Algebraic Geometry I

11. Exercise sheet

Let X be a scheme of finite type over a field k. A k-rational point $x \in X(k)$ is called smooth if its tangent space

$$
T_{x} X:=\operatorname{Hom}_{k}\left(\mathfrak{m}_{X, x} / \mathfrak{m}_{X, x}^{2}, k\right)
$$

has dimension equal to the Krull dimension of $\mathcal{O}_{X, x}$, i.e., $\mathcal{O}_{X, x}$ is regular. Here $\mathfrak{m}_{X, x} \subseteq \mathcal{O}_{X, x}$ denotes the maximal ideal of $\mathcal{O}_{X, x}$.

Exercise 1 (4 Points):

Let k be a field and let X be a normal scheme of finite type over k with $\operatorname{dim} X \leq 1$. Prove that every $x \in X(k)$ is a smooth point of X.
Hint: Use that a 1-dimensional normal local noetherian domain is a discrete valuation ring.

Exercise 2 (4 Points):

1) Let X be a scheme and let $f: Z \rightarrow X, g: Y \rightarrow X$ be two closed subschemes with (schemetheoretic) union $h: Z \cup Y \rightarrow X$ and (scheme-theoretic) intersection $i: Z \cap Y \rightarrow X$. Show that the morphism $h_{*} \mathcal{O}_{Z \cup Y} \rightarrow g_{*} \mathcal{O}_{Y} \times_{i_{*} \mathcal{O}_{Z \cap Y}} f_{*} \mathcal{O}_{Z}$ is an isomorphism of sheaves of rings.
2) Let $A \rightarrow R, B \rightarrow R$ be morphisms of rings, and assume that $A \rightarrow R$ is surjective. Show that the map

$$
\operatorname{Spec}(A) \cup_{\operatorname{Spec}(R)} \operatorname{Spec}(B) \rightarrow \operatorname{Spec}\left(A \times_{R} B\right)
$$

is a homeomorphism, where the LHS denotes the pushout in topological spaces.

Exercise 3 (4 points):

Let k be an algebraically closed field and let $f \in k[x, y]$ be a non-zero polynomial such that $f(0,0)=0$. Write

$$
f=f_{r}+f_{r+1}+\ldots+f_{n}+\ldots
$$

with f_{n} homogeneous of degree n and $f_{r} \neq 0$. Let $X:=V(f) \subseteq \mathbb{A}_{k}^{2}$ and define $Z:=V\left(f_{r}\right) \subseteq \mathbb{A}_{k}^{2}$. 1) Prove that $f_{r}=l_{1} \cdots l_{r}$ with $l_{i} \in k[x, y]$ homogeneous of degree 1 . Deduce that Z is a union of lines.
2) Show that X is smooth in $(0,0)$ if and only if $r=1$.
3) Solve exercise I.5.1 in Hartshorne's "Algebraic Geometry". (A non-smooth point $z \in X(k)$ is also called a singular point.)
Remark: The variety Z is called the "tangent cone" of X in $(0,0)$.

Exercise 4 (4 points):

Let A be a noetherian normal domain, and let $U \subseteq X:=\operatorname{Spec}(A)$ be an open subset with complement $Z:=X \backslash U$. Assume that for every $z \in Z$ the local ring $\mathcal{O}_{X, z}$ has Krull dimension ≥ 2. Show that for every vector bundle \mathcal{E} on X the morphism

$$
\mathcal{E}(X) \rightarrow \mathcal{E}(U), s \mapsto s_{\mid U}
$$

is an isomorphism.
Hint: Proposition B. 70 in the book "Algebraic Geometry I" by Görtz-Wedhorn.

To be handed in on: Thursday, 18.01.2024 (during the lecture, or via eCampus).

