Algebraic Geometry I

7. Exercise sheet

Exercise 1 (4 points):

Let $f: Y=\operatorname{Spec}(B) \rightarrow X=\operatorname{Spec}(A)$ be a morphism of schemes.

1) Let N be a B-module with underlying A-module $N_{\mid A}$. Show that $f_{*}(\widetilde{N}) \cong \widetilde{N_{\mid A}}$.
2) Let M be an A-module. Show that $f^{*}(\widetilde{M}) \cong \widetilde{M_{\otimes_{A}} B}$. Conclude that for any morphism $g: Z \rightarrow S$ of schemes, g^{*} preserves quasi-coherence.

Exercise 2 (4 points):

For a ring $A, n \geq 0$ and $m \in \mathbb{Z}$ we denote by Φ the map $A\left[X_{0}, \ldots, X_{n}\right]_{m} \rightarrow \Gamma\left(\mathbb{P}_{A}^{n}, \mathcal{O}_{\mathbb{P}_{A}^{n}}(m)\right)$ constructed in the lecture. Show that Φ is an isomorphism.

Exercise 3 (4 points):

Let k be an algebraically closed field and $n \geq 0$.

1) Show that $\mathbb{P}_{k}^{n} \cong\left(\mathbb{P}_{k}^{n}(k)\right)^{\text {sch }}$ with $(-)^{\text {sch }}$ as in exercise 2 , sheet 5 .
2) Let $f \in k\left[X_{0}, \ldots, X_{n}\right]_{d}$ homogeneous of degree d. Set $s:=\Phi(f) \in \Gamma\left(\mathbb{P}_{k}^{n}, \mathcal{O}_{\mathbb{P}_{k}^{n}}(d)\right)$ with vanishing locus $V(s) \subseteq \mathbb{P}_{k}^{n}$ as defined in the lecture. Show that as closed subschemes of $\mathbb{P}_{k}^{n} \cong\left(\mathbb{P}_{k}^{n}(k)\right)^{\text {sch }}$

$$
V(s)_{\mathrm{red}}=V^{+}(f)^{\mathrm{sch}}
$$

Here $V^{+}(f) \subseteq \mathbb{P}_{k}^{n}(k)$ denotes the classical vanishing locus of f.

Exercise 4 (4 points):

Let $f(x, y)=a_{1} x^{2}+a_{2} x y+a_{3} y^{2}+a_{4} x+a_{5} y+a_{6} \in \mathbb{R}[x, y]$ be a non-zero polynomial of degree 2 . Show that $V(f) \subseteq \mathbb{A}_{\mathbb{R}}^{2}$ is isomorphic to one of the following:

1. a conic without \mathbb{R}-rational points $V\left(x^{2}+y^{2}+1\right)$,
2. a circle $V\left(x^{2}+y^{2}-1\right)$,
3. a parabola $V\left(y-x^{2}\right)$,
4. a hyperbola $V(y x-1)$,
5. a double line $V\left(x^{2}\right)$,
6. two parallel lines $V(x(x-1))$,
7. the coordinate cross $V(x y)$,
8. two complex lines with non-real slopes meeting at a real point $V\left(x^{2}+y^{2}\right)$,
9. two non-intersecting non-real complex lines $V\left(x^{2}+1\right)$.

Compare this result to Sheet 1, Exercise 3 via the base change $V(f) \times_{\operatorname{Spec}(\mathbb{R})} \operatorname{Spec}(\mathbb{C})$.
Hint: First show that wlog $a_{1} x^{2}+a_{2} x y+a_{3} y^{2} \in\left\{x^{2}, x y, x^{2}+y^{2}\right\}$ after some affine linear transformations. In case $x^{2}+y^{2}$ it may help then to use that $\mathbb{R}^{2} \backslash\{0\} / \mathrm{O}_{2}(\mathbb{R}) \cong \mathbb{R}_{>0}(1,0)$.

To be handed in on: Thursday, 30.11.2023 (during the lecture, or via eCampus).

