Algebraic Geometry I

13. Exercise sheet

This exercise sheet is designed to be a preparation for the exam and we recommend solving it without consulting the lecture notes steadily.

Exercise 1 (4 Points):

Let k be an algebraically closed field. Find a proper, normal curve $C \subseteq \mathbb{P}_{k}^{2}$ with function field isomorphic to $k(x, y), x y^{2}=x+1$.
Hint: Use the Jacobian criterion from sheet 12.

Exercise 2 (4 Points):

1) State the valuative criterion for separatedness.
2) Let $g: Z \rightarrow Y, f: Y \rightarrow X$ morphisms of schemes with g proper and surjective, f quasi-separated and $f \circ g$ separated. Show that f is separated.

Exercise 3 (4 points):

Let k be an algebraically closed field. Determine the irreducible components and their intersections for the schematic closure of $V\left(y^{2} x+2 y x-y\right) \subseteq \mathbb{A}_{k}^{2}=\operatorname{Spec}(k[x, y])$ in \mathbb{P}_{k}^{2} along the embedding $(x, y) \mapsto[x: y: 1]$.

Exercise 4 (4 points):

Let k be an algebraically closed field. Let $f: \mathbb{P}_{k}^{1} \rightarrow \mathbb{P}_{k}^{1},[x: y] \mapsto\left[x^{2}: y^{2}\right]$.

1) Show that $f_{*}\left(\mathcal{O}_{\mathbb{P}_{k}^{1}}\right)$ is a vector bundle \mathcal{E} on \mathbb{P}_{k}^{1}, which has rank 2 .
2) Show that $\mathcal{E} \cong \mathcal{O}_{\mathbb{P}_{k}^{1}} \oplus \mathcal{O}_{\mathbb{P}_{k}^{1}}(-1)$.

To be handed in on: Thursday, 01.02.2024 (during the lecture, or via eCampus). Please contact your tutor to organize how to receive your corrected exercise sheet.

