Dr. D. Schwein Dr. J. Anschütz WS 2023/24

Algebra II - Local fields

11. Exercise sheet

Exercise 1 (4 points):

Let G be a group and let A, B be G-modules. Show that for $i \ge 0$ the \cup -product

 $\cup: \hat{H}^0(G, A) \times \hat{H}^i(G, B) \to \hat{H}^i(G, A \otimes B)$

sends (\overline{a}, b) to $\hat{H}^i(\varphi_a)(b)$, where $\varphi_a \colon B \to A \otimes B$, $c \mapsto a \otimes c$ for $a \in A^G$. Hint: Use naturality of the \cup -product in short exact sequences to reduce to the claim for i = 0.

Exercise 2 (4 points):

Let G be a group and $0 \to A \to B \xrightarrow{\alpha} C \to 0$ a short exact sequence of G-modules. Let $\varphi: G \to C$ be a 1-cocycle, and let $\delta: H^1(G, C) \to H^2(G, A)$ be the connecting homomorphism. Show that under the bijection from sheet 10, exercise 3 the element $\delta([\varphi])$ is given by fiber product $B \times_C G = \{(b,g) \in B \times G \mid \alpha(b) = \varphi(g)\}$ with group structure $(b,g) \cdot (b',g') := (bg(b'),gg')$.

Exercise 3 (4 points):

Let p be a prime and $G := \mathbb{Z}/p$.

1) If p is odd, show that the \cup -product $H^1(G, \mathbb{Z}/p) \times H^1(G, \mathbb{Z}/p) \to H^2(G, \mathbb{Z}/p)$ is trivial. 2) If p = 2, show that the \cup -product $H^1(G, \mathbb{Z}/2) \times H^1(G, \mathbb{Z}/2) \to H^2(G, \mathbb{Z}/2) \cong \mathbb{Z}/2$ is surjective. *Hint: In 2) use Exercise 1, Exercise 2 and naturality of the* \cup -product in short exact sequences.

Exercise 4 (4 points):

Let $\mathbb{H} = \mathbb{R} \oplus \mathbb{R}i \oplus \mathbb{R}j \oplus \mathbb{R}ij$ be the Hamiltonians (thus $i^2 = j^2 = -1, ij = -ji$). We set $\mathbb{C} := \mathbb{R} \oplus \mathbb{R}i$. Show that $H^2(\operatorname{Gal}(\mathbb{C}/\mathbb{R}, \mathbb{C}^{\times}))$ is generated by the class of the so-called Weil group $W_{\mathbb{R}} := \mathbb{C}^{\times} \cup \mathbb{C}^{\times}j \subseteq \mathbb{H}^{\times}$ of \mathbb{R} .

To be handed in on: Thursday, 18.01.2023 (during the lecture, or via eCampus).