Dr. D. Schwein

Algebra II - Local fields

11. Exercise sheet

Exercise 1 (4 points):

Let G be a group and let A, B be G-modules. Show that for $i \geq 0$ the \cup-product

$$
\cup: \hat{H}^{0}(G, A) \times \hat{H}^{i}(G, B) \rightarrow \hat{H}^{i}(G, A \otimes B)
$$

sends (\bar{a}, b) to $\hat{H}^{i}\left(\varphi_{a}\right)(b)$, where $\varphi_{a}: B \rightarrow A \otimes B, c \mapsto a \otimes c$ for $a \in A^{G}$.
Hint: Use naturality of the \cup-product in short exact sequences to reduce to the claim for $i=0$.

Exercise 2 (4 points):

Let G be a group and $0 \rightarrow A \rightarrow B \xrightarrow{\alpha} C \rightarrow 0$ a short exact sequence of G-modules. Let $\varphi: G \rightarrow C$ be a 1-cocycle, and let $\delta: H^{1}(G, C) \rightarrow H^{2}(G, A)$ be the connecting homomorphism. Show that under the bijection from sheet 10 , exercise 3 the element $\delta([\varphi])$ is given by fiber product $B \times_{C} G=\{(b, g) \in B \times G \mid \alpha(b)=\varphi(g)\}$ with group structure $(b, g) \cdot\left(b^{\prime}, g^{\prime}\right):=\left(b g\left(b^{\prime}\right), g g^{\prime}\right)$.

Exercise 3 (4 points):

Let p be a prime and $G:=\mathbb{Z} / p$.

1) If p is odd, show that the \cup-product $H^{1}(G, \mathbb{Z} / p) \times H^{1}(G, \mathbb{Z} / p) \rightarrow H^{2}(G, \mathbb{Z} / p)$ is trivial.
2) If $p=2$, show that the \cup-product $H^{1}(G, \mathbb{Z} / 2) \times H^{1}(G, \mathbb{Z} / 2) \rightarrow H^{2}(G, \mathbb{Z} / 2) \cong \mathbb{Z} / 2$ is surjective. Hint: In 2) use Exercise 1, Exercise 2 and naturality of the \cup-product in short exact sequences.

Exercise 4 (4 points):

Let $\mathbb{H}=\mathbb{R} \oplus \mathbb{R} i \oplus \mathbb{R} j \oplus \mathbb{R} i j$ be the Hamiltonians (thus $i^{2}=j^{2}=-1, i j=-j i$). We set $\mathbb{C}:=\mathbb{R} \oplus \mathbb{R} i$. Show that $H^{2}\left(\operatorname{Gal}\left(\mathbb{C} / \mathbb{R}, \mathbb{C}^{\times}\right)\right.$is generated by the class of the so-called Weil group $W_{\mathbb{R}}:=\mathbb{C}^{\times} \cup \mathbb{C}^{\times} j \subseteq \mathbb{H}^{\times}$of \mathbb{R}.

To be handed in on: Thursday, 18.01.2023 (during the lecture, or via eCampus).

