Algebra II - Local fields

13. Exercise sheet

As on sheet 12 we denote by $A_{a, b, K}$ for a, b units in a field K of characteristic $\neq 2$ the central simple K-algebra with presentation $\left\langle x, y \mid x^{2}=a, y^{2}=b, x y=-y x\right\rangle$.

Exercise 1 (4 points):

Let K be a field of characteristic $\neq 2$ and $a, b \in K^{\times}$.

1) Show that $\overline{(\lambda+\mu x+\nu y+\rho x y)}:=\lambda-\mu x-\nu y-\rho x y$ for $\lambda, \mu, \nu, \rho \in K$ defines an automorphism of $A_{a, b, K}$ as a K-vector space, which satisfies $\overline{q_{1} q_{2}}=\overline{q_{2}} \cdot \overline{q_{1}}$ for $q_{1}, q_{2} \in A_{a, b, K}$.
2) For $q \in A_{a, b, K}$ set $N(q):=q \bar{q} \in K$. Show that $q \in A_{a, b, K}$ is a unit if and only if $N(q) \in K^{\times}$.
3) Assume that a not a square in K. Show that $A_{a, b, K}$ is a division algebra if and only if b is not a norm from the extension $K(\sqrt{a}) / K$.
Hint: If $b=N_{K(\sqrt{a}) / K}(\lambda+\mu \sqrt{a})$, then $u:=\lambda y+\mu x y$ satisfies $u^{2}=1$. Use the element $v:=$ $(1+a) x+(1-a) u x$ to show $A_{a, b, K} \cong A_{1,4 a^{2}, K}$.

Exercise 2 (4 points):

For each prime p find $a, b \in \mathbb{Q}_{p}^{\times}$such that the algebra $A_{a, b, \mathbb{Q}_{p}}$ is a division algebra (and hence generates the 2-torsion in the Brauer group of \mathbb{Q}_{p} as $A_{a, b, \mathbb{Q}_{p}}$ splits over a degree 2 extension).

As a preparation for the exam we recommend to solve the next two exercises without consulting the lecture notes during their solution.

Exercise 3 (4 points):

1) Define the ramification index $e_{L / K}$ for a finite extension L / K of local fields.
2) Calculate the ramification index $e_{K / \mathbb{Q}_{2}}$ for $K=\mathbb{Q}_{2}(\alpha)$ with $\alpha^{4}-16 \alpha^{2}+16=0$. Calculate $\nu_{K}(\alpha)$.

Exercise 4 (4 points):

1) Show that the polynomial $f(x)=\frac{1}{3}+\frac{1}{14} x+\frac{1}{1} x^{2}+\frac{1}{59} x^{3}+\frac{1}{2} x^{4} \in \mathbb{Q}[x]$ is irreducible.
2) Use Hensel's lemma to show that the equation $x^{3}+5 x^{2}-20 x+15=0$ has a solution in \mathbb{Q}_{3}.

To be handed in on: Thursday, 01.02.2024 (during the lecture, or via eCampus). Please contact your tutor if you want to receive your corrected exercise sheet.

