Algebraic Geometry I

2. Exercise sheet

Let k be an algebraically closed field. We consider $\mathbb{A}_{k}^{n}(k) \subseteq \mathbb{P}_{k}^{n}(k),\left(x_{1}, \ldots, x_{n}\right) \mapsto\left[x_{1}: \ldots: x_{n}: 1\right]$ for $n \geq 0$ and call the complement $V^{+}\left(x_{n+1}\right) \cong \mathbb{P}_{k}^{n-1}(k)$ the "projective hyperplane at infinity".

Exercise 1 (4 points):

Let $I:=\left(f_{1}, \ldots, f_{r}\right) \subseteq k\left[x_{1}, \ldots, x_{n}\right]$ be an ideal, and $X:=V(I) \subseteq \mathbb{A}_{k}^{n}(k)$ be its vanishing locus.

1) Show that the closure $\bar{X} \subseteq \mathbb{P}_{k}^{n}(k)$ of X is the vanishing locus of the homogenizations \widetilde{g} for all $g \in I$. If $r=1$, show that $\bar{X}=V^{+}\left(\widetilde{f}_{1}\right)$.
Reminder: If $g \in k\left[x_{1}, \ldots, x_{n}\right]$ is of degree m, its homogenization \widetilde{g} is $x_{n+1}^{m} g\left(x_{1} / x_{n+1}, \ldots, x_{n} / x_{n+1}\right)$.
2) For each of the 5 affine algebraic sets $X \subseteq \mathbb{A}_{k}^{2}(k)$ of exercise 3 on sheet 1 calculate the intersection of $\bar{X} \subseteq \mathbb{P}_{k}^{2}(k)$ with the line $\mathbb{P}_{k}^{1}(k)=\mathbb{P}_{k}^{2}(k) \backslash \mathbb{A}_{k}^{2}(k)$ at infinity.
3) Construct f_{1}, \ldots, f_{r} such that $\bar{X} \neq V^{+}\left(\widetilde{f}_{1}, \ldots, \widetilde{f}_{r}\right)$.

Hint: Use suitable examples from 2) and arrange that $\overline{V\left(f_{1}\right)}$ and $\overline{V\left(f_{2}\right)}$ meet at a point at infinity.

Exercise 2 (4 points):

Let $F \in k[x, y, z]$ be a non-zero homogeneous polynomial of degree 2 .

1) Show that $V^{+}(F) \subseteq \mathbb{P}_{k}^{2}(k)$ is isomorphic to
1. a conic $V^{+}\left(x^{2}-y z\right)$,
2. two projective lines meeting at a point $V^{+}(x y)$,
3. or a projective line $V^{+}(x)=V^{+}\left(x^{2}\right)$.
2) Show that $V^{+}\left(x^{2}-y z\right) \backslash\left\{V^{+}(z)\right\} \rightarrow \mathbb{P}_{k}^{1}(k),[x: y: z] \mapsto[x: y]$ can uniquely be extended to an isomorphism $V^{+}\left(x^{2}-y z\right) \cong \mathbb{P}_{k}^{1}(k)$.
Hint for 1): Show that each affine linear transformation of $\mathbb{A}_{k}^{2}(k)$ extends to an automorphism of $\mathbb{P}_{k}^{2}(k)$ and use exercise 1 from this sheet and exercise 3 from sheet 1.

Exercise 3 (4 points):

1) Let $f, g: X \rightarrow Y$ be morphisms of affine algebraic sets with X irreducible. Assume that there exists a non-empty open subset $U \subseteq X$ such that $f_{\mid U}=g_{\mid U}$. Show that $f=g$.
2) Use exercise 2 from sheet 1 to prove the Cayley-Hamilton theorem: Let L be any field, let A be any $n \times n$-matrix with coefficients in L and let $\chi_{A}(X)$ be its characteristic polynomial. Then $\chi_{A}(A)=0$.

Exercise 4 (4 points):

Let X be a quasi-projective variety.

1) Show that X is T_{1}, i.e., for each $x, y \in X, x \neq y$ there exists an open subset $U \subseteq X$ such that $x \in U$ and $y \notin U$.
2) Show that X is T_{2} (or Hausdorff), i.e., for each $x, y \in X, x \neq y$ there exists open sets $U, V \subseteq X$ such that $x \in U, y \in V$ and $U \cap V=\emptyset$, if and only if X is a finite set.

To be handed in on: Thursday, 26.10.2023 (during the lecture, or via eCampus).

