Algebraic Geometry I

12. Exercise sheet

Let k be a field.

Exercise 1 (4 Points):

Let $X=\mathbb{A}_{k}^{2}$ with k-rational points $x=(0,0), y=(1,1)$. Show the existence of a pushout $S:=X \cup_{\{x\}}$ U $_{\{y\}} \operatorname{Spec}(k)$ in the category of k-schemes. Show that S is not normal using sheet 11, exercise 4.

Exercise 2 (4 Points):

Let X be a scheme of finite type over k and let $x \in X(k)$ be a k-rational point. Assume $X=$ $V\left(f_{1}, \ldots, f_{r}\right) \subseteq \mathbb{A}_{k}^{n}$ and write $x=\left(x_{1}, \ldots, x_{n}\right) \in X(k)$. We define the Jacobi matrix $J_{x} \in k^{r \times n}$ at x as the $r \times n$-matrix

$$
J_{x}:=\left(\begin{array}{ccc}
\frac{\partial f_{1}}{\partial X_{1}}\left(x_{1}, \ldots, x_{n}\right) & \ldots & \frac{\partial f_{1}}{\partial X_{n}}\left(x_{1}, \ldots, x_{n}\right) \\
\ldots & \ldots & \ldots \\
\frac{\partial f_{r}}{\partial X_{1}}\left(x_{1}, \ldots, x_{n}\right) & \ldots & \frac{\partial f_{r}}{\partial X_{n}}\left(x_{1}, \ldots, x_{n}\right)
\end{array}\right)
$$

where

$$
\frac{\partial f}{\partial X_{i}}:=\sum j_{i} a_{j_{1}, \ldots, j_{n}} X_{1}^{j_{1}} \cdots X_{i}^{j_{i}-1} \cdots X_{n}^{j_{n}}
$$

denotes the i-th partial derivative of a polynomial $f=\sum a_{j_{1}, \ldots, j_{n}} X_{1}^{j_{1}} \cdots X_{n}^{j_{n}} \in k\left[X_{1}, \ldots, X_{n}\right]$.

1) Let $h: \mathbb{A}_{k}^{n} \rightarrow \mathbb{A}_{k}^{r},\left(y_{1}, \ldots, y_{n}\right) \mapsto\left(f_{1}\left(y_{1}, \ldots, y_{n}\right), \ldots, f_{r}\left(y_{1}, \ldots, y_{n}\right)\right)$. Show that there exists an exact sequence

$$
0 \rightarrow T_{x} X \rightarrow T_{x} \mathbb{A}_{k}^{n} \cong k^{n} \xrightarrow{J_{x}} T_{h(x)} \mathbb{A}^{r} \cong k^{r} .
$$

2) Prove that x is a smooth point of X (as defined on sheet 11) if and only if J_{x} has rank $n-\operatorname{dim} \operatorname{Spec}\left(\mathcal{O}_{X, x}\right)$.

Exercise 3 (4 points):

Assume k algebraically closed of characteristic $\neq 2$ and let $Y \subseteq \mathbb{A}_{k}^{2}$ be defined by the polynomial $f(x, y):=y^{2}-x^{3}+x$.

1) Show that every k-rational point of Y is smooth. Deduce that $A:=k[x, y] / f$ is a normal domain.
2) Let $R:=k[x] \subseteq A$. Show that R is a polynomial ring and that A is integral over R.
3) Show that there exists an automorphism $\sigma: A \rightarrow A$ which sends y to $-y$, but leaves x fixed.
4) For $a \in A$ set $N(a):=a \sigma(a)$. Show $N(a) \in R$ and that N is multiplicative.
5) Show that $A^{\times}=k^{\times}$and that y, x are irreducible elements in A. Deduce that A is not factorial and that Y is not isomorphic to an open subset of \mathbb{A}_{k}^{1}.

Exercise 4 (4 points):

Assume $k=\mathbb{F}_{p}(t)$ with $p \neq 2$. Let $f(x, y):=y^{p-1} x+x^{p}-t$ and $X:=V(f) \subseteq \mathbb{A}_{k}^{2}$.

1) Show that $\bar{X}:=X \times_{\operatorname{Spec}(k)} \operatorname{Spec}(\bar{k})$ has the single non-smooth \bar{k}-rational point $\overline{x_{0}}:=\left(t^{1 / p}, 0\right)$
2) Show that $V(y)=\left\{x_{0}\right\}$ with $k\left(x_{0}\right) \cong k\left(t^{1 / p}\right)$ and that $\mathcal{O}_{X, x_{0}}$ is regular while $\mathcal{O}_{\bar{X}, \overline{x_{0}}}$ not.

To be handed in on: Thursday, 25.01.2024 (during the lecture, or via eCampus).

