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MAXIMAL RESTRICTION ESTIMATES AND THE MAXIMAL

FUNCTION OF THE FOURIER TRANSFORM

JOÃO P. G. RAMOS

Abstract. We prove a maximal restriction inequality for the Fourier transform,
providing an answer to a question left open by Müller, Ricci and Wright [7]. Our
methods are similar to the ones in [7] and [1], with the addition of a suitable trick
to help us linearise our maximal function. In the end, we comment on how to use
the same trick in combination with Vitturi’s approach [11] to obtain a stronger
high-dimensional result.

1. Introduction

Restriction estimates for the Fourier transform have been a very active topic
within harmonic analysis for over the past 40 years. Basically, one inquires whether
an inequality of the form

(1) ‖f̂ |S‖Lq(S,dσ) ≤ Cp,d‖f‖Lp(Rd)

can hold on a hypersurface S, where σ stands for the standard surface measure on
S, which is the same as the arclength measure for the case of plane curves. Here we
shall focus on compact hypersurfaces S with non-vanishing curvature, the typical
example being the sphere Sd−1. By taking examples of functions (either the so called
Knapp examples or constant functions; see, e.g., [9, Section 4]), one finds out that
a necessary condition for such inequalities to hold is that

(2) 1 ≤ p <
2d

d+ 1
and p′ ≥

d+ 1

d− 1
q,

where 1
p
+ 1

p′
= 1. The restriction conjecture then asserts that the above conditions

are also sufficient.

The first manifestation of such a restriction principle, in a range smaller than (2),
was perhaps the result of Fefferman and Stein (see [2, page 28]), where an estimate
in all dimensions for q = 2 was proven, this estimate being sharpened to the optimal
range of p for such q by Tomas [10], who credits Stein for the endpoint result. For the
sphere (and, in general, for compact hypersurfaces with non-vanishing curvature),
it reads that

‖f̂ |S‖L2(S,dσ) ≤ Cp,d‖f‖Lp(Rd),

whenever 1 ≤ p ≤ 2(d+1)
d+3

.

Regarding ranges of exponents, for dimension d ≥ 3, Problem (1) is still open,
with new technology being developped continously to improve ranges of exponents;
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see, for instance, [9, 4, 5] for further developments in this subject.

For dimension 2, however, Problem (1) has been completely solved, as we observe
that the conditions can be rewritten as follows:

(3) 1 ≤ p <
4

3
, p′ ≥ 3q.

In the non-endpoint case p′ > 3q, the result is due to Fefferman [2, page 33], and
the endpoint to Zygmund [12] and Carleson and Sjölin [1]. Later, Sjölin [8] also
extended these results to other classes of curves.

In [7], D. Müller, F. Ricci and J. Wright consider a slight strenghtening of the
restriction properties of the Fourier transform in two dimensions: namely, they prove
a maximal version of restriction estimates and conclude a differentiation result. Here,
we shall state the result only in the case of S1, for simplicity:

Theorem 1. [Müller, Ricci, Wright [7]; 2016] Let S1 be the unit circle in R2 and
f : R2 → C be a Lp function. Assume that 1 ≤ p < 8

7
. Then, with respect to arclength

measure, almost every point in S
1 is a Lebesgue point for f̂ and the regularised value

of f̂ at x coincides with the restriction operator Rf(x) for almost every x ∈ S1.

The purpose of this note is to improve ranges of exponents of such maximal
restriction results. Explicitly, our main result is:

Theorem 2. Theorem 1 extends to 1 ≤ p < 4
3
.

The strategy in [7] passes through a maximal function with absolute values out-
side the integral, and then uses Hölder inequality. Namely, they focus on maximal
functions of the form

Mf(x) = sup
R axis parallel,
centered atx

∣∣∣∣
∫

χR(y)f̂(y) dy

∣∣∣∣ ,

where χR ∈ S(R) is a smooth bump function adapted to the rectangle R. They
then prove that, for the whole restriction range 1 ≤ p < 4

3
and p′ ≥ 3q,

‖Mf‖Lq(dσ) ≤ Cp,Γ‖f‖Lp(R2),

where σ stands again for the arclength measure on the curve Γ. Finally, in order to
prove Theorem 1, the authors bound the maximal function

(4) MRf(t) = sup
R axis parallel,
centered atx

∫
χR(y)|f̂(y)| dy

by (Mh(x))1/2, where h = f ∗ f̃ , with f̃(x, y) = f(−x,−y).

In order to prove Theorem 2, it suffices to bound (4) from Lr(R2) to some Lq(S1),
where 1 ≤ r < 4

3
, as the stated property holds trivially in the class S(R2). By nature

of such an approximation argument, it sufficies to prove these bound for functions
f ∈ S(R2).
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For fixed g with ‖g‖∞ = 1 and measurable choice R of axis-parallel rectangles,
define the linearised maximal operator

(5) Mg,Rf(x) =

∫

R2

|R(x)|−11R(x)(y − x)f̂(y)g(y) dy

acting initially, say, on functions in L1(R2)∩L2(R2). Setting g(y) = f̂

|f̂ |
where f̂ 6= 0,

and zero otherwise, together with measurable R such that Mg,Rf(t) ≥
1
2
MRf, im-

plies that it is in turn sufficient to estimate (5) from Lr(R2) to some Lq(S1). This is
the basic goal of Lemmata 1 and 2.

Following [7], M. Vitturi [11] and V. Kovac and D. Oliveira e Silva [6] have proved,
as a consequence of p′ = 4 being admissible for the restriction estimate, results in
dimensions ≥ 3 : they have obtained that, in the same range of exponents as in

Theorem 4, one gets pointwise convergence χε ∗ f̂ → f̂ for σ−almost every point
on the sphere S

d−1, where χε(y) = 1
εn
χ(y/ε), and χ ∈ S(Rd). Although this is al-

ready present in [11] and in both cases the techniques also imply the same result
for χ = 1B(0,1), the ideas in [6] represent a stronger, quantitative form of such a
theorem, as they consider variation norms instead of suprema.

Our second result is also an improvement on Vitturi’s techniques, yet in another
direction:

Theorem 3. Let f ∈ Lp(Rd), 1 ≤ p ≤ 4
3
. Then σ−almost every point of Sd−1 is a

Lebesgue point of f̂ , and the regularised value of f̂ at x coincides with the restriction
operator Rf(x) for almost every x ∈ Sd−1.

The argument to prove Theorem 3 is similar to the one employed to treat Theorem
2, and we postpone it to the end of this manuscript.

2. Main Argument

Call a measurable function a in Rd bump function if there exists an axis parallel
rectangle R centered at the origin with

|a| ≤ |R|−11R.

Convolution with such a bump function satisfies a pointwise bound by the strong
Hardy Littlewood maximal function, uniformly in the rectangle. The following
lemma concerns an adjoint of a linearised maximal operator, combined with a Fourier
transform.

Lemma 1. For each x ∈ Rd let ax be a convolution product of k bump functions.
Assume further that ax(y), as function in (x, y), is in L∞(x, L1(y)). Let T be defined
on functions f ∈ L2(Rd) ∩ L1(Rd) by

Tf(ξ) =

∫

Rd

âx(ξ)e
2πix·ξf(x) dx.

Then, for some universal constant C depending on k and d only,

‖Tf‖2 ≤ C‖f‖2.
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Proof. We set up a duality argument, testing Tf against an arbitrary function ĝ ∈
L2(Rd) ∩ L1(Rd). We have, by Fubini and Plancherel,

∫

Rd

ĝ(ξ)

∫

Rd

âx(ξ)e
2πix·ξf(x) dxdξ =

∫

Rd

f(x)

∫

Rd

g(y)ax(y − x) dydx

Identifying on the right-hand-side a k fold convolution by bump functions acting on
g, we estimate the last display by

∫

Rd

∫

Rd

|f(x)|Mk(g)(x) dx ≤ ‖f‖2‖M
kg‖2 ≤ C‖f‖2‖ĝ‖2 ,

where we have used the strong maximal theorem and Plancherel again. Since ĝ was
arbitrary, this proves Lemma 1.

�

The hypotheses in the next Lemma are motivated by the parameterised circle

z(t) = (cos(2πt), sin(2πt)).

By the addition theorem for the sine function, we have

| det(z′(t), z′(s))| = 4π2| sin(2π(s− t))|.

Note the vanishing of the determinant when the two tangent vectors become parallel
or anti-parallel. Note further that one can recover t 6= s ∈ I := [0, 1) from

x := z(t) + z(s).

Namely, x/2 is the midpoint between z(t) and z(s), and these two points on the circle
are mirror symmetric relative to the line through this midpoint and the origin. This
determines the two points t 6= s, up to permutation. Define, therefore, the upper
triangle

∆ = {(t, s) ∈ I × I : t > s}.

Lemma 2. Let z : R → R2 be a smooth one-periodic curve such that for all (t, s) ∈ ∆

(6) | det(z′(t), z′(s))| ≥ c| sin(2π(t− s))|

and such that the map

(7) (t, s) → z(t) + z(s)

is a bijection from ∆ onto a bounded set Ω ⊂ R2. With az(t) a bump function for
every t ∈ I such that az(t)(x) is in L∞(t, L1(x)), consider an operator acting on
functions in L4(I) as follows:

Tf(ξ) =

∫

I

âz(t)(ξ)e
2πξ·z(t)f(t) dt.

Then we have for all 1 ≤ p < 2 with some constant depending only on p:

‖Tf‖2p′ ≤ Cp‖f‖ 2p

3−p
,

with the obvious interpretation when p′ = ∞. Notice, moreover, that the reciprocals(
1
2p′

, 3−p
2p

)
of the aforementioned exponents lie on the line segment joining (1/4, 1/4)

and (0, 1).
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Proof. To reduce to Lemma 1, we need to pass to a two dimensional integral. We
follow the idea of Carleson-Sjölin and consider the square

Tf(ξ)2 =

∫

I×I

âz(t)(ξ)âz(s)(ξ)e
2πξ·(z(t)+z(s))f(t)f(s) dtds.

The integral is twice the analoguous integral over the triangle ∆, where we change
coordinates by the bijective map (7) to obtain

Tf(ξ)2 = 2

∫

Ω

b̂x(ξ)e
2πiξ·xg(x) dx.

Here we have unambiguously defined, for (t, s) in the triangle,

b̂z(t)+z(s) := âz(t)âz(s),

g(z(t) + z(s)) := f(t)f(s)| det(z′(t), z′(s))|−1.

Note that the determinant here is the Jacobian determinant of the map (7).
It is now easy to prove, by interpolation, that for 1 ≤ p ≤ 2 we have

‖Tf‖2p2p′ = ‖(Tf)2‖pp′ ≤ C‖g‖pp .

Namely, p = 2 follows directly from Lemma 1 applied to a function supported on

Ω, and p = 1 is trivial since ‖b̂x‖∞ ≤ C. To conclude the proof of the lemma, we
invert the change of variables to estimate the right-hand-side for 1 ≤ p < 2 :∫

Ω

|g(x)|p dx =

∫

∆

|f(t)f(s)|p| det(z′(t), z′(s))|1−p dtds ≤ Cp‖|f |
p‖2 2

3−p

= Cp‖f‖
2p
2p

3−p

.

Here, the last inequality follows from the Hardy–Littlewood–Sobolev inequality for
fractional integrals. Namely, we estimate with (6) on the triangle:

| det(z′(t), z′(s))|1−p ≤ C
2∑

k=−2

|t− s− k|1−p,

and we note that each summand leads to a translated fractional integral. �

Proof of Theorem 2. We introduce the bump function

ax(y) := |R(x)|−11R(x)(y)g(x− y),

and write

Mg,Rf(t) =

∫

R2

az(t)(y − z(t))f̂ (y) dy.

This is just a composition of the operator in (5) with a parametrisation, so we
identify them. By Plancherel, similarly to the proof of Lemma 1, we have

Mg,Rf(t) =

∫

R2

âz(t)(ξ)e
−2πiξ·z(t)f(ξ) dy.

The adjoint operator then becomes

M∗
g,R(h)(ξ) =

∫

I

âz(t)(ξ)e
2πiξ·z(t)h(t) dt.

By Lemma 2, this is bounded from L
2p

3−p to L2p′ for p < 2. We set now r = (2p′)′.
By a computation, 2p

3−p
= (r′/3)′. With this notation, we have that Mg,R is bounded
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from Lr(R2) to Lr′/3(S1) for all r < 4
3
, which is already what we wished to prove.

Recall, moreover, that this implies Lr(R2) → Lq(S1) estimates in the optimal two-
dimensional restriction range 1 ≤ r < 4

3
, r′ ≥ 3q.

�

3. The high-dimensional result

Just like we employed our techniques to deal with the two-dimensional case, we
adapt the arguments by M. Vitturi [11] to achieve high-dimensional estimates. We
briefly sketch on how to do it.

Theorem 4. Let d ≥ 3, and

Mf(x) = sup
0<ε≤1

−

∫

B(0,ε)

|f̂(x+ y)|dy.

Then it holds that

‖Mf‖Lq(Sd−1) ≤ Cp,q,d‖f‖Lp(Rd),

where 1 ≤ p ≤ 4
3
and p′ ≥ d+1

d−1
q.

Proof. First, write the auxiliary bilinear operator

M(f ; g)(x) = sup
0≤ε≤1

∣∣∣∣−
∫

B(0,ε)

f̂(x+ y)g(x+ y) dy

∣∣∣∣ .

Letting Aε(·),gf(x) = −
∫
B(0,ε(x))

f̂(x + y)g(x + y) dy be the linearised operator for

suitable measurable g, ε, ‖g‖∞ = 1. Its adjoint has the form

A
∗
ε(·),gh(ξ) =

∫

Sd−1

G(x, ξ)e2πiξ·xh(x) dσ(x),

σ standing for the surface measure on the (d−1)−dimensional sphere, and G(x, ξ) =
F(g(x+ ·)χB(0,ε(x)))(ξ). Following Vitturi’s arguments and the ones in the proof of
Theorem 2, it is enough to prove the following estimate:

‖A∗
ε(·),gh‖L4(Rd) ≤ Cq,d‖h‖Lq′

d (Sd−1)
,

where qd = 4d+1
d−1

. Now we write the L4 norm as a (square root of a) L2 norm of the

convolution of the Fourier transform (A∗
ε(·),gh)

̂ with itself. With this in mind, one
gets from a calculation that

(A∗
ε(·),gh)

̂(η) = g(η)

∫

Sd−1

h(x)χB(0,ε(x))(η − x)dx =: g(η)Tε(·)h(η).

We are then able to bound

|(A∗
ε(·),gh)

̂∗ (A∗
ε(·),gh)

̂(ρ)| ≤ |(Tε(·)|h|) ∗ (Tε(·)|h|)(ρ)|.

But the operator on the right hand side has been already treated in Vitturi’s proof,
and therefore we can conclude the desired bounds from the ones in [11]. �
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