Dr. D. Schwein
Dr. J. Anschütz

## Algebra II - Local fields

## 10. Exercise sheet

## Exercise 1 (4 points):

Let $G$ be a group and $A$ a $G$-module. Set $H:=A \rtimes G$ with projection $\pi: H \rightarrow G$.

1) Let $\delta: G \rightarrow A$ be a 1-cocycle. Show that $\varphi: G \rightarrow H, g \mapsto(\delta(g), g)$ is a group homomorphism.
2) Show that $H^{1}(G, A)$ is in bijection to the set of equivalence classes of group homomorphisms $\varphi: G \rightarrow H$ with $\pi \circ \varphi=\operatorname{Id}_{G}$, with equivalence induced by conjugation by elements in $A$.
3) Let $\delta: G \rightarrow A$ be a 1-cocycle. Show that $\operatorname{ker}(\delta):=\delta^{-1}(1)$ is a subgroup of $G$, which is not necessarily normal.

## Exercise 2 (4 points):

Let $K$ be a field with separable closure $\bar{K}$ and $n \geq 0$ prime to the characteristic of $K$. Let $x \in K$ with some $n$-th root $y \in \bar{K}$. Show that $\delta_{x}: \operatorname{Gal}(\bar{K} / K) \rightarrow \mu_{n}(\bar{K}), \sigma \mapsto \frac{\sigma(y)}{y}$ is a 1-cocycle whose cohomology class only depends on $x$, and that $\operatorname{ker}\left(\delta_{x}\right)=\operatorname{Gal}(\bar{K} / K(y))$.

## Exercise 3 (4 points):

Let $G$ be a group and $A$ a $G$-module (written additively). An extension of $G$ by $A$ is an exact sequence $0 \rightarrow A \xrightarrow{\iota_{E}} E \xrightarrow{\pi_{E}} G \rightarrow 1$ of groups, such that $\pi_{E}$ is surjective and $\iota_{E}$ an isomorphism $A \cong \operatorname{ker}\left(\pi_{E}\right)$ of $G$-modules.

1) Show that the conjugation action of $E$ turns $\operatorname{ker}\left(\pi_{E}\right)$ naturally into a $G$-module. Hence, the condition on $\iota_{E}$ is well-defined.
2) Let $s: G \rightarrow E$ be a map of sets with $\pi_{E} \circ s=\operatorname{Id}_{G}$. Show that

$$
u_{s}: G \times G \rightarrow A,(\sigma, \tau) \mapsto \iota_{E}^{-1}\left(s(\sigma) s(\tau) s(\sigma \tau)^{-1}\right)
$$

is a 2 -cocycle with $u_{s}(1, g)=u_{s}(g, 1)=0$ for $g \in G$, i.e., $u_{s}$ is normalized.
3) Conversely, assume that $u: G \times G \rightarrow A$ is a normalized 2-cocycle. Show that the set $E_{u}:=A \times G$ with the multiplication

$$
(a, g) *_{u}(b, h):=(a+g(b)+u(g, h), g h)
$$

is a group, which is naturally an extension of $G$ by $A$.
4) Show that the extensions $E$ and $E_{u_{s}}$ are isomorphic for any $s$ as in 2).

Remark: The above constructions determine a natural bijection between $H^{2}(G, A)$ and isomorphism classes of extensions $E$ of $G$ by $A$.

## Exercise 4 (4 points):

With notation as in exercise 3 write the following extensions of groups as $E_{u}$ for some 2-cocycle $u$. 1) $0 \rightarrow \mathbb{Z} / 2 \cong\left\langle i^{2}\right\rangle \rightarrow Q_{8} \rightarrow \mathbb{Z} / 2 \times \mathbb{Z} / 2 \cong\langle\bar{i}, \bar{j}\rangle \rightarrow 1$ with $Q_{8}$ as in sheet 7 , exercise 4 .
2) $0 \rightarrow \mathbb{Z} / 2 \cong\left\langle\tau^{2}\right\rangle \rightarrow D_{8} \rightarrow \mathbb{Z} / 2 \times \mathbb{Z} / 2 \cong\langle\bar{\sigma}, \bar{\tau}\rangle \rightarrow 1$ with $D_{8}$ the dihedral group as in sheet 8 , exercise 3 .
3) $0 \rightarrow \mathbb{Z} / 10 \rightarrow \mathbb{Z} / 100 \rightarrow \mathbb{Z} / 10=\{0,1, \ldots, 9\} \rightarrow 0$. Deduce that "carrying is a 2-cocycle".

To be handed in on: Thursday, 21.12.2023 (during the lecture, or via eCampus).

