Algebraic Geometry I

3. Exercise sheet

Let k be an algebraically closed field and $n \geq 1$. On this exercise sheet we study the geometry of blow-ups. The blow-up of $\mathbb{A}_{k}^{n}(k)$ at the origin $t:=(0, \ldots, 0)$ is

$$
Z:=\left\{\left(\left(x_{1}, \ldots, x_{n}\right),\left[y_{1}: \ldots: y_{n}\right]\right) \in \mathbb{A}_{k}^{n}(k) \times \mathbb{P}_{k}^{n-1}(k) \mid x_{i} y_{j}=x_{j} y_{i} \text { for all } i, j \geq 1\right\}
$$

Set $V_{i}:=Z \cap\left(\mathbb{A}_{k}^{n}(k) \times D^{+}\left(y_{i}\right)\right)$ for $i=1, \ldots, n$ and let $\pi: Z \rightarrow \mathbb{A}_{k}^{n}(k)$ be the projection. If $Y \subseteq \mathbb{A}_{k}^{n}(k)$ is an affine algebraic set with $t \in Y$, we define the blow-up $\mathrm{BL}_{t}(Y)$ of Y at t to be the closure of $\pi^{-1}(Y \backslash\{t\})$ in Z. The exceptional divisor is by definition $\pi^{-1}(t) \cap \mathrm{BL}_{t}(Y)$.

Exercise 1 (4 points):

1) Set $U:=\mathbb{A}_{k}^{n}(k) \backslash\{t\}$. Show that $\pi_{\mid \pi^{-1}(U)}: \pi^{-1}(U) \rightarrow U$ is an isomorphism.
2) Show that $V_{i} \cong \mathbb{A}_{k}^{n}(k)$ with coordinate ring $k\left[\frac{x_{1}}{x_{i}}, \ldots, \frac{x_{i-1}}{x_{i}}, x_{i}, \frac{x_{i+1}}{x_{i}} \ldots, \frac{x_{n}}{x_{i}}\right]$ and $\pi^{-1}(U) \cap V_{i}=$ $D\left(x_{i}\right)$.
3) Show that $\pi^{-1}(t) \cong \mathbb{P}_{k}^{n-1}(k)$ and that $\pi^{-1}(t) \cap V_{i}, i=1, \ldots, n$, identifies with the standard cover of $\mathbb{P}_{k}^{n-1}(k)$.

Exercise 2 (4 points):

Assume $n=2$. For Y below show that $\mathrm{BL}_{t}(Y) \cong \mathbb{A}_{k}^{1}(k)$ by calculating $\mathrm{BL}_{t}(Y) \cap V_{i}$ for $i=1,2$. In both cases determine the exceptional divisor in $\mathrm{BL}_{t}(Y)$.

1) $Y:=V\left(x_{1}^{2}-x_{2}^{3}\right)$.
2) $Y:=V\left(x_{1}^{2}-x_{2}^{3}-x_{2}^{2}\right)$.

Exercise 3 (4 points):

Assume $n=3$. Set $Y:=V\left(x_{1}^{2}-x_{2} x_{3}\right)$ with $f:=\pi_{\mid \widetilde{Y}}: \widetilde{Y}:=\mathrm{BL}_{t}(Y) \rightarrow Y$.

1) Show that the projection $g: \widetilde{Y} \rightarrow \mathbb{P}_{k}^{2}(k)$ has image $V^{+}\left(y_{1}^{2}-y_{2} y_{3}\right) \cong \mathbb{P}_{k}^{1}(k)$.
2) Show that $f^{-1}(t) \cong \mathbb{P}_{k}^{1}(k)$.
3) Show that there exists an open covering $U_{1} \cup U_{2}=\mathbb{P}_{k}^{1}(k)$ such that $g^{-1}\left(U_{i}\right) \cong \mathbb{A}_{k}^{1}(k) \times U_{i}$ for $i=1,2$.
Remark: Thus, \widetilde{Y} is a "line bundle" over $\mathbb{P}_{k}^{1}(k)$. We will eventually see that $\widetilde{Y} \neq \mathbb{A}_{k}^{1}(k) \times \mathbb{P}_{k}^{1}(k)$.

Exercise 4 (4 points):

Let X be a topological space. Define $V_{U}:=\{Z \subseteq X$ closed, irreduzible $\mid Z \cap U \neq \emptyset\}$ for $U \subseteq X$ open and set $X^{\text {sob }}:=V_{X}$ with topology such that the opens are V_{U} for $U \subseteq X$ open.

1) Show that $X^{\text {sob }}$ is sober, i.e., each closed irreducible subset has a unique generic point, and that $f^{-1}(-)$ for $f: X \rightarrow X^{\text {sob }}, x \mapsto \overline{\{x\}}$ induces a bijection between open subsets of $X^{\text {sob }}$ and X.
2) Show that for any continuous map $g: X \rightarrow Z$ with Z sober, there exists a unique continuous map $h: X^{\text {sob }} \rightarrow Z$ such that $g=h \circ f$.
3) Let k be an algebraically closed field, and $V \subseteq \mathbb{A}_{k}^{n}(k)$ an affine algebraic set with coordinate ring A. Show $V \cong \operatorname{MaxSpec}(A)$ and $V^{\text {sob }} \cong \operatorname{Spec}(A)$ as topological spaces.

To be handed in on: Thursday, 02.11.2023 (during the lecture, or via eCampus).

