all
Y1,Y2,7v3 € I' we have commutative diagrams.

¢~/m 733 Fy¢o
Fyyans Foyys Iy ldFy = Fy = Fy1d
Py1.v273 |2 2| Pv1v2 Frs ol |2 \
£y va:aF 1oy By By
7197273

Deligne in [Del| explains a practical way to check that a given collection of functors
generates a strong action of a braid group on a category. It can be used to check that
actions considered in the course are in fact strong actions; we will not get into this issue
and only use the weak actions instead.

6. DESCRIPTION OF CATEGORY O A LA SOERGEL: STRUKTURSATZ

We already know that
Oy~ A-modyg

for A = End(P)°P with P = @,y Py.) (or any other projective generator).
Proposition 6.0.1. The functor TA_,_,, is fully faithful on projectives.

For the proof we need the following lemma
Lemma 6.0.2. If P is projective then

P T , \The-p(P)

and the cokernel has a standard filtration.

The lemma will be proved in section 6.2.
Proof of proposition 6.0.1. We want to prove that if P and P, are projective

Hom(Py, Py) > Hom(Th—_,(P1), Tre—p(P2))

We will use the following claim

Claim 6.0.3. (1) If Y has a standard filtration or X has a costandard filtration then
Hom(X,Y) = Hom(Th-_,(X), Tre-p(Y))
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(2) If A is an Abelian category, B a Serre subcategory and I an injective hull of an irre-
ducible L ¢ B then

Hom4 (X, I) ~ Hom 4/5(X, I).
Proof of part (1) of claim. Let f: X - Y be a non-zero map. Then

I (Trs—p(£)) = Trs—p(Im(f)).

Any non-zero submodule in A, contains Ly = Ly,,.». Hence, so does any submodule in Y if
Y has a standard filtration. In particular, Im(f) contains L; so

0+ TA—»—p(Ll) c TA—»—p(Im(f))'

Thus, Th_,(f) is non-zero. O

By the lemma there is a short exact sequence
0Py =T, \Th_p(P2) > C -0,
where C' has a standard filtration. This gives a short exact sequence
0 - Hom(Py, P») - Hom(Py, 1, z\Txo—,(P2)) — Hom(P;,C) — 0.

The only indecomposable projective in O_, is A_, ~ L_, and since T)_,_, sends projectives
to projectives we have

T prTrop(P2) 2 T pn(A%) = 2%,
The functor T)_,_ p 18 exact so we get an exact sequence
0— Hom(TA%,p(P1)7T>\%,p(P2)) - Hom(TAé,p(Pl), TA%fp(Ee;d)) - Hom(TAa,p(Pl), TA%*p(C))

Since = is the projective cover of L; and it is self-dual it is also the injective hull of L;.
Hence, by part (2) of the claim

Hom(X, E) ~ Hom(T)-_,(X), TAﬁ,p(EeBd)).

Using part 1 of the claim

0 - Hom(P, P2) Hom(P;,=%) Hom(Py,C) -0

|

0~ Hom(Tx—rp(P1), oo p (P2)) —— Hom(Trerp(P1), Trer- p (E%4)) —— Hom (T (P1), Tr-p(C))

Applying the 5 lemma proves that Hom(Py, P) ~ Hom(TA_,_p(Pl),T,\_,_p(Pg)). O
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6.1. Recap on Serre quotient categories.

Definition 6.1.1. Let A be an Abelian category and B a Serre subcategory, i.e. a full
subcategory closed under subquotients and extensions. The Serre quotient category .A/B
has Ob(A/B)=0b(A). Write X for X € A considered as an object in A/B. A map X - Y
is represented by

X/
/ \ for some X’ € A with ker, coker(X' — X) e B
X Y

or

Yl
N for some Y’ € A with ker, coker(Y - Y’) e B
X Y

up to the equivalence relation

YI YII
X Y X Y
if there exists another triple
YIII

AN
X Y

and maps Y/ - Y and Y” - Y"” such that the following diagram is commutative

A similar equivalence relation is imposed for the triple with the arrows in the opposite
direction.

There is a natural map Homy(X,Y) — HomA/B(X, Y) given by

Y
f:X->Y - Id/ \f
Y X

It is universal (in the appropriate sense) among exact functors from .4 to an abelian category
sending B to zero. In particular, an object in A goes to zero in A/B iff it lies in B; an arrow
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in A goes to zero iff its image lies in B.
‘Bi={X ¢ A|Hom(X,B) =0 VB eB)
B':={XeA|Hom(B,X)=0 VBeB}

Lemma 6.1.2. There map Hom4(X,Y) - Hom 4/5(X,Y) is an isomorphism if either

i) X €*B and X is projective in A or' Y € B+ and Y is injective in A.
ii) X etBandY e B*.

Proof. 1) First we show injectivity. Assume that f: X — Y goes to 0. This is equivalent to
Imf € B. By assumption X € ‘BB so the map X > Imf is 0 and so f =0.
Next, we show surjectivity. Let ® € Hom(X,Y) with representative

Yl
f
/ \
X Y
Consider the exact sequence

0->ker(Y >Y')>Y - Y’ - coker > 0

Since X is projective this gives an exact sequence of Hom’s; since X € *B and ker, coker ¢
B, we have Hom(X, ker(Y - Y’)) = 0 = Hom(X, coker), so Hom(X,Y) ~ Hom(X,Y").
Therefore, f factors through Y

Yl
f
7N
X---->Y
!
Thus, we get a map f € Hom(X,Y). The other part of i) follows by dualizing.

ii) The proof of part i) shows that the map is injective. Let ® € Hom(X,Y) with
representative

X!
X / \ Y
By assumption X € *B so Hom(X,coker(X’ - X)) = 0 and hence, X" - X. Likewise,
Y e B* so Hom(ker(X’ - X),Y") =0. Thus, the map X’ - Y factors through
X'[ker(X' > X) ~ X.
This finishes the proof. ([l

6.2. Back to category O. We now prove lemma 6.0.2. For this we need the following

Claim 6.2.1. The functor Th-p does not kill any nonzero submodules of a module with a
standard filtration.
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Proof. Let N be a nonzero submodule in M and 0 c My c --- ¢ M,, ¢ M a standard filtration
for M. Choose m such that N ¢ M1 but N ¢ M,,. Then

0+ N/(N M)A,

Using proposition 4.1.1 we get that A; ¢ N/(N n M) and since T)__, is exact A_, ~
TAﬁ—p(Auk) g T)\—>—p(N)/T/\—>—p(N n Mk’) O

Proof of lemma 6.0.2. Recall that A := Sym(t)/Sym(t)}" and R, =T, \Ts-—,. Consider
the commutative diagram

Oy fo O\

TAﬁip l j T)\Hip

A—mod?A—mod

@

The map T)\_,_p(M - R, (M)) is injective so Th._,(ker(M — R,(M))) = 0. By the claim
this implies that ker(M — R, (M)) = 0.
It remains to show that coker has a standard filtration. By proposition 3.0.16 it is enough

to prove that

Ext! (coker, V) = 0 V.
Using the short exact sequence

0 — P — R,(P) — coker - 0
we get

Hom(R4(P),V,) - Hom(P,v,) - Extl(coker, V) — 0.

We want to prove that the map Hom(Rq(P),V,) - Hom(P,V,) is surjective. By adjunc-
tion we have
Hom(Ra(P)7 Vp,) - HOHI(P7 vu)

[—

Hom(P, Ra(V,.))

Since P is projective to show that Hom(P, R,(P)) - Hom(P,V,) it is enough to show
that Ro (V) = V. This is true because Th.,_,(Ra(Vy) = V) is onto and T)_._, does not
kill any quotient of V,,. O

6.2.1. A second proof of proposition 6.0.1.

Definition 6.2.2 (Tilting). An object in O, is tilting if it has both a standard and a
costandard filtration.

Example 6.2.3. The modules Ay ~Vy and 2~T_,,(A_,) are tilting.

The group W acts on A = Sym(t)/Sym(t)" so it acts by autoequivalences on the category
A-mod ~O_, and on D*(O_,).

Lemma 6.2.4. a) If Ty, Ty are tilting then
HOHI@)\ (Tl,TQ) ; Homéip(TAﬁ,p(Tl),T)\%,p(Tg)).
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b) Let wo = Sq,Sa, be a minimal expression for the longest element in W. Then
@wo ::@ o...o@san

Sap

sends projectives to tiltings.
c¢) The following diagram is commutative

0.,
D*(0,) —== D"(0,)

T)ﬁpl liﬂkﬂp

D*(0-,) == D"(0-)
Proof of proposition 6.0.1 assuming the lemma. Let Py, P> be projective. Since O, is an
equivalence,
Hom (P, Py) ~ Hom (O, (P1), Oy, (FP2)).

By part b) T} := Oy, (P1) and T5 := O, (P2) are tilting so by part a)

Hom(T1,Ts) = Hom(Tho_,(T1), Tas—p(T2)).
Using part ¢) we get

Hom (T —p(T1), Taesp(T2)) = Hom(wo(Throp(P1)), wo(Tans—p(P2)))
~ Hom(Txo_p(P1), Tasp(P2)).

Thus, we have shown that

Hom(Pl, PQ) =~ Hom(TA%,p(Pl), T)\ﬁ,p(Pg)).
Which is what we wanted. g

Proof of lemma. a) From corollary 5.3.13 we have

Os/ker(T--,)
In the proof of proposition 5.0.10 we proved that

0 ifL+L
TA—>—p(L) = A =1 . B !
-p=Li—p if L= Ll

SO ker(T,\_>_p) = <L, | L;+ L1>.
Claim 6.2.5. We have T; € *ker(Th-—,) and T € ker(Th-_,)".

Proof of claim. Let N € ker(Th-_,) = (L; | L; # L1). Using induction on the length of the
Jordan Holder series of N we reduce the first part to showing that

HOIIl(Tl, LH) =0 VLM + L.
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For this part of the claim we only need the costandard filtration on 7T;. Using induction on
the length of the costandard filtration we get that it is enough to show that
Hom(Vy,L,) =0 VL, # L.

Notice that Hom(Vy,L,) = Hom(L,,Ay). If Hom(L,,Ay) # 0 this would mean that
L, - Ay, but by proposition 4.1.1 L; is the only irreducible submodule. This proves the
first part of the claim. The second part follows from the first by dualizing. O

part a) now follows from lemma 6.1.2.
¢) From lemma 5.5.1 we have the commutative diagram

O, fto O,
TX%*p\L l/TAH*p
A -mod ~ )

We need to calculate Cone(M — A ® gsa M).

Sym(t) ®gym(tysa Sym(t) = O xg /1 5,3 t7)
There are short exact sequences

0——=O0{(z,54(2)) [z € t'}) Ot x¢ 741,50y ) O({(z,z) |z et’}) —0

[? |2
Sym(t) ®gym(t)sa Sym(t) Sym(t)

0——O0({(z,z)|zet"}) O™ Xy /(1,503 )
K; |2
Sym(t) Sym(t) ®Sym(t)3a Sym(t)

O({(z,sa(x)) |z et'}) —=0

Tensoring with k over Sym(t)" we get
0>A—>A®ysa A—As, =0,
where
Aso = O({(2,50(2)) | 2 € '}) ®gympyw k = O({ (2, 5a(2)) |2 e t°})/ Sym(t)".
Thus, Cone(M — A ®4sa M) ~ As, ® 4 M. Tensoring with the bimodule A, changes the
A-module structure on M. We obtain
As, 84 M = O({(2,50(x)) |2 € t'})[(Sym(D)Y) ®0(f(wa) et 1)/ (symey ) M = 5a(M).
Which is what we wanted.

b) To prove b) we need the following lemma

Lemma 6.2.6. Let {standard} be the set of modules with a standard filtration and { costandard}
the set of modules with a costandard filtration. Then we have a bijection

Ouy : {standard} > { costandard}.
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For w e W write Ay, := Ay _yv) using the right W action and -\ = wp(A). Then the
Bruhat order on W corresponds to the standard order on weights.

Proof of lemma 6.2.6. Since O is exact it is enough to prove that it takes Vermas to dual
Vermas. Using lemma 5.6.3 we get

Ay =6 (A).
VU) = @wo(vl).

1

We want to show that ©,,(Ay) = Vww,- Set wy := wwy. Then wy = w™w; and (wp) =

f(w™) + £(wy) so
®w0 = 9w1 o @,w—l.
Using this and corollary 5.6.5 we get
Ouq (Aw) = O, ©0,-1(0],(A1))

= ®w1 (Al) = Gwl(vl)

~ le .
Which is what we wanted. g

A projective P has a standard filtration so by the lemma ©,,,(P) is in degree 0 and has

a costandard filtration. By proposition 3.0.16 the module ©,,,(P) has a standard filtration
iff

Ext' (O, (P),V,) =0  Vpu.
By lemma 6.2.6 one can write V,, as Oy, (A, ) for some v so
Ext'(Quy(P), V) = Ext!' (O (P), Ouy(Ay)) =~ Ext' (P, A,) = 0.
This finishes the proof. O

Ezercise 6.2.7. (1) Prove that there is bijection 0, : Projectives 5 Tiltings. Le. prove
that

Oy, : Tiltings > Projectives

is the inverse.

Remark 6.2.8. In particular, the indecomposable tilting objects are in bijection with
the irreducibles so they also generate D?(@,). This is true in any highest weight
category.

(2) Let w,v € W. The character of 0,,(A,) € O, is the same as the character of A,,.
E.g.

Ou(Ae) = V.
Ow(Awy) = Awwg-
These are called shuffled Vermas.
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6.2.2. A projective generator for Oy for A regular.
Lemma 6.2.9. Assume that s - > p with the right action. Then in K°(O))
[Ra(Lp)] = [Lsou] + Z dy[Ly],

U<Sqlh
where dy, is some coefficient.
Proof. The proof goes by induction. For g = Amin we have L, ~ A, so the short exact
sequence
0->A, = R.(Ay) - A, —0.
gives
[Ra(Lp)] = [Lu] + [Asep] = [Lsan] + 2[Ly]-
For p arbitrary with s, -y > p we still have
[Ra(Ap)] = [Aspn] + [An].
By exactness of R, the short exact sequence
0—ker, -A, - L,—0
implies
[Ra(Ap)] = [Ra(Ly)] + [Ra(kery)].
Hence, we get
[Ra(Ly)] = [Au] + [Asen] = [Ra(ker,,)].

[Ra(ker,)] = Z d,[L,].

By induction

V<Sq b

Recall that for any A
[Ax] = [LA]+ ) au[Ly].
V<A
Thus,
[Ra(Lu)] = [Lsa-u] + Z dy[Ly].
V<Sq-lh

Which is what we wanted. O

Corollary 6.2.10. Every indecomposable projective is a direct summand in a module Ry, -+ Ra,, (Awy,)-
More precisely, if P, is the projective cover of L,, and we have a minimal decomposition
WoW = Sq,***Sa, then P, is a direct summand in Ry, ---Ra,, (Aw,)-

Proof. The R, are exact and self-adjoint so they send projectives to projectives. A, =
Aygano(r) = Ay is projective, so we only need to find as,...,a, such that Ry, Ra, (Aw,)
contains the indecomposable projective P,,. Pick a minimal decomposition wow = s4,**Sa
Then it is enough show that

Hom(Rqy, R, (Awy ), Lw) # 0.

n*

By adjunction
Hom(Ry, Ra,, (Awy), Lw) = Hom(Ayy, Ra,, - Ray (Lw))-
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The proof of a more general version of BGG reciprocity ([Hum, Theorem 3.11]) shows that
dimHom(Ay,, Ra, - Ray (Lw)) = [Luwg : Ray - Ray (Lw) |-
Since wsy,, *8q, = wo the lemma shows that
[Roy+Ra, (Lw)] = [Lws,,, +sa, | +lower terms

= [ Ly, | + lower terms.

Hence,

dim Hom(Ry, - Ra,, (Awy)s Lw) = [Luwgs Ray - Ra,, (Lw)] = 1.
This finishes the proof. O
Corollary 6.2.11. (1) Fix a minimal decomposition wow = sqw-+sqw for each w € W.

Then
P = EB RaiU“‘Ra%f (Awy)

is a projective generator for Oy ~ O,.
(2) Set M =6, A ® ,saw A ® oy ® saw A® saw kand A:= End(M)°PP. Then
Oy ~End(P)? —mody 4 ~ A-mody,,

Proof. Part (1) follows directly from the lemma.
2) By lemma 5.5.1

Tho—p(P) =D A ® yrar A ® oy @ ptaw A® ysar Tro-p(Auy)-
w

Under the equivalence @_p 5 A -mod the module A, Txﬁ,p(Awo) gets send to k so
Trop(P) = ?AQQAS“E” A® oy @ poaw | A ooy k.

Since T,\_)_p is fully faithful on projectives we get

End(P) = End(T)\-_,(P)) ~ End(M)
This finishes the proof. O
6.3. Other versions of category O,. Recall that the usual category O, is defined as

o N L integrable | The action of t on M is diagonalizable
A7) modules M | Z acts by generalized central character A

Write OF := Oy. We can also consider the following related categories

Ny I integrable | M = @generalized eigenspaces of t
A7) modules M | Z acts by character

Ao I integrable | M = @generalized eigenspaces of t B
A7) modules M | Z acts by generalized central character \
o integrable | The action of t on M is diagonalizable
A7) modules M | Z acts by character
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These categories have descriptions similar to the one for O,. Consider the modules for
A= Sym(t) ®gym(uw Sym(t) = O(" xg w t) = O(UTw),

where T, is the graph of w acting on t*. Notice that A4 ~ A ®sym(t) k and consider the
functor

Ry :A-mod - A-mod, M = Sym(t) ®gym(tysa M.
Starting with Oa = O(T'1) and applying R,’s we get

M= @  RaRa,(On)

w:sglmsgn
Set A := End (M )P
"oy = A~ modﬁf' c A-mod.

Here the subscript nil means the modules on which O(t*//W). acts nilpotently. The other
variations of Oy have similar descriptions.

O3 = k ®gym(1y A—mody.q.,
"0y ~ A ®Sym(t) k- modf_d.,
@A ﬁ/i@jk—modf_d'.
Note that k ®gym 1) A~ A ®sym(t) k s0 OF =~ "O,.

7. A GRADED VERSION OF CATEGORY (O, FOR REGULAR A

The ring Sym(t) is a graded and Sym(t)" is a homogenous ideal so A is graded and we
obtain a grading on M. Notice that a grading is equivalent to an algebraic C*-action and
that a C*-action on M induces a C*-action on End(M). Hence, we get a grading on A

Definition 7.0.1 (Graded category O,). Define the graded version of O, to be
Of = A- mod?rg' .
For any finite dimensional graded algebra B there is an automorphism
¢ C K B-modf ),  [M]~[M[1]],
where M[i], := M;,y,. The forgetful functor factor as

KO(B—mod?g.) K°(B-mody,)

\ /

K%(B-modf )/(q-1)
This can be thought of as a ¢ deformation.

Lemma 7.0.2. There is an isomorphism K°(B - mod?g.)/(q 1)~ K%(B-mody,).
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Proof. It is enough to check that any irreducible L € B —mody, can be equipped with a
grading and that the isomorphism class of the graded module L is unique up to a grading
shift. A grading is equivalent to an algebraic C*-action. It is a general fact that

B/Rad(B)~ @@  Endp(L;).

L; irred. rep.

Hence, a C*-action on B gives rise to a C*-action on each Endy(L;) ~ Mat,, (k) where
n; = dim L;. This lifts to a C*-action on L;.

C* —— PGLy, ~ Aut(Endy(L;))
T~ N ]
GL,, ~Endi(L;)
The lift is unique up to a scalar so the corresponding grading is unique up to a shift. [

The action of Ry, 0,0, on Oy and D(0,) lifts to an action on Of and Db((’)fr).
Indeed, consider the full subcategories

Proj(0,) < A-mod,
Proj(Of") - A-mod®" .
The functor
A —mod® - A - mod®, M- A®psa M

preserves those subcategories so it induces an endofunctor Rg on Proj(Of").
Ezercise 7.0.3. The functor RS extends uniquely to all of Oir.
Question 7.0.4. What can be said about the action of K'(RY") on K°(O5")?

Recall that s, = (KY(R,) - 1) defines an action of W on K°(0,). One can check that
the maps A ® gsa A > A and A > A ® g4so A induces functors on the graded category

Cone(RE - 1d)[1] = ©.%,
Cone(Id[1] -~ RE') =: ©%.
Example 7.0.5. For g = sly the second map is given by
klt1,t2]/(t1 —t2) = k[t] - k[t] ®p2) k[t],  t—t1+ta.
Ezercise 7.0.6. The functors ©F and ©/*" also satisfy braid relations.

The generators of the braid group B is indexed by the simple reflections. Write 5, for
the generator corresponding to s,. For an arbitrary w € W with minimal decomposition
W =S4, *Sq,, S€t W =S4, "5q, -

Write 1 = K°(RE). Either 5, - (1 -14) or 3, = (74 — ¢) gives a right braid group
action on K°(OF").
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The functor on A — mod®" corresponding to R o RS comes from tensoring with the
bimodule
A®A8a A®A5a A o A®A3a A@ A®ASa A[l]
This implies that
ri =Tq+qra
Rewrite this as 74 (rq — 1 —¢q) = 0. Setting 0, := 7, — 1 it becomes
(0o +1)(0a —q) =0.
This is exactly the relation in the Hecke algebra
H,:= Z[v,v_l][B]/(éa +1)(80 - 1)2),

where ¢ = v2.

8. THE KAZHDAN-LUSZTIG CONJECTURES
Let D denote the automorphism of the Hecke algebra H sending
v v §al—>§;1.
The eigenvalues of 5, are +1 so such an automorphism exists.
Proposition 8.0.1. There exists a unique Z[v,v™"] basis Cy, with D(Cy) = Cy.

Cw = U_Z(w) Z Py,w?j,
Y

where Py, € Z[v, v™1] is a polynomial satisfying

(1) Py =1.
(2) Pyw=0ifytw.
(3) Py € v O[N] for y < w.

Proof. Rewrite
0=(3a+1)(3a —0?) =52 + (1 - 0%)3, - 0* =
5o = (V2 - 1) + 0251
Put 8/, :=v™15,. Then
D(3.) = 8., + constant.

For a general element

D(w) = g&}...g;}i - (§an"'§a1)_1
-1 ’ _ B
= (wl) =02 (W) + Z GyJ.

y<w

Putting @' := v=(")4 this becomes

D@y ="+ Y Gyj.

y<w
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Hence, one can rewrite the proposition as
~ ~1rpr, -1
Cw=>.P, i, P, ,€v Z[vT].

The basis is constructed inductively. Set C7 = 1. For a fixed w assume that we have C), for
y < w. Using this basis

@' -D(w") = > Q,C,.

y<w

Since D? = 1d applying D yields
—(@" - D(@")) = 3 D(Qy)Cy.

y<w

It follows that Q,(v™') = -Qy(v) so Qy is of the form
Qy(v) = P,(v) - P,(v1h), for some P, € vZ[v].

Set

Cyw=1"+ Y Py(v")C,

y<w
Then
Cuw = D(Cy) =@ = D(@") + 3 (Py(v7") = By (v))C,y
y<w
=2, Qy()Cy = 37 Qy(v)C,y
Yy<w Yy<w

=0.

This finishes the proof. g

The C, are called the canonical Kazhdan-Lusztig basis. The image under the map
H - Z[W],v ~ 1 is denoted by C,,.
Theorem 8.0.2 (Kazhdan-Lusztig conjecture). The isomorphism Z[W] > K°(O)) given

by
w e [Ay]

sends Cy to [Ly].
The conjecture yields the character formula
XLw = Z Py,w(l)XAy'

y<w
Remark 8.0.3. Define the Kazhdan-Lusztig matrix
M = (Py.) € Matyy (Z[v,v']).

Assuming the Kazhdan-Lusztig conjecture M ™' records the grading multiplicities in the
Jordan-Holder series of T,
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Let M* be the matrix corresponding to the automorphism v ~ v~'. Combining this with
BGG reciprocity, [Ay : Py] =[Ly : Vy] we get

C=(WMHHY ML, ~P,
and C' is the Cartan matrix of the graded algebra A’.
There is also a graded version of the conjecture

Theorem 8.0.4 (Graded Kazhdan-Lusztig conjecture). The isomorphism H - K°(OS")
given by
o A% = 02(L)
sends Cy, to [LY)].
8.1. Modifying the grading. Change the grading on A by doubling each degree. I.e.

A ,; ifiiseven
A e old, 5
new.,t *—

’2
0 if 7 1s odd

With this grading shift
K°(A-mod®) = H, ~ Hy ®, 11 Z[v, v '].
If Q is a graded A-module which is a projective generator for A — mod then
OF := A-mod® ~ A" - mod®,
where A’ = End 4(Q)°PP.

Theorem 8.1.1 (Main theorem). The module Q can be chosen in such a way that A =0
fori<0 and A{) is semisimple.

Remark 8.1.2. The theorem would be false without modifying the grading.

Ezample 8.1.3. For g = sly we have the minimal projective generator Py @ Py ~ k@k[t]/(t?) =
M. In section 5.4 we showed that all Hom spaces between the indecomposable projectives
are 1-dimensional except for End(P2) which is 2-dimensional, we also described the alge-
bra structure on End(P; @ P,). This can be represented by the quiver with the left dot
corresponding to P; and the right dot corresponding to Ps.

Here ba is multiplication by ¢ and ab = 0.
Path algebra/(ba = 0) ~ End(P; & P»).

In the old grading deg(ab) = 1. Replacing P; by P;(n) we change the degree of a by n and
b by —n. In the new grading deg(ab) =2 and we can arrange that deg(a) = 1 = deg(b).
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8.2. Proof of the graded Kazhdan-Lusztig conjecture using the main theorem.
The plan is to lift the duality on Oy to (’)/g\r in such a way that the induced action on
K°(OF") is the involution D : H, — H,.

Assume that we have such a duality. The lift is unique up to shifts so for some lift Zf
Ly, = Ly = Ly = Ly (2n) = (L},(-2n))"
Fix the grading
Ly =Ly (n) = (Lu(n))”
Then L,, satisfies L, ~ L,, so
D([Lw]) = [Lw].

This shows that the preimage of the class [L,] under the isomorphism H > K 0(0F") is
invariant under the involution. The next lemma shows that it also satisfies the other charac-

terizing property of the Kazhdan-Lusztig basis, so the lemma implies that the isomorphism
maps Cy, to [Ly].

Lemma 8.2.1. The module A, admits a grading lift Ay, with a map Ay, — Ly, lifting the
map Ay > Ly,

Proof. Since A1 ~ L1 we set Ay :=L;. In the non-graded version we had A, ~ ©,(Aq) so
we define ) }
Al =08 (Ay).

The map Oy - A - mod sends A, to k. We want the map Of" - A - mod to send A,, to
k, where k sits in degree 0. For this we need to introduce a grading shift

Ay = A:U(—%(w))
By definition

[Ay] =ty = v W

D(ty) —tw = Z TyY

Yy<w
The main theorem implies that the Jordan-Hblder series of A,, is of the form
[Aw] = [Luw] + Z v_lZ[v_l][iy].

y<w

Thus, the matrix M € Maty/(Z[v™']) sending [Lw] to [A,] is upper triangular with ones
on the diagonal. The inverse matrix

MY=T-(I-M)+(I-M)?>+--
also has this form. To finish the proof we need the following lemma.

Lemma 8.2.2. Assuming the main theorem, if A" ~ A is a graded Morita equivalence and
A’ is positively graded then there is a bijection

{Irreducible A" modules in degree 0 <  {Ly[m], weW andm independent of w}.
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We can assume without loss of generality that m=0. Let M = &;M; be a graded module
over A'. Set n =min{i | M; # 0}. Then M"* := ®;5,M; is a submodule and we have a short
exact sequence

O-M,->M->DM,—0

The Jordan-Hélder series for M only contains L[] with i > —n and
M, =@ L{[-n).
(2
Applying this to M = A,, we get Ay, - L. U

8.2.1. Lifting duality to (’)/g\r. Recall that we have the exact, self-adjoint (up to shift) functor
R (= E%). On O, we have the duality functor Oy - OP”. Notice that the opposite to the
category of finite dimensional (graded) modules over a ring is naturally equivalent to the
category of finite dimensional (graded) modules over the opposite ring (i.e. right modules
over the original ring), the equivalence sends a module M to the dual vector space M™.
Thus the duality defines a functor

A-modyg = Oy > O = A%PP —mody 4., M~ M.

We want to upgrade it to a duality on the graded categories.
A - mod® — AP —mod®".
The ordinary duality is exact so it can be written as
(=) ~Hom(P,P") ®4 -

Equipping the module Hom(P, P¥) with a grading yields a graded duality functor.

A —mod® — AP — mod®’, M ~ Hom(P, P") ® 4 M.
To define this grading we first notice that with the old duality

\%
PV - (@RO‘T‘Raﬁ(AWO)) = @Ra.lea%(vwo) =I.

Hence,
Hom(P,P") =P Hom(Raz---Rag Row-+Row (Awg)s Vg )-

VW

Recall that we have the exact sequence

te Py Py Vg ——= 0
I ~ I
’L®T,p9)\(A_p) T,p%)\(A_p)

From this we get

t® Hom(-, P;) - Hom(—, P;) - Hom(-, Vy,) = 0
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Notice that
HOm(Ravm“‘Roﬁl’Rai“'”Raﬁ(Vwo)aPl)
= HomA(T)H—p(Ra%"Ra’f Rai“"'R%“{(vwo))’ A—p)

=Homa(A® o - ® . k A).

Thus, we have the exact sequence

f®H0mA(®A®Ang ‘“®Asl"‘un k,A) — HomA(@A®Asgm ...®Asgn ]{;7A) s HOHI(P) P\/) -0
v,W v,W
The first two terms are graded and the first map is graded. This induces the desired grading
on Hom(P, PY).
Now we need to check that this duality is compatible with the involution on the Hecke
algebra. Write [A,] =T/, and since A1 * V, ~ A1 we have
D(T,) =T"ys = [Vu].

Thus, it is enough to show that
AV ~V,.

The module A, is the unique object in O, satisfying Ext!(A,,L,) = 0 for v < w,
Hom(Ay, Ly) - 0 for v < w and Hom(Ay, L) = k. Similarly, A, is the unique object of
0% with Homg, (A, L,) = k placed in graded degree zero, while Homg, (A, L,,) = 0 for
v < w and Extér(ﬁw,f/v) =0 for v < w (here we write Hom,, for the graded Hom taking
values in graded vector spaces). It follows that AIVU satisfies the characterizing properties of
A Homgr(iw, Vw) = k placed in graded degree zero, while Homgr([:v, Vw) =0 for v < w
and Extér(f,v, Vw) =0 for v <w. Hence, ALVU ~ V-

9. GEOMETRY OF THE FLAG VARIETY

The main theorem will be proved using the geometry of G/B (conceptual way: via D-
modules and Riemann-Hilbert correspondence). Instead, we will use topology and work
with Sh(G/B) (here G/B = G/B(C)). It turns out that

O, c Pervc Db(Sh(G/B))>

where Perv is the category of perverse sheaves. In example 3.0.10 we introduced the category
of perverse sheaves compatible with a fixed cell decomposition, Shx(X). The general
definition of Perv will be given later.

Definition 9.0.1 (Equivariant sheaf). An equivariant sheaf for an action of a topological
group H on a topological space X is a sheaf F on X together with an isomorphism of
sheaves on H x X
a” (F) = pr’(F),
where
pr: Hx X - X, (h,z)~ x, a:HxX - X, (h,x) v~ h(x)
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such that the two isomorphisms of sheaves on H x H x X

a”(F) = pr’(F),
here pr(hi, ho,x) =z and a(hy, he,z) = hiha(x). The category of H-equivariant sheaves is
denoted Shp(X).

Definition 9.0.2 (Wrong definition). A naive equivariant complex of sheaves on X is an
object in D(Sh(X)) and an isomorphism as above satisfying the above condition. We
denote this category by D(Shy(X)).

Remark 9.0.3. There is a natural functor from the correct equivariant derived category
to the category of naive equivariant complexes. This functor is an equivalence on the
subcategory of sheaves, as well as on the category of perverse sheaves. Thus if F is a sheaf
or a perverse sheaf, then a naive equivariant structure on F uniquely lifts to an actual
equivariant structure. On the other hand, the category of naive equivariant complexes is
not triangulated in general and does not satisfy descent, i.e. in the cases when the quotient
X /H exists it does not coincide with the derived category of sheaves on the quotient.
The right definition of Dy (Sh(X)) satisfy the following properties
(0) For an H-equivariant map f: X — Y there exist functors f,, f*.
(R)f+: Du(Sh(X)) » D (Sh(X))
(1) If the action is free and X /H is defined then
Dy (Sh(X)) ~ D(X/H).
(2) Consider X = E' xY where E has a G action and is contractible. Let f be the
projection to Y. Then
f7:Du(Y) > Dp(X)
is fully faithful.

In particular, if H is contractible (e.g. H is a unipotent algebraic group over C) and we
take £ = H. Then

Di(X) ™ Dy(H x X) - D(X)
is a full embedding.

Ezxercise 9.0.4. Show that its image consists of objects admitting a naively equivariant
structure. Such a structure is unique if it exists.

Theorem 9.0.5. In the notation below the first factor in the equivariance acts on the left
and the second factor acts on the right.

D(03}) = Dpxn(G) = Dn(B\G),
D*("0,) = Dnyp(G),
DP("O}) c Dynun(G)  full embedding.

All sending the abelian category to perverse sheaves
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However, D°(O,) ¢ Dp.p(G). The category Dp,p(G) is not the derived category of
any abelian category but it is a DG category.

Dpyp(G) = DG - mod(A &, k).

Ox = pervp, 3(G)

Recall that N-orbits on B = G/B are indexed by W and B,, ~ AW et Jw i By > B
denote the embedding.
The category C := Dy (B) ¢ D(B) consists of complexes F such that

H'(j2(F)) is the constant sheaf for all w,3.
Recall from example 3.0.10 that C is generated by the exceptional collection
Ay = ]w'(g)[g(w)]
with dual collection
Vi = Rju« (C)[{(w)]

Definition 9.0.6 (Perverse sheaves). The category of perverse sheaves P is the full sub-
category in C given by

P = {F|Hom(Ay, F[i]) = 0 = Hom(F, V,,[i]) Vi>0,weW}.

It is known that P is a highest weight category with standard objects A,, and costandard
objects V,, and that D°(P) =~ C.

Remark 9.0.7. The Grothendieck group K°(P) = K°(C) is freely generated by [A,].

Let j: U = X be an open embedding and i : Z - X a closed embedding with Z ¢ X\U.
Then for any sheaf F on X there is a short exact sequence (see [Iver, 6.11])

(3) 05" F—>F—i.i"F—0.
Ezxercise 9.0.8. Prove the remark directly using the exact sequence.
Our goal is to construct an equivalence
L:0y>P.
Ezample 9.0.9. For G = SLa, B=P! and W = {1,5s}. In the derived category we have
Co[-2] » C > Rj.(C) - Cy[-1]
This comes from the short exact sequence of perverse sheaves
0-C[1] > Rj.(C)[1] - Gy~ 0
In particular, the only non-zero stalk of Rj,(C) is the one at 0:
stalk(Rj.(C)) at 0 = lim H*(Disc - {0}) = H*(S").
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The irreducibles in P are indexed by W. They are the minimal Goresky-MacPherson
extension

Ly = ]w'*(g[g(w)])
In particular, L., is supported on B,,. They fit into the exact sequence

Ay = Ly = Vy
The Weyl group is equipped with the partial order given by
v<w < By, cBy.
It follows form the following easy property of ji. that j; (L) = C[4(w)].

Lemma 9.0.10. Assume that Z is irreducible and j : Z — X is a locally closed embedding
(1) If Z is closed then
e (C[dim 2]) = C5[dim Z].

(2) If f: X > Y is a smooth map and j' : T — Y is another locally closed embedding
fitting into the diagram

7t x
L
T¢> Y
with Z open in f~1(T). Then
Jie(Czldim Z]) = f*(j{. (Cp[dim T]))[dim Z - dim T'].
Notice that for x,, € By,

0 vFEW
Cll(w)) v=w

Hence, for F € K°(P) the Euler characteristic of the stalk at x,, computes the number of
copies of [A,] so

[F]=>[Av]ew, er = (-1)"™ Bul(stalk of F at z,),

v

Assuming P ~ O, this shows that
P, (1) = £Eul(stalk of j,1.(C[¢(w)]) at xy).

stalk of A, at x,, =

Our plan now is to axiomatize what £ does to T)\_,_p,@w and R,. We will then get a
Soergel style description of the topological category, which will allow to construct L.

Ezample 9.0.11. For G =SL(2) we have B = P!, By = {0} and By = P}\{0} = A'. Let j be
the open embedding j : A = P!, Applying (3) to the constant sheaf Cp: we get

0—ji(Cy1) > Cpr > Cy—0
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This gives an exact triangle in the derived category
Cy = 1(Cu)[1] = Cpa[1] » Co[1]
The first 3 terms form a short exact sequence of perverse sheaves.
0-Li—-A;—>Ls;—0.
Using Example 9.0.9 we get a short exact sequence
0 Cpi[1] > Rju(Cp)[1] > Cy > 0

This can be rewritten as
0—->Ly—>Vs—> L1 —0.

Sheaves supported on a point cannot have higher cohomology so
C i=1

Ext’(Ls, L) = Ext'™ (Cp1,Cy) =
xt*( 1) xt™(Cpr, Co) {() otherwise

; C i=0
Ext'(L1, Ly) = {O otherwise
The long exact sequence
0=Ext'(Ly, L) - Ext' (L1, A) - BExt' (L1, Ly) - Ext*(Ly, Ly)
implies that Ext!(L;, Ay) = C. Let Z be the unique non-split extension
0>Agy—>=2—->L1—>0.

Applying the long exact sequence one more time it is easy to check that Ext'(Z,L;) =0 =
Ext!(Z, L,). Thus, Z is a projective cover of L; in the category Pervy (P').
The associated graded of the Jordan-Holder filtration is then given by

Ly Gy
gr(2)=|Ls|=|Cpm
Ll Qo

This is sometimes written as

Here the line represent the constant sheaf and the dots represent skyscraper sheaves.
Notice that L1 < Ag so we have another short exact sequence coming from the inclusion
L=
0->L-=Z->V,—0.

Also one can check that Ext!(L;,Z) = 0 = Ext! (L4, Z) so Z is also an injective hull of L,
in Pervy(Ph).

We will later see that = is self-dual with respect to a duality interchanging the last short
exact sequence with the previous one.
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10. INTERTWINING FUNCTORS

10.1. Definition of intertwining functors. We now define functors which will later be
shown to generate a braid group action on the topological category.

Recall that A = Sym(t)/Sym(t)". We will define a functor P - A - mod and an action
of the braid group B on C. The G-orbits on (G/B)? are indexed by W. For a fixed w € W
we pick an orbit of G on (G/N)? which projects to the G-orbit on (G/B)? corresponding
to w. This orbit is denoted by X,,.

X
pry’ pry
/ \2
G/N G/

The intertwining functors are defined as follows:
I,:C—~C,  F e prgpri™ (F)[{(w)].
Note that the same definition gives a functor
L Di(GIN) > Dy (G/N)

N

for any subgroup H c G.

Ezample 10.1.1. For G = SLy we have W = {1,s} and G/N = A%\{0} = V\{0} for a 2-
dimensional vector space V. Then one choice of X is given by X = {(v1,v2) | w(v1,v2) = 1},
where w is a 2-form.

10.2. Generalities on f| - derived functor of direct image with proper support.
Let f: X - Y be a map of schemes. For any sheaf 7 on X and any open subset U c Y we
define

LU, £.F) =T(f(U), F),
L(U, fiF) = {sections whose support maps properly under f} c T(f~1(U), F).

It has the following properties

(1) (fogh=fiog.

(2) If f: X - Y is an open embedding then fi is extension by zero.
(3) If f is proper then f, = f..
(4)

Base change: for a cartesian diagram

Xxy 22 o7

| |+

X Y

the functors satisfy ¢ fi ~ gip*.

Ezxample 10.2.1. Consider the case where X = pt. Then the stalk of fiF at a point y € Y
equals Tc(F|z,), where Z, = f(y).
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Remark 10.2.2. The base change formula is not true for ! replaced by *. Consider the

following example. Let f:Z - Y and x € Y. Then we have a cartesian diagram

i) =V, 7

7

oy ——Y

Calculating both sides

U foF = (foF)e =1UmT(U, f.F)
Usz
= lim O(f7'(U), F)
JH(U)>Y,
fx*j*}—: f:c*(f|Yz) :F(]:|Yz)
= lim I(V, F).
VoY,

From this we see that there is a map

iV foF = fusd ™ F

If f is not proper then there may exist open subsets V 2 Y, not containing a subset of the

form f~1(U) for an open U 5 z, so the map might not be an isomorphism.

Another counterexample is the following. Let f : U — Y be an open embedding and
¢:Z —Y aclosed embedding with Z c Y\U. In particular, Z xy U = @ and ¢ fi = 0 but

often ¢ f. # 0 so base change fails.

10.3. Verdier duality. Let X be a smooth C manifold and F a sheaf on X. Define the

Verdier dual
V(F) =F" = RHom(F,C[2dim¢c X]).

This can be extended to not necessarily smooth manifolds. For f : X — Y the Verdier

duality satisfies
fi=Vy f.Vx.
In particular, VoV ~ Id.
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Example 10.3.1. If Y = pt and X is smooth then this amounts to Poincare duality
H(X)" = BZ™(X)

Remark 10.3.2. If X is non-smooth with a closed embedding f : X — Y into smooth Y
then f, = fi is a full embedding. Thus, we get a decomposition of Vx in terms of Vy.

For f: X - Y smooth V commutes with f* up to a shift
fo*Vy(f) = f*(]:)[Q(dlmX - dle)]

' Recall the adjunction Hom(F, f.G) ~ Hom(f*F,G). For f smooth f is left adjoint to

e,
! Hom(#F,G) = Hom(F, f'G).
If f is a smooth map of C varieties then

F'F~ f*F[2(dim X - dimY)].
In particular,
Hom( fiG,F) = Hom(G, f* F[2(dim X - dimY")]).

10.4. Properties of the intertwining functors. We now return to the functors I, in-
troduced in section 10.1

Claim 10.4.1. The intertwining functors satisfy
Ly, Ly = Tpyapy, when £(w1) + £(w2) = £(wiws).
Proof. 1t is a general fact for algebraic groups that
Xy *x Xy = Xujws-
Thus, we have a cartesian diagram

P

lewg - Xw2

I

Xy ———= X
w1
pry

By base change
pri’tpry? = gy’
Applying this we get
Ly Ly (F) = prytypri’ " pry? pri®™ (F) [(wr) + £(w2)]

= pry’t i pup pri’® (F)[E(wr) + L(w2)]

= (pry’* o @)i(pry? o )" (F)[l(w1) + {(w2)]

= pry 2 pr T (F) U (wiws)]

= Lpywy (F).
Which is what we wanted. O
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Remark 10.4.2. The functor I, : D(Sh(X)) - D(Sh(X)) is not an equivalence.

To see this, consider the case G =SLs. Let z,y be non colinear vectors in A?\{0} and set
Fi=C, and G:=C,.

Then Hom* (@w,@y) =0 and

I(C,) =Cp, [1],  Lo={v|{v,z) =1},
I5(C)) =C, [1], &y ={v[(v,y)=1}.

Exercise 10.4.3. Show that |[¢; n¢,| =1 and dimExtz(Qgr,sz) =1.

Let w e W and let (G/B),, c (G/B)? denote the G orbit in (G/B)? corresponding to w.

pri (G/B)w p

G/B G/B

T2

Define
I, : D(Sh(G/B)) - D(Sh(G/B)),  F > proapri(F)[L(w)].

Note that unlike the definition of I, there is no choice involved here. Let 7 : X — G/B be
the projection. The next lemma shows that for sheaves on X which comes as a pull-back
of a sheaf on G/B the definition of I, is independent of the choice of X,,.

Lemma 10.4.4. There is an isomorphism of functors I,(7*F) =~ 7* L,(F).

Proof. 1t is a fact that
Xy = (G/B)w *G/B X.

Hence, there is a cartesian square

X,y —% (G/B).

pry’ j lprz

X G/B

T



68 ROMAN BEZRUKAVNIKOV AND TINA KANSTRUP

By base change 7*pro) ~ pry,¢* so
T Ly(F) = 7 prapri (F)[~4(w)]
= pry ¢ pri(F)[4(w)]
= pry (pri o ¢)" (F)[-4(w)]
= pry(mopry’)" (F)[~{(w)]
~ pro\pri” m (F)[-(w)]
= I,(7*F).
Which is what we wanted. O

A proof similar to the one for I, shows that
I R when £(w1) + £(w2) = L(wrws).
Define another functor
I, : D(Sh(G/B)) » D(Sh(G/B)),  F = pra.pri (F)[L(w)].

Claim 10.4.5. There is an isomorphism of functors I, I, ~ I'I; ~ Id. Hence, I, generate a

braid group action.

It turns out that I, and I, are particular cases of convolution.

Definition 10.4.6 (Convolution). Notice that Dg((G/B)?) ~ Dp(G/B). Define the con-
volution product as

+: D(Sh(G/B)) x Dp(G/B) » D(Sh(G/B)),  F *G:=pra.(pri(F) ®G).
Since G/B is compact proj = pros.

For G := ju,(Cl{(w)])

F g = j’w(f)7
and for G := jux (C[4(w)])
F+G=1I (F).
Consider the projections
G/B xG|B xG|B
G/BxG/B G/BxG|B G/B xG|B

The category Dp(Sh(G/B)) =~ Da((G/B)?) is a monoidal category with the following
convolution
F % G = p1a«(pria(F) @ pryg(9)).
Associativity follows from base change. This monoidal category acts on Dy (G/B) for any
subgroup H c G.
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Proof of claim. Using the observation above
LI(F) = I(F) * ja(C[1])
= F x Js (C[1]) * jst(C[1]).
The unit for the convolution is C, = Ay. Thus, we need to show that
Js+(C[1]) * jst(C[1]) = Cy,
where 0 is the 0-dimensional B-orbit on G/B. For this it is enough to calculate the stalk
Stalk at z, € (G/B), = H( O.i)"’”) =0,
Stalk at 0= H*(C,:1) = C.
This finishes the proof. O
Proposition 10.4.7. The functor
Iy: Dp(G[N) - D(G/N)
1s left exact. In particular, it induces a functor
L, : D*(P) > D*(P).
The functor I, is right ezact one has
I,,: D°(P) » D<(P).
10.5. Convolution of (co)standard sheaves etc. Let A,V and L,, be the elements in

Dp(Sh(B\G)) = D(B\G/B) corresponding to A, V4, and L, € D(B\G/N) = Dy (Sh(B\G)).

Using the isomorphism
(G/B)z, xc/p (GIB)a, = (G/B)a s if L(wiwz) = L(wr) +£(w2).
and base change one can show that if /(wjws) = f(w;) + £(w2)
Ay * Ay = Dy
Vwi * Vs = Vws-

We also have Ag * Vs = Aj. Recall that for a simple reflection s, we have the following
extensions in D(B\G/N).

(4) 0> A, > 20— A1 -0,
(5) 0—-Vi—>Ey— Vs, —0.
Lemma 10.5.1. (a) The functor _ * =, is exact

_ % 24 : Perv(B\G/B) - Perv(B\G/N).
(b) The functor _ * Ag, is left exact

_* Ay, : D*(B\G/B) - D**(B\G/N).
(¢) The functor _ Vg, is right exact

% Vs, : D(B\G/B) - D="(B\G/N).
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Proof. Recall that
D%(B\G/N) = (A,[d] | d>0,weW)
= {F | Ext(F,Vy) = 0,Yw e W}.
D*(B\G/N) = (Vy[-d] | d>0,w e W)
= {F|Ext(A,, F)=0,Ywe W}.
To prove part (a) it suffices to check that A, * Z, € P and V,, * Z, € P. There are two
cases
(1) l(wsy) > £(w). Applying A,*_ to (4) we get
Ay * Ag, = Ays, = Ay * Zq = Ay
Since Ays, € P and Ay, € P we get that Ay, * =, € P
(2) l(wsq) < £(w). In this case we apply Ay, *_ to (5)
AwAAw*EaeAwsa :Aw*vsa
The same argument as before shows Ay, * Z, € P
The argument for V,, is similar.
Part (b) follows from (4), while part (c) follows from (5). In more detail, convoluting (4)
with M we get a long exact sequence
> H7Y M) > H (M + Ay) > H (M % Z4) — -
If M € DY then
H'(M)=0 and H'(M*Z,)=0  fori<0.
Thus, H (M * A,) =0 for i < 0 so —* A, is left exact. The same argument using (5) instead
of (4) shows that *V,_ is right exact. O

Remark 10.5.2. Left/right exactness of _ x A, /- * Vg, also follows from a general theorem
about direct image of perverse sheaves under affine maps.

Lemma 10.5.3. For any w e W there exists maps
Li=A1-> Ay
Vw > Ay =1L,

where the kernel and cokernel does not contain Lq.

Proof. The category D(B\G/B) is at full subcategory of D(B\G/N) so we can work with
A, and V,, instead of A, and V,,. The proof is by induction on the length of w. For w = e
the statement is trivial. For w = s, it can be proved in the same ways as in example 9.0.11.
Let w = 84,54, be a reduced expression. The map A; - A, induces a map

A=Ay x5 A > Asal ke ok AS% = Ay

Define
D" :=(Ly[d] |w# 1) c D(B\G/B).
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Claim 10.5.4. The subcategory D’ is a 2-sided ideal under convolution.
We have the short exact sequence
(6) 0—>Al—>Asa—>l_}$a—>0,

ie. coker(A; - A,,) = Ly, € D'. Applying the claim inductively gives that coker(A; —
Ay)eD.
If s is a simple reflection with ¢(sw) > ¢(w) then applying _ * A,, to (6) gives

szﬁl*AwﬁAswﬁis*Aw

That D’ is an ideal and Ly € D" implies that Ly x A, € D' so Ay ~ Ag, mod D’. This
proves that statement about A,. The proof for V,, is similar.

Proof of claim. We need to show that for all 7 ¢ D(B\G/B)
F+*»D'cD'" and D'xFcD.

For w # e we can find s = s, such that ¢(ws) < ¢(w). Consider the projection 7, : G/B -
G/ P, with fiber PL. We have

(G/B)w = 1! (7a((G/B)w))-
By lemma 9.0.10 this implies that
Ly =75(Ly).
A proof of the same kind as in lemma 10.4.4 shows that
F Ly =7 (F*L).

In particular, F % L,, is constant on the fibers of 7,. Therefore, every perverse subsheaf and
subquotient is constant on the fibers. Since L; is not constant on any such fiber it cannot
occur in the Jordan-Hélder series of F # L,,. This proves that D’ is a left ideal. The right
ideal property is proved similarly replacing G/B by B\G. O

0

Corollary 10.5.5. Let P be the projective cover of L. Then

dim(End(P1)) = |W| and gr(Pi) = @ Ay
weW

Proof. By BGG reciprocity and the lemma [Ay,, P1] =[L1,Vy] =1 s0 gr(P) = @, Ay
dimEnd(P;) = ) dimHom(P;,Ay)

= E[LLAU)] = |W|

Which is what we wanted. O
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10.6. Monodromy. Our plan is to use monodromy to construct a map
Sym(t) > End(Py).

Definition 10.6.1 (Monodromy sheaf). Let X be an algebraic variety with an action of
a torus T = (C*)". A T-monodromy sheaf on X is a sheaf equivariant with respect to the
universal cover
c" =5 (T
The space C" is contractible so by property (2) in section 9 and the remark following it
this is a full triangulated subcategory

Dr,..(Sh(X)) c D(Sh(X)).

In particular, an extension of monodromic sheaves is monodromic.

Equivariant categories are functorial in the group, i.e. given a homomorphism G - H and
a space X with a G action one gets a restriction of equivariance functor Dy (X) - Dg(X).
Applying this to G = C™, H = (C*)™ we see that an equivariant sheaf is monodromic.

D7 (Sh(X))¢ D(Sh(X))
T \ /

D10 (Sh(X))
For x«(T') := Homapie. Grp.(Gm,T) = m1(T") there is a short exact sequence

0—72"—C"— (C")"—=0

0= x(T) =T —T—0

We also denote x.(T") by A. For F e Dp__ (Sh(X)) there is a canonical action of A on F.

If F is T-equivariant then the action is trivial, i.e. t*(F) ~ F for all ¢t € T. For equivariant

sheaves such an isomorphism is fixed. For monodromic sheaves it exists but is not fixed.
The torus T acts on G/N. It is known that

(B x N)-orbits on G = (B x B)-orbits on G.

It follows that every irreducible object Ly, = jyu14(C[¢(w)]) in P lifts to D(B\G/B). In
particular, it is monodromic. Hence, all objects in P (or D°(P) = D(B\G/B)) are T-
monodromic. The action of monodromy on any irreducible is unipotent. This implies that
it is unipotent for all F € P so there is a map

A — AUtunip (.7'—)

For unipotent automorphisms one has the logarithm map log : Autypip (F) - End(F). The
composition with the above map is C-linear so it induces a map

t=A®C—End(F), VFeP.

This can be extended to
Sym(t) > End(Idp).
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Let P be the full subcategory of D(N\G/N) consisting of 7" x T-monodromic sheaves
with unipotent monodromy. We just showed that P c P. Using the unipotency one can
take log and extend to a map

Sym(t® t) - End(Idz).

Lemma 10.6.2. This map factors through Sym(t) ®gymyw Sym(t).
Corollary 10.6.3. The map Sym(t) » End(Idp) factors through C ®gy,yw Sym(t) = A.

This will be proved in section 11.3

10.7. Further properties of intertwining functors.
Lemma 10.7.1. Hom(L,,A,) =0 for v +e.

Proof. The proof goes by induction in ¢(w). For w = e the statement is clear. For w # e
we choose w’ and s, such that w = w’s, and ¢(w) = ¢(w") + 1. Consider the map B,, —
(Pa)w which is the restriction of the projection 7, : B = G/B - P, := G/P, to the orbit
corresponding to w. Since A, = Ay * Ay, applying Ays*_ to

0— L - As, = Ls, -0
we get an exact triangle
Ay = Ay = Ay * Lg,
Claim 10.7.2. The sheaf A, * L, is a perverse sheaf.
Proof of the Claim. For any sheaf F we have
F Ly, = miman 1],

The functor 7;[1] sends perverse sheaves to perverse sheaves so we only need to check that
T Dy = Tt Ay s a perverse sheaf. The map 7, restricts to an isomorphism By ~ (P )y
It follows that

Tat B = fun (CLE(w")]).
The sheaf Cp ) [¢(w')]is a perverse sheaf and it is a general fact that ! and * pushforward

by a locally closed affine map sends perverse sheaves to perverse sheaves. This proves the
claim. 0

By the claim the above exact triangle is a short exact sequence. Suppose we have a
non-zero map L, - A,,. By induction Hom(L,,A,) = 0 so the above short exact sequence
gives the existence of a non-zero map L, - Ay * L, . As in the proof of claim 10.5.4 there
exists an irreducible perverse sheaf L on P, such that L, = 7L} [1]. Hence, we need to
show that Hom(7; L, [1],A,) = 0. By adjointness

Hom(7 L] [1],A) = Hom(L, [1], TaxAy).
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Since G/B is compact we have 7. = m41. Consider the cartesian diagram

chj_”> B

T

Juw

(,Poz)w(ﬁ' Pa
By base change we get
Tty = 7roz!jw!(@l:g(w)]) = (ﬂ—a.jw)'(g[e(w)])
= (Juma (CLE(w)]) = jiymar (CLE(w)]).
Notice that dim(Py )y = ¢(w) - 1 = dim B,, — 1.

The cohomology with compact support is

C ifi=2
0 otherwise

Hi(C) - {

It follows that
T (ClL(w)]) = C[{(w)] ® HZ(C) = C[4(w) - 2].
Le. Ay, is the | extension from (P, ), of C[¢(w) —2]. Let Al be the zero extension of
Cll(w) = 1] from (Py)w. Then my Ay = Al [-1]. Thus, we have
Hom(L,,A,) = Hom(L,[1], T Ay)

= Hom(ZL;[1], A, [-1])

= Ext (L), Al)

=0.
This finishes the proof. O

It is a known fact that D®(Pervy(Pq)) > Dn(Pa).
Claim 10.7.3. (see e.g. [BBM]|) The intertwining functor I,,, sends projectives to tiltings.

Proof. Let P be projective. We know it has a filtration with standard subquotients. The
formulas at the beginning of subsection 10.5 show that I, (Ay) = Viuw,. It follows that
I,,(P) is a perverse sheaf with a costandard filtration. To see that it is tilting it is enough
to check that Ext’(I,,(P),Vy) =0 for i > 0 and any w. Since I, is an equivalence and
Vuw = Ly (Awuw, ), this follows from Ext’(P, Apuy) = 0. O
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Set B := (Ly | w # ¢). The functor I, is an autoequivalence of D®(P) preserving the
subcategory of complexes with cohomology in B. Lemma 10.7.1 states that a sheaf T is in
1B if it has a standard filtration and dually that 7' € B* if it has a costandard filtration. It
follows that the functor

P —->Py=P/B
is fully faithful on tilting objects.

Our goal is to describe Py and =,. These are counterparts of wall-crossing. Recall that
we had a partial description as convolution with an element in Pervg(X).

0> A, > 20— A0,
0> Ve—>E4—> Vs, 0.

10.8. Extension of Id by ;. In this section G = SLy. Our aim is to construct an extension
of Id by I,. For this we want an alternative description of Id on P or C = Dg(G/N). Set
X =G/N = A%\{0} and define

Z = {(vavtﬂvaUJEAQ,v/\w: 1,teA1}

X v,w,t)~tu+w (vw,t)~(w,t X x Al

Pry, l/ (w,t)~w

X
Claim 10.8.1. There is an isomorphism Id¢ ~ pr,,,pr.f*( )[2].

Consider the inclusion
it X > X x Al w > (w,0).
It is a general fact that pr,,F =~ i*F if F is monodromic with respect to dilations on A,

Ezxample 10.8.2. For X = pt all terms in the limit are the same so
igF = lim (RT(FWU))) = RT(F(U)) =pr,,F.

U nbh. of 0

Proof of claim. Define a torus action on Z by
\N:Z = Z, v A, we A w, te A2, AeC”.

Notice that f is equivariant with respect to this action. A sheaf F in C is monodromic with
respect to this action and it is also equivariant for the B-action on the second factor. Since
w is conjugate to Aw under B for a fixed w we get

{w} x A' can orbit of BxC* (w,t) » (A w, \%t), AeC".
Hence, pr,,; f* is monodromic for dilations of ¢. Using the general fact we get
DLy Pyt f ™ (F)[2] 7 pryy £ (F)[2]-
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Notice that
Z xxupt X 2 {(v,w) | vAw=1}.

Both f and projection to the second factor coincide with the map pr: (v, w) = w so using
base change we get i*pr,,f*(F) ~ prjpr*(F). The projection pr is a fibration with fiber
Al so we have prypr*(F) ~ F @ H?(C) ~ F[-2]. This finishes the proof. O

We now construct the first map in the extension
F - I, F[1]
Recall that we have
X, = {(v,w) |v,weA* v Aw=1)}

with two projections pr; : (v, w) ~ v, pry : (v, w) — w. It can be considered it as a subspace
of Z in the following way

X, {(v,w,t) |v,we A2 vrw=1t=1} 5z

-] cT%

Applying pr,,.pr,.( )[2] to the adjunction map f*F — i,i" f*F we obtain a map

F = prw*prwt!f*f[z] - prw*prwt!iii,*f*f[z]

The map i’ is a closed immersion, so it is proper and we can replace i, by 4| in the
last expression without changing the result. Likewise, we can replace pr,,, by pr,, without
changing the result because we are applying it to a complex supported on {(w,t) | t = 1}
and pry, is an isomorphism (hence a proper map) on this set. Using that fi’ = pr; and

Pr,, DL, = pry we get
PysPupried [ F[2] = pryyprygpiri”™ f*F[2] = propri F[2] = I(F)[1].

Thus, we have constructed the desired map.
For the second map in the extension we consider

7" = {(v,w,t) |v,we A v Aw=1,t#1}

X/m xXXAl

Vo
X

Let j be the inclusion X x Al,; = X x Al. Define the functor
=:C->C, f'_)prw*j!j*prwt!f*(f)[2]
Notice that the distinguished triangle jij*F — F — i,i*F gives a functorial triangle
=(F)  F > (P[]

This is the desired extension.
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The formula for = can be simplified as follows. Consider the cartesian diagram

4

g Z

AN e

XxAt¢1]—,>X><A1

By base change j*pr,, ~ prjj’" so
prw*j!j*prwt!f* (f) [2] = prw*j!pr!,j,*f* (f) [2]
= pry, (J o pr')i(f o 5) " (F)[2]
=Y. f7(F)[2].
Ezercise 10.8.3. Show that Z(7*F) = F » = where 7 : X — P! is the projection.

For general G and « a simple root we consider

, Gexle=zoz=(@alle]
X/(a:,t)»—m/modN (z,t)~(zt mod N, ¥ x Al
Vo
X
We define the functor
Ea:Dp(G/N) - Dp(G/N), F .o f*(F)[2].

We will show later that this extends our previously defined =, functor

D(B\G/N) -2~ D(B\G/N)

forget -
S

D(B\G/B)

10.9. Construction of a map Py - Sym(t) - modpniip. Let F € P be a sheaf on B=B\G

1
and xg = B, the unique fixed point. Then zoN_ ~ N_ Fn

There is a general construction called microlocalization, which will be discussed in more
detail below (see section 11.1), which associates to a perverse sheaf on a vector space
V perverse sheaf u(F) on the dual space V*. For now we only need the restriction of
1w(F) to an open part in V*, which we describe under an additional assumption that F is
monodromic (weakly equivariant) with respect to a contracting linear action of C*. In this
case one can find a Zariski open dense U c V* such that for ¢ € U we have R'T'(V, He; F)=0
for 4 # 0, while the space R'T'(V, He¢; F) is identified with the fiber at £ of a local system
on U. Here He = {x | ({,z) = 1}.

Using this one gets a local system on a Zariski open set U c n* whose fiber at £ e n* is
RF(u,,Hg;}").
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Example 10.9.1. In our case for L, with v # e one can use
U:={z= ) za|2za#0 YVaeA} c T;B=~(g/b)" ~n,
aeAt
where ', x4 is the image under the map

n—n/[nn] =P n_,, T ) Ta.

aeA aeA
Proof. We will show that if &|,,_y_, # 0 for all simple roots a then RI'(n_, H¢; Ly) = 0 for

all v #e. If v# e then v = s,0" for some v" with ¢(v) > ¢(v"). In this case our sheaf L, on
n_ is a pull-back under the projection n_ - n_/(n_)_,.

Ly =75(Ly,)
If€|(n_y_, * 0 then m, maps He isomorphically ton_/(n-)-q so RT'(H¢, Ly|n,) ~ RT'(n-, Lyla_).
Hence, RI'(n_, H¢; Ly) = 0. O

n_/(n-)a

10.10. The functor Z,. Recall that Dp(G/B) is a monoidal category acting on C = D(P)
on the left by convolution. This action commutes with =, because the left action is defined
as a composition of smooth pull-backs and proper push-forwards (because G/B is proper),
these fit base change and composition isomorphisms with both * and ! direct images.

So for F € Dp(G/B)
Ea(F)=Ea(F*A) =F *»E4(Ae),

where we used the same notation for the corresponding object in Dp(G/N), i.e. its pull-
back. By associativity of the convolution the originally defined =, also commutes with
convolution. Hence, to show that they agree on Dp(G/B) it is enough to show that they
agree on A,. Using the exact triangle above we see that both fit into a short exact sequence

0- A, > Ea(A) > A= 0

Since Extl(Ae,Asa) ~ C and the sequence for the original =, is non-trivial it suffices to
show that the extension is non-trivial. To check this it is enough to check one of the
following properties

(1) RP(Ea(Ae)) =0.
(2) The ! restriction to the closed B-orbit has rank 1.
The first one also implies that Z, is exact. In particular,
FePervg(G/B) = Z.(F)eP

so we get a functor =, : P - P.
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Lemma 10.10.1. The functor 2, sends projectives to projectives.

Proof. We need to check that for P projective
Ext"(EqP, M) =0 VM eP,n>0.
For n > 0 the short exact sequence 0 — I; P - =,P — P — 0 produces an exact sequencce
0 = Ext"(P, M) » Ext" (2P, M) — Ext" (I, P, M) = Ext" (P, I, M).

Notice that
Ext" (P, I;aM) +#0 only if H”(I;&M) +0.
Recall the direction of exactness of the functors
Isa :DZO N DZO7 I;a :DSO N DSO.
Hence, H"(I M) # 0 for n <0 only. Thus, Ext"(Z,P, M) =0 for n > 0. O
Lemma 10.10.2. The sheaf Bu=s0, 50y a1 0---0=,, (Ay,) is a projective generator. Here
the sum runs over all w e W and for each w we fixed a reduced expression w = Sq,-**Sq

n*

Proof. Recall that A, € P is projective so by the lemma the sheaf is projective. To find
out which projective Z, P is for a given projective P one needs to calculate Hom(Z, P, L)
for L irreducible.

Claim 10.10.3. Let P be projective. Then for any L
dim Hom(Z, P, L) = dim Hom(P, E,L).
Proof of claim. Since E,P is projective
dim Hom(Z, P, L) = Eul(Hom*(Z,P, L)).
The exact triangle Iy, P - Z,P — P gives
Eul(Hom*(E,P, L)) = Eul(Hom*(Is, P, L)) + Eul(Hom*(P, L))
= Eul(Hom* (P, I; L)) + Eul(Hom®(P, L)).
The corresponding exact triangle for I/ given by L - Z,L — I| L implies
Eul(Hom* (P, I; L)) + Eul(Hom®(P, L)) = Eul(Hom®(P,E,L))
=dimHom(P,E,L).
This finishes the proof of the claim. ([l

To show that it is a projective generator it is enough to show that for a reduced expression

w‘lwo = Sa;" " Sa

n
Py, cZq, 0 0Eq, (Ayy)-

For this it is enough to show that
dimHom(ZE,,, o0 Eq, (Awy)s Lw) # 0.
Claim 10.10.4. Let M be a sheaf which is constant on B,,,. Then
Hom(A,,, M) = stalk of restriction of M to the open stratum By, [ dim B].
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Proof. Since j, is an open embedding we have
Hom(Au,, M) = Hom (fugC[£(wo)], M)
= Hom(C[¢(wo)], ju, M)
~ Hom(C, j,,, M[-dim B]).
Since M| Bu, 18 constant, a homomorphism from the constant sheaf correspond to choosing
an element in the stalk
j’z}oM[_ dim B]x = (M[_ dim B]|Bw0 )z
Hence, Hom(A,,, M) = stalk of restriction of M to the open stratum B,,,[—dim B]. O

The two claims imply that
dim Hom(Z,,, 0 -+ 0 Zq, (Awy ), Lw) = dimHom (A, Eq, 0+ 0 Zq,, (Lw))
=dim(Eq, 00 Zq, (Lw)[- dimB]|BwO )
It would follow that it is non-zero if we can prove that L, € Z,, o+ 0E,, (Ly). When
l(wsq) > £(w) we have supp(ZEa(Lw)) = Bus, and Eq(Lw)|B,., = C[l(wsa)]. Since By,
is open in the support of the perverse sheaf =,(L, ), the latter has to contain Ly, in

its Jordan-Holder series. So Z,(Ly) contains L. Iterating this process we get that
Eq, 00 Eq,, (Ly) contains Ly, when sq,--Sq, is a reduced expression for w ™ wp. ]

n

11. AN EQUIVALENCE OF CATEGORIES BETWEEN PERVERSE SHEAVES AND CATEGORY @)
11.1. Microlocalization at B.. We want to construct a functor
o = P = Sym(t) — mod

This will play a key role in proving that P ~ O, for A regular and integral.
Consider the inclusion n_ ~ zgN_ < B. Pulling back along this map we get a sheaf on n.
Consider

{(2,8) | (2,) =1} = Vion_xn
pry pro
n_ n

Set ¢g := proy,jipr] and take its restriction to U, where

U := {¢ ’ (b‘(nf)_a * 0} cn’.
Under this composed functor L,, maps to 0 for w # e and L, maps to the constant sheaf.
It follows that any perverse sheaf in our category goes to a local system on U with a
unipotent monodromy. The fundamental group of U is the group of cocharacters of 7', for
a representation of this group landing in unipotent matrices we can take log, obtaining a
representation of the ring Sym(t). Thus, we defined a functor

po = P — Sym(t) — mod
taking a sheaf F to the generic fiber of ¢o(F) with the action of logarithm of monodromy.
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Recall that P; is the projective cover of L.. By Yoneda’s lemma and uniqueness of
projective cover we get

(7) wo(M) =Hom (P, M) VM eP.
In section 10.6 we constructed a map
Sym(t) - End(Idp).
The functors are compatible with the Torus actions so for M € P the action of t on po(M)

given by the map coincides with the monodromy action of t on pg(M).

Lemma 11.1.1. (a) There is an isomorphism L,(Py) ~ P;.
(b) The actions of we W on t and I, on End(Idp) commute, i.e. we have a commutative
diagram
t —— End(Idp)
l,w \lllw
t —— End(Idp)
For x € t have m* e End(M)

Ly (M)

My _
I,(my )= M)

Proof. (a) We know that I,(P;) is projective so it is enough to show that
0 v=#e
C v=e
Notice that Hom(I,,(P;),L,) = Hom(Py, I;'(L,)). In claim 10.5.4 we proved that (L, |
u # e) is an ideal under convolution so

I;;l(Lv) =Ly * V1 € (Ly | u #e).
Consider the short exact sequence

0—-Ls, - Vs, > Le— 0.

From this it follows that Vg, ~ V.~ V,, mod (L, | u # e).
(b) Notice that X, is invariant under the action of T'~ {(¢t,w(t)) |t e T} c T xT.

Hom (I, (Py), Ly) = {

Xuw
TCX X OT
So if we make T acts on the first copy of X in the natural way, on the second one in the
natural way twisted by w, and on X, viat ~ (¢, w(t)), then all the arrows in the diagram are
compatible with the T action, hence pull-back and push-forward functors send monodromic
sheaves to monodromic sheaves and are compatible with monodromy automorphisms.

0

Ezample 11.1.2. Recall that for G =SLa we have X, = {(v,z) | v Az =1}. The action of T
is given by multiplication by (¢,¢7!) and X, is invariant under this action.
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Corollary 11.1.3. There is an isomorphism pug (L, (M)) ~ po(M)™ where ¥ means that the
t-action is twisted by w, i.e. t-x = w(t)x.
Proof. By (7) and the lemma
po(Lw(M)) = Hom (P, I, (M))

~ Hom(I,'(Py), M)

~ Hom(Py, M )"

= po(M)".
Which is what we wanted. ]
Lemma 11.1.4. There is an isomorphism pio(Eq(M)) = Sym(t) ®gym(tysa po(M).

Notice that if N does not contain L, then uo(N) = 0. Hence, g factors through P/(Lv |
v # e). Since this is a 2-sided ideal with respect to convolution pgo =, also factors through.
The image of Py in P / (Ly | v # €) is a projective generator for that category, so it suffices
to construct the isomorphism for M = P;. This is done later in proposition 11.3.4.

Remark 11.1.5. Both sides fit into a short exact sequence
0= po(M)* > po(Ea(M)) - po(M) - 0.

For the left hand side this follows from applying the exact functor pg to the exact triangle
I, (M) - 2 (M) > M and using uo(Is, (M)) = jio( M),
For the right hand side notice that

t* Xt*/{lysa} t* = At* U Fsa’

where A is the diagonal and I'y, is the graph of the s, action. Moreover, the closed
subvariety I's, ¢ A uT', is given by one equation pri () —prjy(sq(A)) where A € t is such
that (A, a) # 0. Thus we get an exact sequence

0 - OFSDL - OAt* UFSQ g OA‘*
Tensoring with po(M) over O(t*) = Sym(t) we get the desired short exact sequence.
Theorem 11.1.6. For X\ reqular and integral there is an equivalence of categories P ~ Oy.

Proof. Recall that in corollary 6.2.11 we proved that
opp
Oy~ A-mod, where A = EndA( P A5 - ®asan C)

W=say ~San
and in section 10.6 we constructed a map
Sym(t) - End(Idp).
The first step in the proof is to prove the following claim
Claim 11.1.7. For all M the map sends Sym(t)" to 0 € End(uo(M)); and for some M we

get an inclusion

Sym(t)/Sym(t)Y ~ End(po(M))
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Proof of claim. To check the first part of the claim it is enough to prove the claim for a
projective generator. By claim 10.10.2

M= @ Ea oo, (Au)

wW=Saq"Sap,

is a projective generator. The lemma implies that

po(M)= @  Sym(t) ®gymp)®er = ®sym(tysan H0(Auwy)

W=Saq *Sap,

~ @ Sym(t) ®Sym(t)sa1 ®Sym(t)5an C.

W=Saq "Sap,

If Sym(t)" acts by 0 on an A-module N then it acts by 0 on Sym(t) ®sym(t)sa IV S0 in
particular it acts by 0 on uo(M). We know that if wg = sq,-+-Say 1S a reduced expression
then A acts faithfully on A® gsay =+ ® gsay C, so the map A - End(uo(M)) is injective. [

For M as above consider a map P|* - M such that its cokernel does not contain L; in its
Jordan-Hélder series. Then po(P*) maps surjectively to po(M). Since the action of A on
to(M) is faithful, the action of A on uo(Py*), and hence on po(Pr) is also faithful. Thus,
A maps injectively to End(Py). In corollary 10.5.5 we proved that

dim(End(Py)) = |W|=dim(A),
so A~ End(P;). Thus, we can consider 1o as a functor
to:P—-A-mod.

Recall that pg ~ Hom(Py,-) is fully faithful on tilting objects. By claim 10.7.3 and
corollary 11.1.3 we have a commutative diagram

Projectives — Tilting
Mol b luo
A-mod —2> A -mod
Thus, pg is also fully faithful on projectives. Since g sends the projective generator M in

P to the projective generator D=5, 50n A® gsay - ®gsan Cin A —-mod ~ O, it gives the
equivalence of categories P ~ Q). O

11.2. Example for G = SL,. Consider the case G=SLo with maps 0 = B = P! < Al. We
want to investigate the action of monodromy on 7' (previously called =). Recall the short
exact sequences from example 9.0.11

0+ Cy> T > juCpu[1] >0,
0-jyCu[l]-T—-C,—0.

In particular, uo(T) is 2-dimensional. We claim that when t acts naturally the monodromy
acts by ({1). The plan is to embed 7T into something with known monodromy. For this
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we restrict from P! to P!\{co}. Consider the local system & of rank 2 on C* = P*\{0, co}.
Then we have a short exact sequence on C*
Q(C* =& - QC*
The monodromy mg on & is given by (§ 1), i.e. 1-mg is the composition
E»Cpv =€
Pushing forward by j : C* — P!\{co} we get
j*@(c* = J:&€ —> j*g(c*a
on which 1 -mj, ¢ acts as the composition
Jx&€ > JuCov = ji€.
Now we can describe the action of monodromy on T' by presenting T'p1\ (o} as a quotient
of j+(€). We claim that Tlpn\ (e} 2 j«(€)/Cc[1], where the map C[1] - j.(€) is the
composition Ce[1] = j«(Cee)[1] = 74 (E).
One way to check this is to observe that T is the unique nontrivial extension
C, — coker —» j.Cp.[1],

since Ext!(j.Cr.[1],C,) is the dual space to H1(5.Ce.[1]) which is 1-dimensional. The
extension in
C,y — coker - j,Cp[1]
is nontrivial, since i*(coker) is 1-dimensional, where 7 : 0 — P!; if the extension had been
split it would be 3 dimensional.
We conclude that 1 — my factors as

and po(1 —my) factors as

(1-m7)
) (T

N
C
Since jio(Cp) = 0 we have jio(T) = pio(joE[1]).
11.3. Proof of corollary 10.6.3. Recall P c P c Perv(G/N).
P =Perv(B\G/N) = Pervy(B\G)
P =Perv(B".G."B)

=N equivariant T x T' unipotently monodromic sheaves on G/N.

po(T

It is known that "O} ~ P

Lemma 11.3.1. The action of Sym(t) on Idp is torsion free.



CANONICAL BASES AND REPRESENTATION CATEGORIES 85

Recall from section 6.3 that

where
A= End(M)P; M € Coh(t* xp/pyy t*) = Sym(t) ®gypmyw Sym(t) - mod,
M:= @ Sym(t) ®sym(t)*e1 - Ogym(t)san Sym(t).

W=Saq " Sap

The category P does not have enough projectives. E.g. C[t] - modyip does not have
enough projectives. However, it has a projective pro-object

J——

lim C[¢]/t" € Proobj(C[t] - modyiy) = C[t] - mod.

Sketch of proof. Consider

Perv(B-.BwoB.”B) =T x T unipotently monodromic sheaves on N\BwoB/N ~T
= X« (1) = modnip

~ Sym(t) — modﬁ'ﬂgr') .

dﬁﬁﬁ — Perv(B-.BwoB.”B) can be constructed as follows. Let

A functor Sym(t) — mo
M € Sym(t) - mod£ iiq;;' Since t = k ® A exponentiating gives a unipotent representation of
A ~ 7 (T). This gives a local system on 7. We denote this functor by M ~ Ep;. We then
formally extend the categories to include projective pro-objects, the functor extends to a
uniquely defined functor between the larger categories.

Let j : BwgB/N < G/N be the inclusion. Applying the functor to the projective pro-
object lim C[t]/t" € Proobj(C[t]-modyip) we get a projective pro-object in Perv(B.BwoB."B)

n

A = lim ji&sym e/ (on

Since Sym(t) is torsion free over Sym(t) and the functor M ~ &y is exact, we get an
object which is torsion free over Sym(t). Define =, in the same way as in section 10.8. As
in claim 10.10.2 we get a generating projective pro-object for P

@ EO‘I 0:-0 EOML(A'UJO)?
weW

where for each w € W we use some reduced expression w = s, :*54,,. Denote this generating
projective pro-object by P.

The constructions for P have the same properties as the ones for P. E.g. there is a short
exact sequence

0- I, (F) = Z0(F)—>F 0.

There is also a version of g

fo : P - Sym(t) ® Sym(t) - mod



86 ROMAN BEZRUKAVNIKOV AND TINA KANSTRUP

The functor g is exact and an analog of corollary 11.1.3 holds with ug( )% being uo( )
with the right action twisted by s,.

0 = po(F)* = po(Ea(F)) = po(F) - 0.

It follows that po(P) is torsion free over Sym(t). Let Py denote the pro-object which is the
projective cover of L1 in P. Like for P

o (M) ~ Homﬁ(f’l,M).

It is fully faithful on projectives. This implies that a non-zero element in Sym(t) acts
injectively on a projective object so End(P) is torsion free over Sym(t). We have

End(Ids) c End(P).
Thus, End(Id) is torsion free over Sym(t). O
Corollary 11.3.2. The action of Sym(t) ® Sym(t) on P factors through Sym(t) ®Sym ()W
Sym(t).

Proof. Recall the Bruhat decomposition G =[], BwB. Since N\BwB/N ~ TwT the two
monodromies on Dryr,,.. (Sh(BwB)) differ by w. Hence, for all ¢ € t, t-w(t) acts by 0 on
BwB and

L= Tt -w(t))
w
acts by zero on G. Let J denote the ideal generated by the I;’s. Notice that
Sym(t) ®gym(yw Sym(t) = Ot xpppw t7)

We have an equality of sets (not necessarily an equality of schemes): t* x yw t = Uyly,
where Ty, is the graph of the action of w on t*. Let I be the ideal in Sym(t) ® Sym(t) of
functions vanishing on u,I'y,. Clearly J c I but they might not be equal. However, the two
ideals coincide after localizing by all coroots o) € t. Let f € I. We need to show that f acts
by 0. The image of f in the localization End(Idﬁ)(aiv) lies in I(a;/) = J(aiv) so the image acts
by 0. End(Id) is torsion free so there is an inclusion End(Ids) c End(Idj)(ay). Hence, f
also acts by 0 on End(Idp). O

Corollary 11.3.3. The action of Sym(t) on P factors through A.

11.3.1. Effect of 24 on pg. We can now finish the proof of lemma 11.1.4 by proving the
following proposition.

Proposition 11.3.4. There is an isomorphism Hom(Py,Z4(P1)) < A ® g4sa End(P;).
Since A acts on all M € P we get 2 actions of A on Z,(M):
mEa(M) and Ea(mM),

the first one is the canonical action on the object =,(M) € P, while the second one is
obtained by functoriality from the action on M.
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We apply this to M = Pj, also End(P;) acts on Z,(P;) by functoriality extending the
action Z4(mps) (we will later see that in fact A maps isomorphically to End(P;), so there
is no actual need to extend).

Post-composing we get an action

A®End(P;) C Hom(Py,=Z,(P1))

with the A action being mz_ (ar). We need to show that the action factors through A ® gsa
End(P;). This follows from the following lemma.

Lemma 11.3.5. The restrictions of the two actions Zo(mar) and mz, (ary to A% coincide.

Proof. It is enough to check this for P. We need to show that the Sym(t) ® Sym(t) action
factors through
Sym(t) OSym(t)se Sym(t) & O(Fld u Fsa)'
We will use the same approach as in the proof of 11.3.2. Let I be the ideal in Sym(t)®Sym(t)
of functions vanishing on I'iq uT's,. We have
I, (M) —>Z4(M)— M.

On M the two actions coincide and on I, (M) they differ by the s, twist. So thinking
of this as a Sym(t) ® Sym(t) module the product of the ideals for I'rq and I's, acts by 0.
End(E,(M)) is torsion free so the intersection acts by 0, as in the proof of 11.3.2. O

Proof of proposition 11.3.4. The short exact sequence
0—- P ~I, (P)—>Z4(P)>P—0

shows that dim Hom (P, Z,(P;)) = 2dim End(P;). Picking an element ¢ € Hom(Py,ZE,(P1))
gives a map
A ®pso End(Py) - Hom(P1,Z,(Py)), a > ap.

Since A ® g4so End(P)) fits into the same exact sequence as Hom( Py, =, (P1)) it also has
dimension = 2dim End(P;). Hence, it is enough to check that for some choice of ¢ the
map is onto, this would follow if we check that Hom(P;,=Z,(P1)) is a cyclic module over
A ® ysa End(P1).

Since P; is an indecomposable projective, the ring End(P;) is augmented and the aug-
mentation ideal End(P;)* is nilpotent. So it is enough to see that

Hom(Pl, Ea(Pl))
(A®asa End(P1))* - Hom(P1,Za(F1))

where (A ® 45« End(P;))" is the augmentation ideal.
Now,

~C,

Hom(P1,Z,(Fy))
(A ® Asa End(Pl))+ . Hom(Pl, Ea(Pl))
where Py = P;/(End(P;)* - P;) and A* c A is the augmentation ideal, where we used that
Hom(P;, ) and Z, are exact. The object P; contains L; with multiplicity one, so

Hom(Py,Z4(P1)) 2 Hom(Py,Z4(L1)),

= HOIII(Pl, EQ(E)/A+EQ(F1))7
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Hom(Py,Z4(P1)/A*Eq(P1)) 2 Hom(Py,Z0(L1)/ATE0(L1)).
Now, Z4(L1) is a sheaf on P!. We have the short exact sequence

0— Is(L1) = Za(L1) » L1 = 0.
We have Ay =~ L; = Cj so

I (Ly) = Is(Ar) ~ Ay = 5Cya [1].
Hence, the short exact sequence becomes

0= jCpi[1] > Ea(Lr) > C, ~ 0.

This is the same short exact as in the example in section 11.2 and it is non-split, so Z,(L1) is
isomorphic to T from example 11.2. In the example we showed that po(7T') is 2-dimensional
with non-trivial action of n —log monodromy = action of ¥ € t.

In the example we showed that (7)), ~ C. Thus,

HOm(Pl,A+Ea(L1)) = /Lo(T)m ~ C.
This finishes the proof. ([l

12. /-ADIC SETTING

Consider G, B and X = G/N over F, for some ¢ = p" with p prime. Replace P by the
corresponding category of /-adic sheaves on the base change of our variety to F:

Pg, = Pervy (B\G).
The same constructions go through. Choose an isomorphism Q, ~ C. For \ regular and
integral
O~ Ag, —mody .
The Frobenius morphism Fr acts on Pg,. There is an automorphism of Ag, given by
t>z ~ ¢ 'z. This induces an automorphism on .A@é we denote both automorphisms by

[q]:
[Q] C A@Z - mOdf.g.7

[a] © Ag, —mody.g.

Claim 12.0.1. (1) The Frobenius action on Pg, commutes with the [g] action on A -
mody,, , i.e. the following diagram is commutative

Py, — A-mody,

-

Pg, —= A-mody .
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(2) The Frobenius action on Pg, commutes with the [¢] action on A-mody,,, i.e. the
following diagram is commutative

Pa, % A-modyg

lFr j[q]

Py, # A-mody .
Here part 1 follows from relation of Fr to monodromy automorphism of a G,,-monodromic
sheaf, while part 2 follows from part 1.

Example 12.0.2. To a vector over Q; with an automorphism whose eigenvalues are in Z; one
can assign a local system on G,,. Frobenius acts on this data by raising the automorphism
to power g. For example, if the vector space is one dimensional and the automorphism is
given by multiplication by an nth root of 1, (n,p) = 1, the sheaf is a direct summand in the
direct image of the constant sheaf under the map of multiplication by n

G = Gy

This map is a Galois covering with Galois group = p, - the group of roots of 1 of order n.
Frobenius clearly acts on the Galois group by multiplication by ¢, which shows how it acts
on such sheaves.

The general rank one local system can be obtained from this by passing to inverse limits,
as is explained in the theory of f-adic sheaves.

For M e Of" the action of ¢ € C* gives a canonical isomorphism [¢]*(M) = M, i.e. an
equivariant structure with respect to the subgroup in C* generated by ¢, which we will
refer to as a [¢]-equivariant structure. By the claim the [g]-equivariant structure on M
corresponds to a Fr-equivariant structure on ¢(M). Thus, a grading on M € O, induces a
Fr equivariant structure on ¢(M)

Fr*(¢(M)) = p(M).

Notice that shifting the grading on a graded module M by d results in multiplying the
Frobenius action on ¢(M) by ¢%, i.e. tensoring the corresponding Weil sheaf by the Tate
Frobenius module Qy(d):

P(M(d)) = p(M)(d),
where M (d) in the left hand side is the graded module given by M (d); = My,; and (d) in
the right hand side is the standard abbreviation for ®Qy(d).

We will need a categorical analogue of introducing the variable v with v? = ¢ in the co-
efficient ring for the Hecke algebra which was needed for construction of Kazhdan-Lusztig
basis. We change the grading on A by doubling the degrees (see theorem 8.1.1 and dis-
cussion preceding it). We fix a square root ql/ 2 of q. Again, a graded A-module M is in
particular equivariant with respect to the automorphism [v], the action of q‘l/ 2 under the
multiplicative group action corresponding to the new grading; this defines a Weil structure
on the the sheaf ¢(M). The shift of grading by d now corresponds to twisting by Qg(%)
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To make notation on the two sides of the equivalence parallel, we denote the shift of grad-
ing on the category of graded A modules in the new grading on A by M ~ M(%l), thus
M (%)2 = Miiq.

For graded A-modules M, N the ¢%/?-eigenspace of the action of [v] on Ext!(M,N),
which is identified with the ¢*/? eigenspace of Frobenius on Ext!(¢(M), ¢(N)), is the (=i)-
th graded component Ext!,(M, N).

12.1. Proof of the main theorem.

Lemma 12.1.1. There ezists irreducible graded lifts Ly, which are self dual with respect to
the duality on OF such that for all w,v e W

Ext!(Ly,Ly,) =0 fori>0.

The lemma implies the main theorem 8.1.1 as we now explain. Recall the ambiguity in
the definition of the graded module Q%" € A—mod®" and the resulting ambiguity in defining
the grading on the algebra A4 = End(Q)°? (but not in defining the graded version of the
category (’)/g\r ~ A - mod®), where we used notations of theorem 8.1.1. The module @ can
be taken to be a sum of pairwise nonisomorphic indecomposable modules @;, the graded
lift Q%" has the form Q#" = @Q%" where Q%' is a graded lift of @Q;. We can modify the choice
by replacing Q&' by (Q%") = @er(%) for some integers d;. The choice of the graded lifts
L,, fixes that choice; notice that Ly, will correspond to irreducible modules concentrated in
graded degree zero. Theorem 8.1.1 then follows from

Lemma 12.1.2. Let B be a finite dimensional graded algebra; assume also that B is based
(i.e. all irreducible modules are one dimensional). Suppose that for every irreducible rep-
resentations Ly, Ly concentrated in graded degree zero the natural grading on Ext'(Li, Ly)
satisfies Ext}L(Ll, L9) =0 forn <0. Then B satisfies B,, =0 for n <0 and By is semisimple.

Proof. Let J be the Jacobson radical of B, so that we have a short exact sequence 0 —
J - B - L~ 0, where L = @ L;. Then we get Ext!(L,L) = (J/J?)*. It is a standard
K3

fact that a subspace surjecting to .J/J? generates B as a ring over the ring spanned by the
central idempotents. Since the idempotents have degree zero and generators surjecting to
J/J? have positive degree, the lemma is proved. ]

The lemma implies that the grading on A was positive so it yields a proof of the main
theorem 8.1.1. Thus, proving the lemma finishes the proof of the Kazhdan-Lusztig conjec-
ture.

For a sheaf F let F(n) denote the sheaf with Frobenius action multiplied by ¢". The
following theorem is a part of the generalization of Weil conjectures by Beilinson-Bernstein-
Deligne and Gabber.

Theorem 12.1.3 (Beilinson-Bernstein-Deligne, Asterisque 100). Let X be an algebraic
variety over Fy and let Zy1,Zy be locally closed smooth and irreducible of dimension dy,dsy

n/2

with inclusions j1: Z1 > X, jo: Zo = X. If ¢~ is an eigenvalue of Fr acting on

Ext! (jl!*@g[dl] (4) , J21:Q,[do] (%))
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then n > 0.

Let Ly, be irreducible graded lifts corresponding to juux (@Z [{(w)] (Z(Tw))) under ¢.

Corollary 12.1.4. The grading on Extl(f/w,ﬂv) is such that components of degree > 0
vanish.

Proof. To show that Extil(f/w,fm) =0 for ¢ > 0 is equivalent to showing that the action of

Fr on Ext!(j,1. (@K[E(w)] (@))  Jols (@Z[E(U)] (@))) has no ¢' eigenvalues for i < 0.
This is exactly the statement of the theorem. (|

To finish the proof of lemma 12.1.1 we need to show that the graded lifts L, are self
dual. We will give two different proofs of this.

Proof 1. In this proof we use duality on Pervy(B) in the f-adic setting. In char 0 the
Verdier duality was defined as

F ~ RHom(F,C[2dim X]).
In the f-adic setting it is defined as
F = RHom(F,Q,[2dim X](dim X)).

It sends perverse sheaves to perverse sheaves.
Facts:

(1) If j is alocally closed embedding of an irreducible smooth subvariety then ji, (Q ,Ld] (%))
is self-dual.
(2) po commutes with duality.

Ezxercise 12.1.5. The duality on Oir can be characterized as the only exact contravariant
functor which sends irreducibles to themselves (up to grading shift) such that

po(MY) = po(M)*.

Hence the exercise shows that our duality on 0% is compatible with Verdier duality on
¢-adic sheaves equivariant under Fr (sheaves with a fixed Fr-equivariant structure are called
Weil sheaves). Le. for M € OF

d(M") ~ Verdier dual(p(M)).
Using fact 1 we get that L, = ¢_1(ng* (@z[ﬂ(w)] (@))) is self dual with respect to the
duality on (’)ir. 0
Proof 2. This proof is based on the following

Claim 12.1.6. A positive grading is unique up to replacing L., by I:w(d), where the same
integer d is used for all we W.
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Self-duality follows from the Claim. We know that a lift L, is unique up to a shift by
some dy,.

Let L, be graded irreducibles with grading on Extl(iw,iy) positive for all y € W.
Duality sends irreducibles to irreducibles and

Ext'(MY,N") = Ext'(N, M)

Thus, i;j} also satisfy the condition on positivity of grading on Ext!. By the claim there
exists an integer d independent of w such that

LY = Ly(d).

Duality can be defined for graded modules in the grading with deg(z) =1 for z € t. We
are working with the grading where deg(x) = 2 so d has to be even. Then replacing L,, by
Lw(%) we get the self-dual choice. O

The rest of the section is devoted to proving the claim.

Proof of claim. (i) Non-vanishing for Ext%(l?w, i}wsa): Let w, so € W. Assume that £(wsy) >
£(w). Recall the short exact sequence

0—Lo—>As, > Ls, - 0.

There exists a corresponding short exact sequence for the graded lifts.
0_)130(%)_)&5(! _’isa - 0.
Using convolution we get

0> Ay (3) > Aus, > Ay * Ly, 0.

_ Let E be the quotient of Awsa by the maximal subobject not containing I:w(d),
Lys, (d) in its Jordan-Holder series (d € Z). We claim that E fits into the diagram:

O—>Aw( )—>Awsa—>Aw>(-I:sa—>0

| ’ i

0—Ly(3) —=E——Lys, —=0

D=

Recall that there exist a graded lift A, - L,, with kernel only containing L, (g)
with v < ws, and d > 0. If the displayed diagram does not exist, then we have
an irreducible subobject LJ (%l) in Aw * f/sa such that the induced extension class
in Ext!(L, (%) L (%)) is nonzero. This contradicts positivity of grading on Ext!
between the fixed graded lifts of irreducibles.

Thus we got an extension of f)w 5o DY f/w (%) We need to show that it is non-trivial.
It is enough to prove this in the non-graded setting. Assume that N =~ L,, & Ly, .
Then Ay, /M ~ Ly ® Lyys,, so ker ~ M @ L,,. Thus, L, is a submodule in A,;,. By
proposition 4.1.1 this is only possible for w = e, so in all other cases the sequence is
non-trivial. The case w = e has been already been proved.
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If /(wsq) < £(w) one can apply duality to show that Extl(Ly, Lys, ) # 0 also in this
case.

(ii) Uniqueness: Let L/, be another set of irreducibles with a positive grading. The lift of
one irreducible is unique up to a shift so for each w € W there is a d,, € Z such that
L!, ~ Ly(dy). We need to prove that d,, is independent of w. We just proved that for
all w, s, € W

Exti (L, Lus, ) # 0
Now,
Ethl+dw—dwsa (L (dw), Lus, (dws, ) = Ethl(Lwa Lus,)
so for I:q’u to have a positive grading we must have
s, <dy Yw,sq € W.
This implies that d,, = d, for all w,veW. O

Remark 12.1.7. Kazhdan-Lusztig polynomials are interpreted as graded Euler characteristic

of Ext*(Ly, V,)* = stalk of L, = jw!*@g[l(w)] (@) at a point of B,. By the Koszul

property of A it is also true that the coefficients of P, are +dim H'(L,|x,), cohomology
spaces of the stalks.

12.2. What happens if A is singular? Recall that for A regular we have
H=2[q,q¢ ' [B]/(3a +1)(3a - q) = K°(O%),
where ¢ is a formal variable. Over F, we have
H[(q-p") > Z| BENG(E,)[B(F,)]
We have a Bruhat decomposition
G(Fy) = ]TUIB(Fq)UJB(Fq)
The map is given by 5, + dps,p. Here 0z denotes the constant sheaf supported on Z. Also
K (Pervy(B\G), Fr) - Q, [BIE)\G(F,)/N(F,)].,
F o (0 (1) Te(Fr, H(F,))).

i
Question 12.2.1. What happens if X is singular?

Assume that A\, are positive and A is regular but g is not necessarily regular. Recall
the translation functor T)_,, which sends A\ to Ay, and

Irreducible if w has minimal length

T)\»,u(Lw) = {

0 otherwise

Write W, := Staby, (p) this is the Weyl group of the Levi corresponding to p. The sign
representation W, - C*, s, = —1 deforms to a representation sign of H,(W}).
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Proposition 12.2.2. For u positive but not necessarily reqular we have
0 .
K(OF) ~ Hy ®p,(w,) sign.
The translation functor gives a map

E°(OF) —— K°(O)

the kernel is (5o + 1 | so € W,). The latter space is identified with the subspace in
K°(Pervy(G/B)) spanned by the classes of sheaves pulled back under the projection
G/B - G/P,.

12.2.1. An interpretation of Hg ®p,(w,) sign in terms of G(Fy). For A regular
Hy = C(B(Fq)\G(Fq)/N(Fq))‘
Given a subset 3 of simple roots consider functions
Uy : N(Fy)

|

Ha simple]Fq = N/[N7 N](Fq)

such that Uy is non-trivial on the summand corresponding to o < a € 3.

CX—

Example 12.2.3. For G =SL3 one such map is given by

1 2mi
(of)me 2.

Define
C(X/(N,U)):={f: X >C"| f(nx) =¥(n)f(x) Vne N,z e X}.
Proposition 12.2.4. For ¥ = {a/| sq € W} there exist an isomorphism
Hy®p,w,) sign = C(B(F)\G(F,)/N(F,), Ux)

Example 12.2.5. If p is regular then ¥ = @ so ¥ is trivial. If g = —p then X is the set of all
simple roots. The functions in this case are called B-invariant Whittaker functions.

Let wf denote the longest element in W, and set N wp = w{(N). There are maps

Av 13

~N"0

H, = (C(B(]Fq)\G(Fq)/ng (Fq)) : C(B(]Fq)\G(Fq)/N(Fq)v ‘I’E) =H, ®H,(W,.) sign

AVN oy
These maps are called averaging maps. They are defined in the following way

Ava(f) =g 2 "

heH

Aviw(f) = g 2 Fhe(h),

heH
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where f" is f composed with right multiplication by h.

Lemma 12.2.6. The composition AVng oAvy g, : Hy - Hy is the right multiplication by
5 = ZwEWH(_Q)ie(w)Tw~

Proof. Notice that the averaging maps commute with left multiplication. Therefore the
composition must be given by right multiplication by some element, call it £’. It remains
to check that £ = £’. The element £ is characterized by:

(1) It lies in Hy(W),).

(2) Coefficient at T3 is 1.

(3) (1+Ts,)- this element = 0 for s, € W,.

So we need to check that & also satisfies these properties. Property (1) follows from
the equality Ux(0) = 1, property (2) is obvious. To check (3) consider the projection
G/B — G| P, for a simple root o € 2. The element 1+T5,, corresponds to dp(r, )\G(F,)/B(F,)>
so we only need to check that the averaging map kills dp(r,)\q(¥,)/B(F,)- This follows from
the equality X, cr, Uy (uq(z) = 0, where u, is an isomorphism between the additive group
and the corresponding root subgroup. O

12.3. Category O for nonregular ;. We work with varieties over a field k of charac-
teristic p so « = zP" is a homomorphism of algebraic groups. Consider the Artin-Schreier
map

AS, G, - G, 2P — .

This is a homomorphism with a discrete kernel identified with the additive group of Fjn,
hence it is a Galois cover with that Galois group.

The additive group of Fjn acts on AS,,.(Q,). For a character x of (Fpn,+) we can
consider the summand in AS*(@e) where Fp» acts by x. This summand is called the
character sheaf and it is denoted by F,. The function

x = Tr(Fr, (Fy)z)
is the character y. Pulling back along the addition map +: G, x G, — Gy.
(+)"(Fy) = Fyw Fy = pri(Fy) @ pry(Fy)-
Let X a variety with an action of G,

Gy x X

yprz i X

Gq X X
Definition 12.3.1. A (G,, Fy )-equivariant sheaf on X is a pair (F, ¢) where F € D(Sh(X))

and ¢ is an isomorphism

o (F) 2 Fyw F = pri(Fy) ® pri(F)
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such that on G, x G, x X with action ac : G, x Gy x X - X, (g,h,z) = ghz. The two
isomorphisms

FyrRFy®RF ~ac (F)

arising from this data are required to coincide.

Remark 12.3.2. (i) Compare with the naive definition of equivariance in the derived cat-

egory.
(ii) The same works if G, is replaced by an algebraic group H with a sheaf Fx # 0 such
that

m*(fx) ~ fX fx,

(where m : H x H - H is the multiplication) satisfying the associativity constraint
(equality of two isomorphisms between sheaves on H x H x H).

In particular, if ¢ : H - G, is a homomorphism of algebraic groups, we can take Fx
to be the pullback of the Artin Schreier sheaf. We will denote the resulting category
of twisted equivariant sheaves by D(Sh(X/N,1)). We will also use the notation
Perv(X /N, 1) etc.

(iii) When H is connected and unipotent we get a full triangulated subcategory in D(Sh(X)).

_ _ a
Let (’)(’ée denote Oy considered over the field Q. Using the maps H x X 7, X define
functors

Avy(F) = a.pry(F),
AVH,}'X (.7:) = a*(prg(]:x) ®.7:)

Theorem 12.3.3 (Variation of Milicic-Soergel). There is an equivalence of categories
o(g[ ~Perv(B\G/(N,¥y)), T ={al|s,eW,},
such that for A regular the following diagram is commutative

Perv(B\G/N"0) —— O},

Aw‘ [AW L T

Perv(B\G/N, ¥y) — Oéé

where the maps on the right are translation functors and ¥y, is given by:

ZaEZ o3

N ——G,
Ezxercise 12.3.4. The kernels of the downward arrows in the two columns agree.

In particular, the Theorem provides a description of the endo-functor of wall-crossing
functor of Perv(B\G/N) corresponding to the translation functor 7),,\T)_,, namely it
is the composition of two arrows in the left column. Recall that we have already used
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something we called topological wall-crossing functors, especially in the case when W), =
{1,54}. To compare the two constructions consider the diagram

(8) G/N® x N_g
f :E,t)»—»(ﬂ,t)
mﬁ \h\

G/N (z,t)~at G/N x N_,

l

G/N

where N_,, ~ G, is the part corresponding to —a and N® c N is the radical of the parabolic
of type . Here Z is the image of x under the projection G/N% - G/N. In the ¢-adic setting
the composition of the two arrows in the left column of the diagram from the Theorem can
be rewritten as

g+(pr3(AS) ® f*(F))

12.4. Vanishing cycles. A general reference for vanishing cycles is section 8.6 in [KS].
Let f: X — A! be some map. Set Z = f~1({0}).

A

|

() —
From f we construct two functors on the derived categories of constructible sheaves

wf’ ¢f : DCOHS(X) - Dcons(Z)

The functors ¢, and ¢; are called nearby cycles and vanishing cycles. Both commute
with duality, satisfy proper base change isomorphism and send perverse sheaves to perverse
sheaves. Moreover, 1;(F) only depends on the restriction Fly, U = X\ Z, i.e. it is actually
a functor ¥¢(F) : Deons(U) = Deons(Z). There exists an exact triangle

i F[-1] > p(F) = ¢ (F) - i* F.

12.4.1. Construction over C in classical topology. Using the exponential map
cEc\orcc
define a fibre product X := X xc C > X. The nearby cycles are defined as

Vi(F) =" mem* (F)[-1]
The second functor ¢y is called vanishing cycles, it can be computed from the exact triangle
knowing ¢, ¢* (the exact triangle does not quite provide a definition for ¢ because of
nonfunctoriality of cone, though it defines ¢¢(F) up to an isomorphism for each F).
A more intuitive (though requiring more work to make formal sense of) description of
is as follows. For a sufficiently small open neighborhood U of Z in X a general theorem
guarantees existence of a retract map ¢ : U — Z. Choose such a neighborhood U; then
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locally for small enough positive € the complex c.(F|f-1(.))[~1] is canonically identified
with ¢ (F).

12.4.2. Another construction of R, : P — P. Let us make an additional assumption that
Gy, acts on X contracting X to Z so that f(tx) = ¢f(x). Denote this contraction map by
p. Let i:Z - X and j: {z | f(x) # 1} - X be the inclusions. F is monodromic with
respect to the action. Thus,

i (F) =p+(F)

U(F) = pul(Fly-1)

O(F) = p« (517" (F)).

Under the same conditions in the ¢-adic setting

¢7(F) = (F ® [ (Fx))-

We will use it in such a situation; namely, we let X = G/N x N7, the function w is the
projection to N, = Al and the sheaf is h.f*(F) (notations of diagram (8)). Thus, we see
that the topological wall-crossing functor can be rewritten in terms of vanishing cycles:

Ra(]:) :wah*f*(j:)'

12.5. Generalities about microlocalization. Recall that for A regular integral we used
microlocalization at B, to construct a map pg : Pervy (B\G) — Sym(t) - mod

O5 ——— Pervy(B\G)

l/ \I/MO

O_,>A-mod Sym(t)-mod

We now describe microlocalization for a general smooth algebraic variety X over C and
Z a locally closed, irreducible and smooth subvariety. Denote the conormal bundle to Z by
T7(X). Notice that T, (X) c T*(X)|z is Lagrangian in 7 (X ). One can define a functor

Hz: Dcons(X) - DconS(TE(X))

sending perverse sheaves to perverse sheaves such that for generic (z,&) € T/ (X)

1z2(F)ze = dp(F)l,

where f is a function on a neighborhood of z such that f|, = 0 and df|, = £&. If (2,€) is
generic the right hand side is independent of f. Let Nz(X) denote the normal bundle to
Z. This vector bundle is dual to T (X) so there is a Fourier transform

Fou

Deons(Nz(X)) — Deons(T7(X))

Inside Deons(Nz(X)) we have the specialization Sp(F). To describe Sp(F) we need a
degeneration of X to Nz(X). Assume that X is affine so X = Spec(O(X)). Let I be the
ideal of Z

I-0(X)>»0(2)
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Then
Nz(X) = Spec(®,I"/T™).
E.g. if Z =pt then I/I? =T}(X). I"/I"" ~ Sym™(I/I?) so
Tz(X) = Spec(I/1?)
Note that X x (A'\{0}) = Spec(Ox[t,t!]). Consider the following maps from the graded
ring ORees = ®n "
ORees

PN

&, I"/I™H! Ox|[t,t™]
Set X := Spec(ORees)- Thus, there are inclusions
Nz(X)— X <X x (A'\{0})
f
{0}¢ Al >AN {0}

Define the specialization
Sp(F) =Y (FrCpyi\(y[1])

This also works for ¢-adic sheaves.

12.6. Fourier transform. For V the total space of a vector bundle over Z and V* the
total space of the dual vector bundle there is a Fourier transform

Fou: Dcons(v) - Dcons(v*)
(1) In the ¢-adic setting
< > >:VXZV*_>A1
pT1 &\
%4 %
The Fourier transform is given by

Fou: F = pro, (pri(F) e ( , Y (Fu))[r],

where Fy is the Artin-Schreier sheaf.
(2) For dilation monodromic (also called conical) sheaves this is equivalent to

é(,)pr1(F)[r]
vanishing cycles.
Claim 12.6.1. This is supported on {0} xz V* so we got a functor
Perv(V') - Perv(V™")
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Exercise 12.6.2. Check that the functor
po : Pervy (B) — local systems on U c (g/b)*

\

Sym(t)
coincides with the restriction pz|y for Z = B..

Given F there are only finitely many Z (up to replacing Z by a dense open subset) such
that supp(pz(F)) is dense in T (X). Indeed, there exists a stratification X = [[; X; such
that puz(X) #0 iff Z is dense in the closure of a stratum. One defines Lagrangian cycle

SS(F) := ZmXiT;Q(X) cT*(X),

mx; :dlmH_n(:U’Xz(f))‘(z,&)
=(-1)"Eul px, (F)l(ze) (microlocal stalks)
where n = dim X and (z,§) € T, (X) is generic.
On an open dense subvariety of SS(F) we have local systems px,(X)[u,, Ui ¢ Tx, (X).

So Perv(X) and Deons(X) are related to T*(X). Suppose G is connected and acts on X.
Then we have a map

ma:T"(X) g%, & fe
where f¢ is defined as
fe(z) = (a(x),&), x eg, a(zx) € Vect(X) is the action vector field.

For F € DS . we have SS(F) ¢ m™1(0). If X; are G-invariant then ux,(F) is also G-

cons

equivariant. E.g. when the action is free Y = X/G and T*(Y) = m~1(0)/G.
If G is a torus and F is monodromic then SS(F) c m™1(0) and px (F) is monodromic.
13. PASS TO GEOMETRY OF COHERENT SHEAVES

We want a description of category O in terms of coherent sheaves on the cotangent bundle
of B. Recall that

Oy = g - mody - generalized central character A, t acts diagonally.

~ A-mod.
"O% = g—mod- generalized central character A
~ A - modnilp,

where A = End(M). We define the Springer variety N and the Grothendieck variety § as
follows

N =T"B={(b,z) e Bxg" |zeb},
_T*(G/N)

g:={(b,z) e Bxg"*|zerad(b)'} T
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Theorem 13.0.1. The categories Oy and A-mod can be realized as full subcategories
Oy c Coh® (N x4 §) = Coh® ' (mc (T (B\G) x T*(G/N)),
A -mod c Coh®(g x4 §) = Coh™” T (m (T*(GIN)?)).

Remark 13.0.2. The moment equation is imposed only for G-equivariance for GxT restricted
to T'xT'. This is the quasi-classical counterpart of monodromicity.

The theorem is best explained in the setting of D-modules. We worked with Pervy (B\G) =
Pervg(B\G x G/N).

13.0.1. Compatibilities. Use the canonical isomorphism g* ~ g and t* ~ t. For any Borel b
and Cartan t we have a canonical isomorphism b/[b, b] ~ t. Thus, there is a map

g—t (b,x) >z mod [b,b].

Recall that g//G ~ t//W so there is a projection g — t//W. The projection has a section
k called the Konstant slice. These maps fit into a commutative diagram together with the
natural projections

In particular, there is a map
g gxymwt
An element z € g is regular if dim 34(2) = rank(g). When restricted to the regular part the
above map is an isomorphism
greg ;) greg Xt//W t.
Let e, h, f be a sly triple with e, f regular. Then
Im(x) = £ +5(e)
One can show that
Exyyw t= (g %59) xgt//W cgxga,
where the last fibre product is using . With this identification Spec(A) = {0} x¢/y t c
N Xg 0.
Coh(g x4 §) — Coh(t xy//w t)
Coh(N xg §) — Coh({0} x/w t)
For a conjugacy class of a parabolic P with decomposition P = NpL, where L is the Levi

G/P x g = { P-parabolics in the given conjugacy class}
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Consider the subset

- T*(G/Np

bp = {(p.2) € G/P xg | ep) = GNE)
There are projections

i—>dr—g
The first map is generically [Wr[ — 1 and the second is generically (W : W) — 1. Viewing
O, as a subcategory of Coh(N x4 g) the wall-crossing functors 7),.3T), corresponds to
the functors mpmp,. The functors mpmp, are called coherent wall-crossing. Consider the
inclusions
§:N <> N x40, § g §xg0.

These give a correspondence with the Vermas

5. (0) = A, 6(0) < A..

14. GENERALIZATION TO THE AFFINE SETTING
Recall the Kazhdan-Lusztig story. We defined a braid group action
B G D"(03)
We also got an action
Hy=Z[B]/(Ts, + 1)(Ts, —q) C KO(O%) ~ Hy.

Hence, Oy categorifies H, as a H,-module with a canonical basis given by the irreducibles.
We used a toplogical realization. We also have a coherent realization.

Remark 14.0.1. Let g™® denote the set of regular semisimple elements in g. The braid
group can be realized as a fundamental group

B =m(tc®/W) =m(g""/G).
E.g. for g = sl, the braid group is given by
7T1({(Zl, coozn) €C |z # 25,1 # Zzi = O}/Sn)

There are several different ways to generalize this picture.

e One can replace the regular representation of H, by another.

Remark 14.0.2. For g = sl,, a categorification of an irreducible module is given by
finite dimensional representations of a finite W-algebra with regular integral central
character.

e One can replace W by W,g. Then g —mod is replaced by one of the following
(i) gx — mod with char(k) = p.
(ii) gc — mod where gc is an affine Lie algebra.
(iii) Modules over the quantum group U,, where ¢ is a root of 1.
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There is a notion of a categorification of a g-module when g is a Kac-Moody Lie algebra
(Chuang-Rouquier). Examples are constructed using, say, quiver varieties.

Unlike in that setting, we work with an action of a group on the (derived) category. The
group B can be realized as m; of something.

14.1. Affine versions of B, W and H. For any Dynkin graph one can define a group by
generators 5, and relations

SaSB"*Saor B = SpSa*SB or a

Mag Mag
An algebraic group gives an affine Dynkin diagram. The affine braid group B,g is defined
as the group corresponding to that diagram.
Imposing the relation 53 =1 one get the affine Weyl group.

Bag/(32 | a simple root) = Wog = W x R,

where R is the coroot lattice. The group W,g acts on t¢ by affine linear transformations.
As a subgroup of Aut(tc) the affine Weyl group is generated by reflections of

Hyp={v|(o,v) =n} a root,n € Z

\ /

/\ /\

If G is simply connected then t¢ — T¢ ~ t¢/R and the affine braid group can also be realized
as a fundamental group

tc\Uan Han
Wast
For G not necessarily simply connected define
off = T (—tC\ Uan Hon ) ;

Wast

here 7 is as an orbifold. One can also write Bgﬂ as
af =% Bag,  Q=m(G)

50 Bag C Blg with equality iff G is simply connected. One can also define an extended
affine Weyl group

Baff:ﬂ'l( ):7F1(Treg/W):Wl(GT'S'//G).

;ﬂ::WXA7
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where A is the coweights of G. Wog ¢ W/ with equality iff G is simply connected.

A connected component of tc\ Uan Han is an alcove. W,g acts simply transitively on
the set of alcoves. The action of W, is transitive and the stabilizer of an alcove is 2 . Thus
Q acts on the fundamental alcove permuting its codimension one faces, which are identified
with vertices of the affine Dynkin diagram. For example, for G = PGL,, the group 2 is
cyclic and the action of a generator on the affine Dynkin graph looks like this:

Q
7

~_ -
Analogously to the non-affine case we define
Hogr = Z[q,q" [ Basr] [ G+ 1) (5a - 9)-
For G not simply connected set
Hg = Z0a,q" [Big) [ Go+ 1) (Ga - 0)-
Recall that
Hy ®qspn C = C(B(Fg)\G(Fy)/B(Fy))

Replacing the Borel with a subgroup I defined later one can get a similar description for
Hig
Hag ®gpn C = (C(I\G(F)/I)7

where F' = Fy((t)) or another local non-archimedean field with residue field Fgn. The
inclusions

Fi=Fp((t) 5Fpl[]]=0,  O~Fp

induce maps of the algebraic groups

G(F) =<——G(0)

l

G(Fq")
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In fact, G(O) is a maximal compact subgroup of G(F'). Define I c G(O) as the preimage
of B(Fgn). We can assume WLOG that T'(O) c I. One can show that

NG(F)/1

Wa
—~
Norm(T'(F))/T(O)
Notice that
T(F)~(F*)",  T(F)/T(O)~Z"~A coweights of T
Since F*/O* 5 7 as vector spaces we get
A=T(F)/T(0) - Norm(T(F))/T(O) ~ Wz » Norm(T(F)) /T (F) = W.
A lattice L ¢ F™ is a rank n O submodule.
Ezample 14.1.1. For G =GL(n)
GIB(F,) = {(Fy > Vay -5 Vi 5 {0}) | dimV = i}
G(F)/I={Lyg Ly ¢ ¢ Ly, | L; lattice, L, = t ' Lg}.
Ezample 14.1.2. The G(O)-orbits of the set of sublattices L c O™ are in bijection with
{(dy >dy >-->d, >20)} c A",
The T, are the standard basis in H.;. The isomorphism we claimed existed is given by
Hig®qpn C > C(I\G(F)/I), Tw = Orwr-

Wg can be defined either as a group generated by reflections (Coxeter presentation) or
as W x R. In the later Wyg is generated by {s, | « is a finite simple root} and R. This
upgrades to a presentation of B,g with generators {3, | « finite simple root} and {t) | A € A}
and relations

(i) taty = tary
(ii) gozg,é’"'goc or 8= §B§a'”§ﬁ or a

Mag Mag

(iii) If (av, )\) = —1 then 5,t)5, = tsao\).
Ezample 14.1.3. For G =SL(n).
Baff:wl((zl,...,zn) eC"| HZi =1,2; # 25 fori;tj)

©

Sn

anl Cm
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14.2. Affine braid group actions. Several of the braid group actions we have encountered
so far can be extended to actions of the affine braid group.

Claim 14.2.1. Set Z = § x4 § and Z' := N x4 §.
(1) The action of B on D?(O5) (resp. D’(A -mod)) extends naturally to an action on
Db(Coh%(Z"))  (resp. D*(Coh%(2))),
where the action of w, w € W, can be described as follows. Recall

g—————=gxymwt

J

WCge—=g%xywt O W
Let ', c g x g be the closure of the graph of the w action on g'®. Define
IZ:=gx,Tyxgd cZxZ,
I% = (2'x2")nTZ,

Consider the projections

The action of w is defined as
0 F v pra,pri ().
(2) The actions on D?(Coh®(Z)) and D?(Coh®(Z’)) extends to an action of Bag.
A = {weights of G} = {weights of T'} = Pic®(G/B) c Pic(G/B).

Denote the line bundle on G/B corresponding to the weight A € A by O(\). The action
of ty is given by
th: F > Fpry(O(N)) AeA.

This also give an action on D?(Coh®®" (Z)) and D’(Coh®*C" (Z')) so that
K°(D Coh®C (2)) = Hug(G) =~ K°(D Coh® " (2))

with the action of B,g by right multiplication. This result appeared without proof in
[Gin| and was proven independently by Kazhdan and Lusztig [KL, Theorem 3.5]. It
also appears in the book [CG, Theorem 7.2.5] with a full proof.

(3) There is an action of B.g on

D(Coh®™(W))  and  DP(Coh®(g)),

where K is a subgroup of GxC*. Let 7 : g > G/B be the projection. For any subgroup
H c G the action of ty on D°(Coh’ (§)) is given by

th:Fo For (O(N).
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There exist a section
! 1A
WeWag < Dag

wWHW
Let I'y, be the closure of the graph of w acting on g"*® and let pry’y : I'y, — g be the
projections. The action of @, w € W, on D®(Coh? (§)) is given by

w: F > pro.pry” (F).
For the action of @ on D?(Coh(N)) replace T, by
I/ =Ty (N xN)
and the projections pryy” : T, — N
w: F - pry, pri’"" (F).
The induced action on K°(Coh®® (§)) is the H,g module
Masph = Haft ®p sign,
where H is the finite Hecke algebra. This module is called the anti-spherical module.
Mpn = Hag ® g trivial representation.
This is called the spherical module. For F' =F,»((t)) and ¢ ~ p"
Hag ~ C(I\"G(F)/I) C C(I\*G(F)/*G(0)) ~ Mg
Ezample 14.2.2. For g =sly W = {1,s}. The graph has two components
I =(P'xPYuA c(T*PH?,

where A is the diagonal. Thus, there is a short exact sequence with functions vanishing on
one component and functions vanishing on the other component

0 = Opiyp1 (-Ap1) = O, - Op = 0.

Here Opi,p1 (~Ap1) is the sheaf of functions on P! x P! which vanish on the divisor Aps.
This can also be described as a a spherical reflection. Let pry : T*P! x T*P! - T*P! be
the projection on the second factor. Define

S(F) = pro.(pri(F) @ Opiypr (-Ap1))[1]
Using the short exact sequence above we get an exact triangle
S(F)-1] - 5(F) > F - S(F).
Each fiber of S(F) is isomorphic to H*(F ®p(r+p1y O(=1))[1].
FEzercise 14.2.3. Show that S(F) ~ Op1(-1) ® Hom*(F, Op1 (-1))*.
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14.3. Categorical reflection. For an abelian group with a Z-valued bilinear pairing there
is a reflection for each v € X given by

(0,2)

(v,0)

T—>xT—2

If (v,v) =2 then this is
x> x—(v,x)v.

One can define a categorical analog of this. Let C be a triangulated category over k satisfying
that

Hom®(X,Y) is finite dimensional for all X,Y e C.
An element V € C is spherical of dimension d for d > 0 if
; kE i=0,d
Ext/(V,V)={" '~"
0 ++0,d
For such a V a categorical analog of reflection is given by

X ~ Cone(X,Hom*(X,V) @ V)[-1]

Note that Cone is not functorial so we need some additional assumptions to make it a
functor. If d is even then taking K° we get to the above reflection with

([X],[Y]) = Eul(Ext(X,Y))

Ezample 14.3.1. The object Op1 € DY(Coh(T*P')) (and hence Op1(i)[4] for any i and j)
is spherical with d = 2. Indeed, for X smooth
Extcon(r+x)(Ox, Ox) = @ H' (Y (X)).
If X is smooth projective this is equal to H*(X). For CP!
: i =0.2
i) =1~ 0
0 2+0,2

The spherical reflection corresponding to Opi[—1] is the § from the previous example.

Let ¥ c g be a transversal slice to the G-orbit of e € N/, i.e. an affine linear space with
T.X o T.G(e) = g. Set
Yi=N Xg 2.
The B! g-action on D’(Coh(N)), D¥(Coh(g)) induces an action on D?(Coh(X)) using the
same formula as before on

I (2):=I"nYxX

/ \~

» »
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14.3.1. Subregular slice. There exists a unique orbit on N of codimension 2. Let e be in
this orbit. Then
AN =A%,

where I is a finite subgroup in SL(2).

Ezxample 14.3.2. For g = sl,, a possible choice of e and X is

0 0

o= 20 (1) ., Y={XY=Z"}cA’

Here e has two Jordan blocks of size 1 and n — 1. Consider the projection
Y >YnN=A%Tse.

The fiber over e is a reducible variety with components CP! intersecting in the following
way.

Ezercise 14.3.3. Show that D°(Coh(X%)) ~ D®(Coh" (A?)).

In general if G is simply laced then the components of the fiber over e are in bijection
with the vertices of the Dynkin diagram (see [Slo]).

FEzercise 14.3.4. Show that Oy, where ¢; is a component of the fiber over e, is a spherical
object with d = 2 and that s, € Bag acts by spherical reflection for Opi (-1)[1].

We have Coh! (A?) = R — mod where
R = preprojective algebra
= path algebra of the quiver Q with

Z +ep—pCpow = 0 YV vertex v

w—v
The sign rule is the following. Fixing an orientation, the sign is plus if v - w agrees with
the orientation. Otherwise, it is minus.

7N
N/

—
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For that e and G simply laced K°(Coh(X)) is the reflection representation of W/ and
K%(Coh® ()) is the reflection representation of H L

It turns out that the result of exercise 14.3.3 is true is greater generality.

Ezercise 14.3.5. For G simply laced Bl acts on a slice to a subregular nilpotent e € N with
dim G(e) = dim N — 2. Show that

D°(2) = D*(Coh"'(A?))
and
Coh' (A%) = R — mod,
where for some quiver @

R = preprojective algebra = path algebra of @) with relations

Z +eypskChoy =0 V vertex v
w—v
For the first equivalence see [KV].
FEzercise 14.3.6. (1) Let p be an irreducible representation of I'. Let ko denote the

skyscraper at 0. Show that p ® ko € Coh® (A?) is a spherical object. The spherical
reflection gives an action of Bag on DP(Coh! (A?)).

(2) Write down the action on the preprojective algebra side. Let V be a representation.
Define representations V' and V" as follows

V; 1#] 0 j+1
V;,@@k—zvk‘ =7 V:L J=1

Consider the three term complex
Si(V):= V'V V"
given by 0 away from ¢ and for ¢

OVi+Zi—j +€45 IdVi + Zi—j —€ji

Vi Vie ®;-; V; Vi

in the first sum the sign is - if ¢ - j and + if j - ¢. Extend this to complexes.
This defines an autoequivalence S; of the derived category of modules over the
preprojective algebra. We get an action of the affine braid group on this category,
where the i-th generator (in the Coxeter presentation) acts by S;. Cf. [BGP] by
Bernstein, Gelfand and Ponomarev.
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14.4. Where does W, and H,g arise in representation theory? One answer: rep-
resentations in characteristic p > the Coxeter number. In characteristic 0 we have Z(U(g)) ~
Sym(t)" but in characteristic p we only have an inclusion Z(U(g)) < Sym(tx)". Sym(tz)"
is called the Harish-Chandra center and is denoted by Zpcn. So for A € t; we can look at
representations with corresponding generalized character of Zycp. For G simply laced

Integral characters of Zycy, = A/WPA =A/(W xpA) = A|W ..
As in characteristic 0 we define walls
Ao Hyp={\| (N a)=np} a coroot ,n € Z.

One can define translation functors between categories of modules with different gen-
eralized integral central characters. They share many of the properties we have seen for
translation functors in characteristic zero, in particular we have translation functors to and
from the wall, so we can define wall crossing functors acting on the category g —modg of g-
modules with generalized central character of the trivial representation (or another integral
regular central character). The wall crossing functors give an action of Bag on D?(g—mody).
Let Cohp,(g) be the modules set theoretically supported on the zero section. B,g also act
on D’(Cohg, (g)).

Theorem 14.4.1. For k of characteristic p > Cozeter number
D" (g~ mody) = D*(Cohs, (5))

and the Byg-actions are compatible under the equivalence.

15. CANONICAL BASIS

Recall that for A regular integral O5 ~ A - mod ¢ Coh® (N x §). On D°(A - mod) we
defined a B-action where w acts by the functor I,,. The I, are right exact functors, i.e.
they send

D=°(A-mod) - D°(A - mod)
and there is an exact triangle Id - =, - I, .

The B-action on D’(Coh®(N x §)) > D(A - mod) extends to a Bug-action. This
comes from an action of Bag on D(Coh(g)). We are interested in a canonical basis in
K%(Coh(B)) ~ H*(B) and the corresponding category of representations

g—deformation

K°(Coh(B)) ~ K°(Cohp(§)) ~ K°(Cohs(A)) K°(Cohz (3))
The C* action on the right hand side is by dilating the fibers. This can be enriched to
K(Cohgz " (g)).

Theorem 15.0.1. (1) There are equivalences of categories D*(Coh(g)) ~ D*(A-mod; ;)
and D?(Coh(N)) =~ DY(A’ —mod; ) for some algebras A and A’ satisfying
(i) The element 5, € Bqg acts by right exact functors on the right hand side, i.e.

01 D°(A-mod;,) - D°(A-mody,)
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(ii) The following diagram is commutative

DY(A - mod) —— D?(§ - mod)

\ l RT
ezxact

D*(Coh(g))

Here T' stands for global sections thought of as a module over O(g), i.e. a
coherent sheaf on g (thus RT' here is synonymous to R, where 7 is the pro-
jection g — g).
(11i) This characterize A uniquely up to Morita equivalence.
(2) The classes of irreducible objects in A — mod®’ form a canonical basis in
KO(A - mOd}Ci:L length) = KO(COhg* (g))
~ H*(B)[v,v™]

Lusztig’s definition of canonical basis is based on an involution i on K°(Coh® (§)), K°(Coh® (N)).
i([F]) = n(ii(S(F))),
where k is the Chevalley involution - an involution of G such that
VgeG dxeG: k(g)=xzgx™"

and S is the Grothendieck Serre duality F ~ R Hom(F,O).
The involution is identity on non g-deformed K°. For G =SL,, it is g = (‘g)~'. There is
a pairing on K°(D?(Coh§ (N))) given by

([EL[F]) = > 0" Y (-1) dim Ext} (£, F) € Z[v,v™'].
( J
Here Extg denotes the i’th graded component of Ext’.

Definition 15.0.2 (Lusztig). A basis (Cy) in K°(Coh% (N)) is canonical if i(Cy) = C
and (Cy, Cp) € dgp + VZ[v].

Exercise 15.0.3. If a canonical basis exists it is unique up to replacing Cs by —Cs.

15.0.1. The canonical bastis in this representation of H,g. Over a field of characteristic p >
Coxeter number

A- mOdﬁnite length, 0 generalized = § — mOdgeneralized central character
central character of the trivial representation
There is a closely related setting in characteristic 0, namely quantum groups at a root of 1.
The analogues of Kazhdan-Lusztig conjectures here are known as a result of work of many
people on "Lusztig program", the proofs use affine Kac-Moody group (loop group for the
Langlangs dual group “G) and the corresponding Lie algebra.
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A similar thing works if A is replaced by a resolution of the slice. Let e € A" and X, slice
to the orbit G(e)

C*C X:=./\~/'><gEe.
Notice that X contains the Springer fiber B,. KO(Db(Cohg: (X))) is called the standard
module for H,g. It was defined by Kazhdan, Lusztig and Ginzburg in the 80’s.

To get a group which is most directly related to representations in positive characteristic
one can pass to the non-graded version:

K(D"(Cohg, (X)))
|
K°(Coh(B.)) = K°(Cohg, (X))

|

H.(B)

Proposition 15.0.4. Set A= A’ ®p(5) O(Xe). Then
(1) D*(Coh(X)) =~ D°(A. - mod).
(2) Ac—mod = g—mod in characteristic p > h where the center of the enveloping algebra
acts through a certain quotient isomorphic to O(Z¢).

Another related category of representations is that of the finite W-algebra W, which is
a quantization of .. In particular, the category of W, —mod over k of characteristic p > h
where a part of the center acts by a fixed integral regular character is also equivalent to
A, — mod.

Proposition 15.0.5. In type A we have

(1) Hi(Be) > Hiop(Be) is an irreducible representation of S,.
(2) K°(W,-mody.g [C) =~ Hipp(Be).

There are many examples of representation categories A with an action of B or Bag on

DY(A). Recall that

(t* \ hyperplanes defined over R)
Bag=m

Symmetry

A natural generalization of this to other situations when the symmetry group does not
act transitively on the set of components in the real locus of the complement (alcoves)
seems to be the following:

One should consider an abelian category assigned to each alcove and a derived equivalence
attached to a homotopy class of the path connecting two alcoves, producing a functor from
the subgroupoid in the Poincare groupoid to the 2-category of categories.

Notice that a presentation for this subgroupoid similar to the standard presentation for
the braid group appears in [Sal.

An attempt to axiomatize further properties of this situation can be found in [ABM]. The
main axiom (inspired by the notion of Bridgeland stability condition) prescribes exactness
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properties of the functor corresponding to the loop which goes around a hyperplane in the
positive directions; such a loop generalizes a standard generator of the (affine) braid group.
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