Dr. I. Gleason Dr. J. Anschütz

WS 2023/24

Algebraic Geometry I

3. Exercise sheet

Let k be an algebraically closed field and $n \ge 1$. On this exercise sheet we study the geometry of blow-ups. The blow-up of $\mathbb{A}_{k}^{n}(k)$ at the origin $t := (0, \ldots, 0)$ is

$$Z := \{ ((x_1, \dots, x_n), [y_1 : \dots : y_n]) \in \mathbb{A}_k^n(k) \times \mathbb{P}_k^{n-1}(k) \mid x_i y_j = x_j y_i \text{ for all } i, j \ge 1 \}.$$

Set $V_i := Z \cap (\mathbb{A}^n_k(k) \times D^+(y_i))$ for $i = 1, \ldots, n$ and let $\pi \colon Z \to \mathbb{A}^n_k(k)$ be the projection. If $Y \subseteq \mathbb{A}_k^n(k)$ is an affine algebraic set with $t \in Y$, we define the blow-up $\mathrm{BL}_t(Y)$ of Y at t to be the closure of $\pi^{-1}(Y \setminus \{t\})$ in Z. The exceptional divisor is by definition $\pi^{-1}(t) \cap BL_t(Y)$.

Exercise 1 (4 points):

1) Set $U := \mathbb{A}_k^n(k) \setminus \{t\}$. Show that $\pi_{|\pi^{-1}(U)} : \pi^{-1}(U) \to U$ is an isomorphism. 2) Show that $V_i \cong \mathbb{A}_k^n(k)$ with coordinate ring $k[\frac{x_1}{x_i}, \dots, \frac{x_{i-1}}{x_i}, x_i, \frac{x_{i+1}}{x_i}, \dots, \frac{x_n}{x_i}]$ and $\pi^{-1}(U) \cap V_i = K$. $D(x_i)$.

3) Show that $\pi^{-1}(t) \cong \mathbb{P}_k^{n-1}(k)$ and that $\pi^{-1}(t) \cap V_i, i = 1, \ldots, n$, identifies with the standard cover of $\mathbb{P}_k^{n-1}(k)$.

Exercise 2 (4 points):

Assume n = 2. For Y below show that $\operatorname{BL}_t(Y) \cong \mathbb{A}_k^1(k)$ by calculating $\operatorname{BL}_t(Y) \cap V_i$ for i = 1, 2. In both cases determine the exceptional divisor in $BL_t(Y)$. 1) $Y := V(x_1^2 - x_2^3).$ 2) $Y := V(x_1^2 - x_2^3 - x_2^2).$

Exercise 3 (4 points):

Assume n = 3. Set $Y := V(x_1^2 - x_2 x_3)$ with $f := \pi_{|\widetilde{Y}|} : \widetilde{Y} := \operatorname{BL}_t(Y) \to Y$. 1) Show that the projection $g: \widetilde{Y} \to \mathbb{P}^2_k(k)$ has image $V^+(y_1^2 - y_2 y_3) \cong \mathbb{P}^1_k(k)$. 2) Show that $f^{-1}(t) \cong \mathbb{P}^1_k(k)$. 3) Show that there exists an open covering $U_1 \cup U_2 = \mathbb{P}^1_k(k)$ such that $g^{-1}(U_i) \cong \mathbb{A}^1_k(k) \times U_i$ for i = 1, 2.

Remark: Thus, \widetilde{Y} is a "line bundle" over $\mathbb{P}^1_k(k)$. We will eventually see that $\widetilde{Y} \neq \mathbb{A}^1_k(k) \times \mathbb{P}^1_k(k)$.

Exercise 4 (4 points):

Let X be a topological space. Define $V_U := \{Z \subseteq X \text{ closed, irreduzible } | Z \cap U \neq \emptyset\}$ for $U \subseteq X$ open and set $X^{\text{sob}} := V_X$ with topology such that the opens are V_U for $U \subseteq X$ open.

1) Show that X^{sob} is sober, i.e., each closed irreducible subset has a unique generic point, and that $f^{-1}(-)$ for $f: X \to X^{\text{sob}}$, $x \mapsto \overline{\{x\}}$ induces a bijection between open subsets of X^{sob} and X.

2) Show that for any continuous map $g: X \to Z$ with Z sober, there exists a unique continuous map $h: X^{\text{sob}} \to Z$ such that $g = h \circ f$.

3) Let k be an algebraically closed field, and $V \subseteq \mathbb{A}_k^n(k)$ an affine algebraic set with coordinate ring A. Show $V \cong \text{MaxSpec}(A)$ and $V^{\text{sob}} \cong \text{Spec}(A)$ as topological spaces.

To be handed in on: Thursday, 02.11.2023 (during the lecture, or via eCampus).