Algebra II - Local fields

12. Exercise sheet

Exercise 1 (4 points):

Let K be a field with $\operatorname{char}(K) \neq 2$. For $a, b \in K^{\times}$we set $A_{a, b, K}$ as the K-algebra with presentation

$$
A_{a, b, K}:=\left\langle x, y \mid x^{2}=a, y^{2}=b, x y=-y x\right\rangle
$$

1) Show that $A_{a, b, K}$ has K-dimension 4 and that $A_{a, b, K} \cong A_{\lambda^{2} a, b}$ as K-algebras for any $\lambda \in K$.
2) Show that $A_{1, b, K} \cong \operatorname{Mat}_{2}(K)$ with x mapping to $\left(\begin{array}{cc}1 & 0 \\ 0 & -1\end{array}\right)$.
3) For a field extension L / K show $L \otimes_{K} A_{a, b, K} \cong A_{a, b, L}$.

Remark: This implies that $A_{a, b, K}$ is a central simple K-algebra.

Exercise 2 (4 points):

Let G be a group, $H \subseteq G$ a normal subgroup of finite index and p a prime not dividing $[G: H]$. Show that the natural restriction map

$$
H^{i}\left(G, \mathbb{F}_{p}\right) \cong H^{0}\left(G / H, H^{i}\left(H, \mathbb{F}_{p}\right)\right)
$$

is an isomorphism for any $i \geq 0$.
Hint: Use that $M \mapsto M^{G / H}$ is exact on the category of G / H-representations over \mathbb{F}_{p}, and the standard resolution for G.

Exercise 3 (4 points):
Set $G=S_{3}$ with subgroup $H:=A_{3} \subseteq S_{3}$. Let $\alpha \in H^{1}\left(H, \mathbb{F}_{3}\right), \beta \in H^{2}\left(H, \mathbb{F}_{3}\right)$ be generators.

1) Use that $\beta \cup(-)$ induces the isomorphism $H^{i}\left(H, \mathbb{F}_{3}\right) \cong H^{i+2}\left(H, \mathbb{F}_{3}\right)$ for any $i \geq 1$ to show that as (commutative) \mathbb{F}_{3}-algebras $H^{*}\left(H, \mathbb{F}_{3}\right) \cong \mathbb{F}_{3}[\alpha, \beta]$ with only relation $\alpha^{2}=0$.
2) Let $\sigma \in G$ be of order 2 . Show that $\sigma(\alpha)=-\alpha$ and $\sigma(\beta)=-\beta$.
3) Use exercise 2 to show $H^{*}\left(G, \mathbb{F}_{3}\right) \cong \mathbb{F}_{3}[x, y] / x^{2}$ with $x=\alpha \beta$ of degree 3 and $y=\beta^{2}$ of degree 4 . Hint: For 2) use that $0 \rightarrow \mathbb{F}_{3} \rightarrow \mathbb{Z} / 9 \rightarrow \mathbb{F}_{3} \rightarrow 0$ yields a G / H-equivariant isomorphism $H^{1}\left(H, \mathbb{F}_{3}\right) \cong$ $H^{2}\left(H, \mathbb{F}_{3}\right)$.

Exercise 4 (4 points):
Set $K:=\mathbb{Q}_{2}(\sqrt{2})$. Calculate $H:=N_{K / \mathbb{Q}_{2}}\left(K^{\times}\right) \subseteq \mathbb{Q}_{2}^{\times}$.
Hint: First argue that $\mathbb{Q}_{2}^{\times 2} \subseteq H$ and that H has index 2 in \mathbb{Q}_{2}^{\times}using Artin reciprocity.
To be handed in on: Thursday, 25.01.2023 (during the lecture, or via eCampus).

