Dr. I. Gleason Dr. J. Anschütz

WS 2023/24

Algebraic Geometry I

9. Exercise sheet

Exercise 1 (4 Points):

Let S be a scheme and $n \ge 0$. Let \mathcal{L} be a line bundle on S and $s \in \mathcal{L}^{\otimes n}(S)$ a section. We define the functor $F_{\mathcal{L},s}(g \colon Y \to S) := \{t \in g^*\mathcal{L}(Y) \mid t^n = g^*(s) \in g^*\mathcal{L}^{\otimes n}(Y)\}$ on the category of schemes over S.

1) If $\mathcal{L} \cong \mathcal{O}_S$ show that $F_{\mathcal{L},s}$ is representable by the pullback of $\mathbb{A}^1_{\mathbb{Z}} = \operatorname{Spec}(\mathbb{Z}[u]) \to \mathbb{A}^1_{\mathbb{Z}} = \operatorname{Spec}(\mathbb{Z}[v]), u \mapsto v := u^n$ along the map $S \to \mathbb{A}^1_{\mathbb{Z}} := \operatorname{Spec}(\mathbb{Z}[v])$ classified by s, and the pullback of the global section $u \in \mathcal{O}_{\mathbb{A}^1_2}$.

2) Show that the functor $F_{\mathcal{L},s}$ is representable by some $f: X \to S$, $\sqrt[n]{s} \in f^*\mathcal{O}_X$ in general by constructing a suitable open cover of $F_{\mathcal{L},s}$.

3) Show that $f_*\mathcal{O}_X$ is a finite locally free \mathcal{O}_S -module of rank n.

Exercise 2 (4 Points):

Let k be a field and let $n \geq 0$. Let $U_0 = \operatorname{Spec}(k[T]), U_1 = \operatorname{Spec}(k[T^{-1}])$ with intersection $U_0 \cap U_1 = \operatorname{Spec}(k[T^{\pm 1}])$ be the standard covering of \mathbb{P}^1_k . i) Prove that the map

 $\begin{array}{lll} \{ \text{iso. classes. of rank n vector bundles} \} & \to & \operatorname{GL}_n(k[T]) \setminus \operatorname{GL}_n(k[T^{\pm 1}])/\operatorname{GL}_n(k[T^{-1}]), \\ & \mathcal{E} & \mapsto & \alpha_{|U_0 \cap U_1}^{-1} \circ \beta_{|U_0 \cap U_1} \end{array}$

where $\alpha \colon \mathcal{O}_{U_0}^n \to \mathcal{E}_{|U_0}$ and $\beta \colon \mathcal{O}_{U_1}^n \to \mathcal{E}_{|U_1}$ are two isomorphisms, is well-defined and bijective. ii) For all $n \ge 0$ the map

$$\{ (d_1, \dots, d_n) \in \mathbb{Z} \mid d_1 \ge \dots \ge d_n \} \quad \to \quad \operatorname{GL}_n(k[T]) \setminus \operatorname{GL}_n(k[T^{\pm 1}]) / \operatorname{GL}_n(k[T^{-1}]) \\ d = (d_1, \dots, d_n) \qquad \mapsto \qquad \operatorname{GL}_n(k[T]) T^d \operatorname{GL}_n(k[T^{-1}]),$$

is a bijection, where T^d denotes the diagonal matrix with entries T^{d_1}, \ldots, T^{d_n} . Show this if n = 2. iii) Write down all vector bundles on \mathbb{P}^1_k (up to isomorphism).

Exercise 3 (4 points):

Let R be a ring and define the blow-up of \mathbb{A}^{n+1}_{R} at the zero section as

$$X := \{ ((x_0, \dots, x_n), (y_0 : \dots : y_n)) \in \mathbb{A}_R^{n+1} \times_{\operatorname{Spec}(R)} \mathbb{P}_R^n \mid x_i y_j = x_j y_i \text{ for all } i, j \}.$$

1) Show that X is a closed subscheme in $\mathbb{A}_R^{n+1} \times_{\operatorname{Spec}(R)} \mathbb{P}_R^n$.

2) Let $\pi: X \to \mathbb{A}_R^{n+1}$ be the canonical projection. Show that

$$\pi_{|\pi^{-1}(\mathbb{A}^{n+1}_R \setminus \{0\})} \colon \pi^{-1}(\mathbb{A}^{n+1}_R \setminus \{0\}) \to \mathbb{A}^{n+1}_R \setminus \{0\}$$

is an isomorphism and that $\pi^{-1}(0) \cong \mathbb{P}_R^n$.

3) Prove that X is isomorphic (as a \mathbb{P}^n_R -scheme) to the total space $\mathbb{V}(\mathcal{O}_{\mathbb{P}^n_R}(-1))$ of the line bundle $\mathcal{O}_{\mathbb{P}^n_R}(-1)$.

Hint: For 3) use the collection $(x_i)_{i=0,...,n}$ to get a global section of the pullback of $\mathcal{O}_{\mathbb{P}^n_R}(-1)$ to X.

Exercise 4 (4 points):

We continue with the notation from exercise 3.

1) Let $\mathcal{I} := (x_0, \ldots, x_n) \subseteq \mathcal{O}_{\mathbb{A}_R^{n+1}}$ be the ideal sheaf of the zero section. Show that the ideal sheaf $\pi^{-1}(\mathcal{I})\mathcal{O}_X = \operatorname{Im}(\pi^*\mathcal{I} \to \mathcal{O}_X)$ of the closed subscheme $\pi^{-1}(\{0\}) \subseteq X$ is an invertible ideal sheaf. 2) Conversely, let $f: S \to \mathbb{A}_R^{n+1}$ be a morphism such that the ideal sheaf $f^{-1}(\mathcal{I})\mathcal{O}_S \subseteq \mathcal{O}_S$ is invertible. Prove that f factors uniquely through π .

To be handed in on: Thursday, 14.12.2023 (during the lecture, or via eCampus).