Dr. I. Gleason Dr. J. Anschütz WS 2023/24

Algebraic Geometry I

7. Exercise sheet

Exercise 1 (4 points):

Let $f: Y = \operatorname{Spec}(B) \to X = \operatorname{Spec}(A)$ be a morphism of schemes. 1) Let N be a B-module with underlying A-module $N_{|A}$. Show that $f_*(\widetilde{N}) \cong \widetilde{N_{|A}}$. 2) Let M be an A-module. Show that $f^*(\widetilde{M}) \cong \widetilde{M \otimes_A B}$. Conclude that for any morphism $g: Z \to S$ of schemes, g^* preserves quasi-coherence.

Exercise 2 (4 points):

For a ring $A, n \geq 0$ and $m \in \mathbb{Z}$ we denote by Φ the map $A[X_0, \ldots, X_n]_m \to \Gamma(\mathbb{P}^n_A, \mathcal{O}_{\mathbb{P}^n_A}(m))$ constructed in the lecture. Show that Φ is an isomorphism.

Exercise 3 (4 points):

Let k be an algebraically closed field and $n \ge 0$.

1) Show that $\mathbb{P}_k^n \cong (\mathbb{P}_k^n(k))^{\mathrm{sch}}$ with $(-)^{\mathrm{sch}}$ as in exercise 2, sheet 5.

2) Let $f \in k[X_0, \ldots, X_n]_d$ homogeneous of degree d. Set $s := \Phi(f) \in \Gamma(\mathbb{P}^n_k, \mathcal{O}_{\mathbb{P}^n_k}(d))$ with vanishing locus $V(s) \subseteq \mathbb{P}^n_k$ as defined in the lecture. Show that as closed subschemes of $\mathbb{P}^n_k \cong (\mathbb{P}^n_k(k))^{\mathrm{sch}}$

 $V(s)_{\rm red} = V^+(f)^{\rm sch}.$

Here $V^+(f) \subseteq \mathbb{P}^n_k(k)$ denotes the classical vanishing locus of f.

Exercise 4 (4 points):

Let $f(x,y) = a_1x^2 + a_2xy + a_3y^2 + a_4x + a_5y + a_6 \in \mathbb{R}[x,y]$ be a non-zero polynomial of degree 2. Show that $V(f) \subseteq \mathbb{A}^2_{\mathbb{R}}$ is isomorphic to one of the following:

- 1. a conic without \mathbb{R} -rational points $V(x^2 + y^2 + 1)$,
- 2. a circle $V(x^2 + y^2 1)$,
- 3. a parabola $V(y-x^2)$,
- 4. a hyperbola V(yx-1),
- 5. a double line $V(x^2)$,
- 6. two parallel lines V(x(x-1)),
- 7. the coordinate cross V(xy),
- 8. two complex lines with non-real slopes meeting at a real point $V(x^2 + y^2)$,
- 9. two non-intersecting non-real complex lines $V(x^2 + 1)$.

Compare this result to Sheet 1, Exercise 3 via the base change $V(f) \times_{\text{Spec}(\mathbb{R})} \text{Spec}(\mathbb{C})$. *Hint: First show that wlog* $a_1x^2 + a_2xy + a_3y^2 \in \{x^2, xy, x^2 + y^2\}$ after some affine linear transformations. In case $x^2 + y^2$ it may help then to use that $\mathbb{R}^2 \setminus \{0\}/O_2(\mathbb{R}) \cong \mathbb{R}_{>0}(1,0)$.

To be handed in on: Thursday, 30.11.2023 (during the lecture, or via eCampus).