Dr. I. Gleason Dr. J. Anschütz WS 2023/24

Algebraic Geometry I

8. Exercise sheet

Exercise 1 (4 Points):

Let A be a unique factorization domain. 1) Let $I \subseteq A$ be an ideal, which is finite locally free. Show that I is principal. 2) Show that $\operatorname{Pic}(A) = 0$. Hint: Write a non-zero $f \in I$ in prime factorization $f = up_1^{a_1} \dots p_r^{a_r}$ with pairwise non-associated prime elements p_i and $u \in A^{\times}$. Show $I_{(p_i)} = (p_i^{c_i})$ for some $c_i \geq 0$. Argue that $I = (p_1^{c_1} \dots p_r^{c_r})$ by localizing on Spec(A).

Exercise 2 (4 Points):

Let A be a unique factorization domain, e.g., a field or \mathbb{Z} . Prove that $\mathbb{Z} \cong \operatorname{Pic}(\mathbb{P}^n_A)$ via $1 \mapsto \mathcal{O}_{\mathbb{P}^n_A}(1)$. *Hint: Use Exercise 1 and that* $A[X_1, \ldots, X_n]$ *is a unique factorization domain.*

Exercise 3 (4 points):

Let k be a field and $n, m \ge 0$. Let $f: \mathbb{P}_k^n \to \mathbb{P}_k^m$ be a morphism. 1) Show $f^*\mathcal{O}_{\mathbb{P}_k^n}(1) \cong \mathcal{O}_{\mathbb{P}_k^n}(d)$ for some $d \ge 0$. 2) Let $g_i := f^*(y_i) \in \Gamma(\mathbb{P}_k^n, \mathcal{O}_{\mathbb{P}_k^n}(d)) \cong k[x_0, \ldots, x_n]_d$ be the preimages of $y_0, \ldots, y_m \in \Gamma(\mathbb{P}_k^m, \mathcal{O}_{\mathbb{P}_k^m}(1)) = k[y_0, \ldots, y_m]_1$. Show that $V(g_0, \ldots, g_m) \subseteq \mathbb{A}_k^{n+1}$ is contained (set-theoretically) in $\{0\}$. 3) If m < n, conclude d = 0 and that f is constant with image some $y \in \mathbb{P}_k^m(k)$.

Exercise 4 (4 points):

i) Let X be a scheme. Assume that $U_1, U_2 \subseteq X$ are two open, affine subschemes. Show that $U_1 \cap U_2$ can be covered by open subsets \tilde{U} such that \tilde{U} is simultaneously a principal open in U_1 and U_2 . ii) Let $f: X \to S$ be a morphism of schemes. Assume there exist open covers $X = \bigcup_{i \in I} \operatorname{Spec}(B_i), S = \bigcup_{i \in I} \operatorname{Spec}(A_i)$ with $f(\operatorname{Spec}(B_i)) \subseteq \operatorname{Spec}(A_i)$ such that $A_i \to B_i$ is of finite presentation. Let $\operatorname{Spec}(B) \subseteq X, \operatorname{Spec}(A) \subseteq S$ be open with $f(\operatorname{Spec}(B)) \subseteq \operatorname{Spec}(A)$. Show that $A \to B$ is of finite presentation.

To be handed in on: Thursday, 07.12.2023 (during the lecture, or via eCampus).