Algebraic Geometry I

9. Exercise sheet

Exercise 1 (4 Points):

Let S be a scheme and $n \geq 0$. Let \mathcal{L} be a line bundle on S and $s \in \mathcal{L}^{\otimes n}(S)$ a section. We define the functor $F_{\mathcal{L}, s}(g: Y \rightarrow S):=\left\{t \in g^{*} \mathcal{L}(Y) \mid t^{n}=g^{*}(s) \in g^{*} \mathcal{L}^{\otimes n}(Y)\right\}$ on the category of schemes over S.

1) If $\mathcal{L} \cong \mathcal{O}_{S}$ show that $F_{\mathcal{L}, s}$ is representable by the pullback of $\mathbb{A}_{\mathbb{Z}}^{1}=\operatorname{Spec}(\mathbb{Z}[u]) \rightarrow \mathbb{A}_{\mathbb{Z}}^{1}=$ $\operatorname{Spec}(\mathbb{Z}[v]), u \mapsto v:=u^{n}$ along the map $S \rightarrow \mathbb{A}_{\mathbb{Z}}^{1}:=\operatorname{Spec}(\mathbb{Z}[v])$ classified by s, and the pullback of the global section $u \in \mathcal{O}_{\mathbb{A}_{\frac{1}{2}}^{1}}$.
2) Show that the functor $F_{\mathcal{L}, s}$ is representable by some $f: X \rightarrow S, \sqrt[n]{s} \in f^{*} \mathcal{O}_{X}$ in general by constructing a suitable open cover of $F_{\mathcal{L}, s}$.
3) Show that $f_{*} \mathcal{O}_{X}$ is a finite locally free \mathcal{O}_{S}-module of rank n.

Exercise 2 (4 Points):

Let k be a field and let $n \geq 0$. Let $U_{0}=\operatorname{Spec}(k[T]), U_{1}=\operatorname{Spec}\left(k\left[T^{-1}\right]\right)$ with intersection $U_{0} \cap U_{1}=\operatorname{Spec}\left(k\left[T^{ \pm 1}\right]\right)$ be the standard covering of \mathbb{P}_{k}^{1}.
i) Prove that the map

$$
\begin{array}{ccc}
\{\text { iso. classes. of rank } \mathrm{n} \text { vector bundles }\} & \rightarrow \mathrm{GL}_{n}(k[T]) \backslash \mathrm{GL}_{n}\left(k\left[T^{ \pm 1}\right]\right) / \mathrm{GL}_{n}\left(k\left[T^{-1}\right]\right), \\
\mathcal{E} & \mapsto & \alpha_{\mid U_{0} \cap U_{1}}^{-1} \circ \beta_{\mid U_{0} \cap U_{1}}
\end{array}
$$

where $\alpha: \mathcal{O}_{U_{0}}^{n} \rightarrow \mathcal{E}_{\mid U_{0}}$ and $\beta: \mathcal{O}_{U_{1}}^{n} \rightarrow \mathcal{E}_{\mid U_{1}}$ are two isomorphisms, is well-defined and bijective.
ii) For all $n \geq 0$ the map

$$
\begin{array}{ccc}
\left\{\left(d_{1}, \ldots, d_{n}\right) \in \mathbb{Z} \mid d_{1} \geq \ldots \geq d_{n}\right\} & \rightarrow & \mathrm{GL}_{n}(k[T]) \backslash \mathrm{GL}_{n}\left(k\left[T^{ \pm 1}\right]\right) / \mathrm{GL}_{n}\left(k\left[T^{-1}\right]\right) \\
d=\left(d_{1}, \ldots, d_{n}\right) & \mapsto & \mathrm{GL}_{n}(k[T]) T^{d} \mathrm{GL}_{n}\left(k\left[T^{-1}\right]\right),
\end{array}
$$

is a bijection, where T^{d} denotes the diagonal matrix with entries $T^{d_{1}}, \ldots, T^{d_{n}}$. Show this if $n=2$. iii) Write down all vector bundles on \mathbb{P}_{k}^{1} (up to isomorphism).

Exercise 3 (4 points):

Let R be a ring and define the blow-up of \mathbb{A}_{R}^{n+1} at the zero section as

$$
X:=\left\{\left(\left(x_{0}, \ldots, x_{n}\right),\left(y_{0}: \ldots: y_{n}\right)\right) \in \mathbb{A}_{R}^{n+1} \times_{\operatorname{Spec}(R)} \mathbb{P}_{R}^{n} \mid x_{i} y_{j}=x_{j} y_{i} \text { for all } i, j\right\}
$$

1) Show that X is a closed subscheme in $\mathbb{A}_{R}^{n+1} \times \operatorname{Spec}(R) \mathbb{P}_{R}^{n}$.
2) Let $\pi: X \rightarrow \mathbb{A}_{R}^{n+1}$ be the canonical projection. Show that

$$
\pi_{\mid \pi^{-1}\left(\mathbb{A}_{R}^{n+1} \backslash\{0\}\right)}: \pi^{-1}\left(\mathbb{A}_{R}^{n+1} \backslash\{0\}\right) \rightarrow \mathbb{A}_{R}^{n+1} \backslash\{0\}
$$

is an isomorphism and that $\pi^{-1}(0) \cong \mathbb{P}_{R}^{n}$.
3) Prove that X is isomorphic (as a \mathbb{P}_{R}^{n}-scheme) to the total space $\mathbb{V}\left(\mathcal{O}_{\mathbb{P}_{R}^{n}}(-1)\right)$ of the line bundle $\mathcal{O}_{\mathbb{P}_{R}^{n}}(-1)$.
Hint: For 3) use the collection $\left(x_{i}\right)_{i=0, \ldots, n}$ to get a global section of the pullback of $\mathcal{O}_{\mathbb{P}_{R}^{n}}(-1)$ to X.

Exercise 4 (4 points):

We continue with the notation from exercise 3 .

1) Let $\mathcal{I}:=\left(x_{0}, \ldots, x_{n}\right) \subseteq \mathcal{O}_{\mathbb{A}_{R}^{n+1}}$ be the ideal sheaf of the zero section. Show that the ideal sheaf $\pi^{-1}(\mathcal{I}) \mathcal{O}_{X}=\operatorname{Im}\left(\pi^{*} \mathcal{I} \rightarrow \mathcal{O}_{X}\right)$ of the closed subscheme $\pi^{-1}(\{0\}) \subseteq X$ is an invertible ideal sheaf. 2) Conversely, let $f: S \rightarrow \mathbb{A}_{R}^{n+1}$ be a morphism such that the ideal sheaf $f^{-1}(\mathcal{I}) \mathcal{O}_{S} \subseteq \mathcal{O}_{S}$ is invertible. Prove that f factors uniquely through π.

To be handed in on: Thursday, 14.12.2023 (during the lecture, or via eCampus).

